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Abstract

Purpose of Review To highlight recent results in targeting mRNA translation and discuss the results and prospects of translation
inhibitors in cancer therapy.

Recent Findings Until recently, inhibitors of mRNA translation have been thought to likely lack a therapeutic window. In 2012,
the Food and Drug Administration (FDA) approved omacetaxine mepesuccinate (homoharringtonine) for the treatment of adults
with chronic myelogenous leukemia (CML) who are resistant to at least two tyrosine kinase inhibitors. Since then, a few drugs,
notably tomivosertib (eFT-508), selinexor (KPT-330), and ribavirin, have entered clinical trials. These drugs are known to inhibit
mRNA translation. More recently, a number of interesting studies report that discrete subsets of proteins in cancer cells may be
selectively targeted at the translation step, through inhibiting signals such as phospho-4E-BP1, elF4A, and elF4E. Promising
therapies using these strategies have demonstrated potent anti-tumor activity in preclinical cancer models.

Summary The growing number of translation inhibitors with diverse mechanisms, coupled with emerging insights into transla-
tional regulation of different cancer-promoting genes, suggests a bright new horizon for the field of therapeutic targeting of

mRNA translation in cancer.
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Introduction

Cancer is characterized by unchecked cellular growth and
requires a high level of mRNA translation. Translation can
be divided into three stages: translational initiation, elonga-
tion, and termination. A growing number of translation inhib-
itors have been developed to inhibit mainly translational ini-
tiation or elongation (Fig. 1). Translational initiation involves
various kinases that stimulate phosphorylation of eukaryotic
initiation factor 4E (elF4E)-binding proteins (4E-BP) such as
4E-BP1. In its hypo-phosphorylated state, 4E-BP1 sequesters
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elF4E and acts as a “brake” for initiation of translation [1].
mTORCI has been established as a key activator for hyper-
phosphorylation of 4E-BP1 and translational initiation [2—4].
Casein kinase 1 epsilon (CK1e¢) and other kinases have been
implicated in stimulating hyper-phosphorylation of 4E-BP1
[5, 6°¢]. The release of elF4E by hyper-phosphorylation of
4E-BP1 is followed by assembly of the eukaryotic initiation
factor 4F (elF4F), which is a critical event for cap-dependent
translation. eIF4F comprises 3 subunits, i.e., the mRNA 5'-
cap-binding subunit eIF4E, the large scaffolding subunit
elF4G, and the RNA helicase subunit e[F4A (Fig. 1).
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Fig. 1 Description of mRNA translation. Initiation and elongation are the
two main steps of the three-phased cap-dependent translation machinery.
Initiation, a rate-limiting step, involves the interaction of key initiation
factors elF4A, elF4E, and elF4G with the cap structure at the 5’ end of the
mRNA as well as the 40S ribosomal subunit and assembly into the eIF4F

Subsequently, the 40S and 60S ribosomes are assembled on
the AUG codon of the mRNA, thus starting the translation.

While the process of cap-dependent translation depicted in
Fig. 1 is shared among the vast majority of proteins, except for
those with a highly active internal ribosome entry site (IRES),
there is a wide range of protein abundance and susceptibility
to translation inhibitors. Protein levels are regulated at tran-
scriptional, translational, and post-translational levels.
Proteins with short half-lives, including many oncogenic pro-
teins, may be particularly affected by translation inhibitors.
For oncoproteins that are essential for cancer cell survival
and proliferation, targeting mRNA translation can be a very
productive therapeutic strategy. For example, the CML driver
oncogene BCR-ABL is highly prone to translational inhibi-
tion by omacetaxine mepesuccinate, underpinning the success
of the drug in treating CML. Omacetaxine is an FDA-
approved natural product that directly inhibits mRNA
translation.

The MYC oncogene is overexpressed in many human can-
cers [7] and has a half-life of only 30 min [8]. Dysregulation of
the MYC oncogene, in the form of protein overexpression or
gene translocation, is observed in 30-40% of all diffuse large
B cell lymphomas (DLBCL), and these constitute the majority
of chemo-resistant and incurable DLBCL [9-15].
Dysregulation of C-MYC is also common in multiple myelo-
ma and is associated with inferior clinical outcome [16—19].
Similarly, MYC activation is observed in 40% of pancreatic
ductal adenocarcinoma cases (PDAC) [20, 21], and dysregu-
lated C-MYC is associated with high-risk PDAC and
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complex. The assembled complex then scans the mRNA to find the start
codon (AUG) where the 40S and 60S ribosome subunits are assembled
onto the mRNA. Elongation starts at the end of the initiation step where
ribosomes construct amino acids into polypeptides and protein synthesis
begins

shortened survival [22, 23]. Despite the obvious importance
of targeting C-MYC, direct inhibitors have not been success-
fully developed. The natural products silvestrol and pateamine
[24-28], which inhibit the function of e[F4A and thus inter-
fere with mRNA translation, have been shown to downregu-
late C-MYC. Interestingly, we recently discovered that
umbralisib (TGR-1202) and carfilzomib, two clinically avail-
able drugs that are seemingly unrelated, form a highly syner-
gistic combination to inhibit e[F4F-dependent translation of
C-MYC [6¢¢]. Furthermore, the synergy of umbralisib and
carfilzomib is driven in part by the ability of umbralisib to
inhibit CK1¢ in addition to its known target phosphoinositide
3-kinase delta (PI3K®6). The above results suggest that trans-
lation inhibitors could contribute to tumor regression by
preventing oncogene-enabled cancer cell proliferation and
survival.

Recent data suggest that translation inhibitors may also
have a therapeutic role in activating an innate anti-tumor
immune response, through repressing the expression of
programmed death-ligand 1 (PD-L1/CD274) [29ee, 30¢°].
In a double transgenic mouse model of liver cancer, tu-
morigenesis was driven by both the activating
KRAS(G12D) mutation and overexpression of C-MYC
[29¢¢]. The liver cancer cells demonstrated constitutively
activated translation of PD-L1, leading to evasion of in-
nate anti-tumor surveillance and eradication. eFT508,
which inhibits eIF4E phosphorylation, was shown to po-
tently inhibit translation of PD-L1 and reverse the aggres-
sive and metastatic characteristics of the liver cancer
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driven by KRAS(G12D) and C-MYC. In a mouse model
of melanoma, STAT1-mediated transcription of PD-L1
was induced by interferon gamma via upregulation of
STAT1 translation [30e¢]. Interestingly, the translation of
STAT1 could be inhibited by silvestrol, pateamine, and
siRNA targeting e[F4A or elF4E. Consistent with the in-
duction of innate immunity, silvestrol effectively treated
melanoma in immune-competent mice, but not in
immune-compromised mice such as nude mice and
CD8+ T cell-depleted mice.

The above results demonstrate that various translation
inhibitors can be used with acceptable safety to produce
robust anti-tumor effects in animals and in humans.
Conceptually, translation inhibitors may preferentially in-
hibit cancer cells while preserving normal cells to a de-
gree through two related or overlapping mechanisms.
First, cancer cells may be more sensitive to repression of
global translation. Such precedence is widely observed
with DNA- or microtubule-targeting drugs like doxorubi-
cin and paclitaxel, respectively. Although these drugs do
not necessarily differentiate the macromolecular targets in
cancer versus normal cells, these drugs are nevertheless
effective and safe for the treatment of a wide variety of
malignancies. Secondly, many cancer-promoting genes
may be highly expressed and critically needed in cancer
but not normal cells, and the translation of these genes
may be more susceptible to translational inhibition than
other genes. CMLDO010509, a member of the rocaglate
family that also includes silvestrol, is reported to cause
depletion of short-lived proteins including oncoproteins
like C-MYC, MDM2, CCNDI1, MAF, and MCL-1.
CMLDO010509 has been shown to be safe and active in
mouse models of myeloma. It is conceivable that targeting
multiple cancer-promoting genes using translation inhibi-
tors may be highly desirable, because such treatments
may overcome inherent resistance of the cancer cells that
possess complex and compensatory oncogenic signals. On
the other hand, in the rare case of a malignancy that is
addicted to a single gene, such as BCL-ABL in CML,
translation inhibitors may be highly effective and safe.

Two broad strategies can be envisioned to improve the
precision and therapeutic window of targeting protein
translation in cancer. The first approach could focus on
identifying translational regulators that are preferentially
activated or overexpressed in a subset of tumors but not in
other tumors or normal tissues. Based on the select studies
discussed above, it is highly possible that tumors that
possess overexpressed or activated elF4E, mTORCI,
and Mnk1 may be selectively more sensitive to translation
inhibitors, compared with normal tissues and tumors with-
out such pathological markers. The second approach may
involve identifying translationally regulated genes that
are overexpressed or activated in cancer but not normal

tissues. As discussed above, C-MYC overexpression is
widespread in DLBCL and other lymphomas. An elegant
study using ribosome footprinting reveals that C-MYC
and a number of other oncogenes possess 5’ untranslated
region (UTR) sequences that can form RNA G-
quadruplex structure [24]. Such a structure poses a barrier
for e[F4A to initiate translation, and genes with this struc-
ture, such as C-MYC and CCND3, are more susceptible
to repression by the elF4A inhibitor silvestrol. These re-
sults suggest that cancers that are dependent on C-MYC
or other oncogenes with RNA G-quadruplex structures
may be the preferred cancers for treatments such as
silvestrol. Highly sophisticated studies have been generat-
ing unprecedented insights into the translation of thou-
sands of genes at the same time [25, 31-35]. Such in-
sights into single-gene translation, combined with ever-
increasing amount of data from tumor sequencing efforts,
will accelerate the clinical development of translation in-
hibitors in cancer.

In the following section, we review the therapeutic targets
and promising experimental drugs that may be used to target
protein translation in cancer.

1. Targeting 4E-BP1 using umbralisib (TGR-1202) and
carfilzomib. Our group recently discovered that TGR-
1202 (umbralisib) and carfilzomib form a highly syn-
ergistic combination in DLBCL [6°¢]. We discovered
that TGR-1202 is a first-in-class dual inhibitor of
PI3K?$ and CKle. Carfilzomib is a proteasome inhib-
itor, which is approved for multiple myeloma but has
no clinical activity in lymphoma. Combining the two
drugs at clinically achievable concentration induces
marked apoptosis in lymphoma cell lines and fresh
primary lymphoma cells in vitro. Mechanistically,
the two drugs synergize to inhibit phosphorylation
of 4E-BP1 and translation of C-MYC, and the syner-
gy is overcome by overexpressing elF4E or C-MYC.
The two drugs are now being studied in a phase |
clinical trial (NCT02867618).

2. Targeting 4E-BP1 using mTOR inhibitors. mTORCI] is a
well-characterized activator causing hyper-
phosphorylation of 4E-BP1, leading to the release of
elF4E from 4E-BP1, assembly of the e[F4F complex,
and robust mRNA translation [2—4]. In keeping with
these data, mTORC1 and dual mTORC1/mTORC2
inhibitors have been found to cause varying degrees
of inhibition of 4E-BP1 hyper-phosphorylation and
translation initiation for tumor-promoting genes
[36—42]. However, the therapeutic effects of mTOR
inhibition in cancer remain poorly understood.
mTORC1 inhibitors such as everolimus and
temsirolimus have been approved for renal cell cancer
(RCC), but they demonstrate limited activity in other
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cancers such as DLBCL. The dual mTORC1/
mTORC2 inhibitor MLNO128 was recently reported
to exhibit no activity in lymphoma [39].
Targeting elF4A using pateamine and silvestrol/rocaglate
analogs. Silvestrol is a rocaglate derivative isolated from
the plant Aglaia foveolata [43]. It binds to the elF4A
subunit and increases its mRNA-binding activity, thereby
limiting its participation in eIF4F complex formation [44,
45]. Silvestrol has been studied extensively and its anti-
tumor activity has been demonstrated both in vitro and
in vivo in several cancer models including melanoma,
breast and prostate cancers, chronic lymphocytic leuke-
mia (CLL) and acute lymphoblastic leukemia (ALL),
acute myeloid leukemia (AML), hepatocellular cancers
(HCC), and brain cancer (meningioma) [44-51]. All dem-
onstrate efficacy of this molecule at nanomolar concentra-
tions in tumor cell lines, reporting antiproliferative activ-
ity, induction of apoptosis, G2/M cell cycle arrest, and
decreased expression of important oncogenic/signaling
proteins such as C-MYC, MDM2, MYB, NOTCH-1,
ETS1, PCNA, AKT, ERK, MCL-1, BCL-2, AND BCL-
XL, and cyclins D1, D3, E, and A, with different reduc-
tions occurring in different cellular contexts (e.g., differ-
ent cell lines and tumor types). Additionally, studies have
also demonstrated the anti-tumor effects of silvestrol in
xenograft models improving survival with the compound
being well tolerated in animals [24, 44-51]. Synergistic
effects of silvestrol combined with other chemotherapy
agents such as daunorubicin, etoposide, cytarabine, cis-
platin, sorafenib, and rapamycin have also been demon-
strated in several studies [49, 52, 53]. It has been shown to
be a substrate and inducer of the multi-drug resistance 1
(MDR1/ABCBI1) efflux pump [54], which may limit
silvestrol activity as well as its absorption in the GI tract.
The class of Pateamine A (PatA)—derived compounds
are natural compounds originally isolated from the marine
sponge Mycale sp. [55]. PatA inhibits translation initiation
through binding to eIF4A [26, 47, 56]. PatA was initially
developed as an immunosuppressive agent inhibiting T
cell receptor—induced IL-2 production [57, 58]. Later it
was shown to inhibit cell growth and induce apoptosis
in several cell lines [26, 59]. Des-methyl des-amino
PatA (DMDAPatA) is a synthetic analog of PatA with
more potent in vitro activity than the natural product
PatA [58, 60]. The in vitro anti-tumor activity of
DMDAPatA has been demonstrated in several cancer cell
lines [28, 59, 61, 62]. Further, its anti-tumor effect in
several nude mice xenograft models displayed significant
inhibition of tumor growth in melanoma models albeit
modest activity in non-small cell lung cancer and colon
cancer cell lines, but without significant effect on pancre-
atic and HT-29 colon cancer xenograft models [62].
DMDAPatA and its analogs reduce the level of C-
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MYC, cyclin D1, MDM2, and MCI-1 proteins and have
been shown to induce S-phase arrest in several cancer cell
lines [28, 61, 62]. Unlike silvestrol, DMDAPatA is not a
substrate for MDR1-mediated efflux [62]. However, po-
tency may be limited by high-level DMDAPatA binding
to human plasma proteins (>99%). As a result, new ana-
logs of this compound with less plasma protein binding,
more potency, and greater selectivity towards cancer cells
have been developed [61].

Targeting elF4FE using the Mnkl/Mnk2 inhibitor eFT508.
The eukaryotic initiation factor elF4E plays a significant
role in cap-dependent translation and is regulated by the
mitogen-activated protein kinase-interacting kinases 1/2
(Mnk1/2) [63, 64]. MNK 1 and MNK2 incorporate signals
from different oncogenic and immunogenic stimuli such
as RAS, p38, and Toll-like receptor (TLR) and regulate
the translation of several subsets of mRNAs by phosphor-
ylation of eIF4E [65, 66]. eFT508 is a potent, highly se-
lective, and dual MNK 1/2 inhibitor [67] and now in phase
2 clinical trials in lymphoma (NCT02937675) and in ad-
vanced solid tumors (NCT02605083). Recently, Xu et al.
demonstrated that eFT508 produced significant and selec-
tive downregulation of PD-L1 translation driven by Kras
and c-Myc, and the drug is effective in the transgenic
mouse model of hepatic cell cancer [29+¢]. Based on this
observation, a phase 2 clinical trial in relapsed or refrac-
tory microsatellite stable colorectal cancer (MSS CRC) is
being conducted combining eFT508 and avelumab an
anti-PD-L1 checkpoint inhibitor (NCT03258398).
Targeting elF4E using ribavirin. Ribavirin is an FDA-
approved antiviral agent used for the treatment of respira-
tory syncytial virus and hepatitis C [68]. Ribavirin binds
directly to elF4E with micromolar affinity and competi-
tively inhibits e[F4E:m7G mRNA cap-binding and dis-
rupts elF4E-mediated nuclear to cytoplasmic mRNA ex-
port [69]. Pharmacologic inhibition of eIF4E with ribavi-
rin inhibits proliferation and survival of leukemic blasts
derived from infants with acute lymphoblastic leukemia
[70]. Ribavirin showed promising outcomes in relapsed
and refractory AML [71] in combination with cytarabine
[72] and is being evaluated in follicular and mantle cell
lymphoma (NCT03585725). A clinically achievable
concentration of ribavirin significantly inhibits
chronic lymphocytic leukemia (CLL) lymphocytes
in vitro with fludarabine [73]. Ribavirin has demon-
strated clinical activity in solid tumors such as
breast cancer (NCT01056757), oropharyngeal cancer
(NCTO01721525), prostate cancer, and other solid tu-
mors (NCT01309490) [74, 75].

Targeting elF4E-associated nuclear export of mRNA
using selinexor. The karyopherin family of proteins are a
large group of transporters that are responsible for the
import (importins) and export (exportins) of proteins
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Fig. 2 Nuclear export of mRNA and action of selinexor. While eIF4E is
mainly involved in translational initiation in the cytoplasm, eIF4E also
acts in the nucleus where it promotes the export of a specific subset of
mRNAs that contain a 50-nucleotide element in the 3" untranslated region
denoted as an elF4E sensitivity element. Xpol is an exportin transporter
that forms an export complex with eIF4E in the nucleus and facilitates the
transport of elF4E target mRNAs from the nucleus into the cytoplasm
where they undergo cap-dependent translation. The hydrolysis of the
Ran-GTP enables the release of Xpol cargo in the cytoplasm. Selinexor
targets the Xpol protein recognition site and inhibits its nuclear export
activity

and other molecules into and out of the nucleus. They
recognize proteins labeled with the nuclear localization
signal (NLS) or nuclear export sequence (NES) and facil-
itate their import and export into and out of the nucleus,
respectively. XPO1 (CRM1) is the best-characterized
exportin transporters that recognize the NES of cargo pro-
teins (including tumor suppressors like p53, p21,
BRCA1/2, cell cycle regulatory proteins, transcription
and translation factors, and miRNAs, which are frequent-
ly upregulated in cancers) and facilitates their export from
nucleus to the cytoplasm (Fig. 2) [76-78]. Additionally,
XPOL1 facilitates transport to the cytoplasm the mRNAs
that possess a 50-nucleotide element in the 3’ untranslated
region denoted as the eIF4E sensitivity element, such as c-
Mye, cyclin D1, and MDM2 (Fig. 2) [79-81].

Selinexor (KPT-330) (Fig. 2) is a selective inhibitor of nu-
clear export (SINE) that targets the cysteine 528 residue of
XPOL1 essential for NES recognition. KPT-330 has also been
reported to transiently degrade the XPO1 protein, which is
upregulated in many types of cancers [76, 82—-84]. Further,

selinexor blocks XPO1-mediated nuclear export of tumor sup-
pressors including p53, p21, and BRCA1/2; growth regulato-
ry proteins such as MYC and BCR-ABL,; transcription and
translation factors; and miRNAs [83, 84]. Several preclinical
studies have demonstrated the ability of selinexor to inhibit
growth and induce apoptosis in different cancer models, many
of them though the restoration of tumor suppressor proteins
[85-89]. Selinexor-mediated downregulation of the cap-
dependent translation of several oncogenes including MYC,
CDC25A, BCL-2, BCL-XL, and MCL-1 has been reported
[86]. Selinexor has been and is currently being examined in
over 60 clinical trials of various types of hematological and
solid tumor cancers, alone or in combination with other che-
motherapy agents [90]. It has demonstrated promising out-
comes in acute myeloid leukemia [91, 92], advanced refracto-
ry bone or soft tissue sarcomas [93], and refractory multiple
myeloma for which it has received orphan drug designation
from the US FDA [94]. Other SINEs such as verdinexor
(KPT-335) have also been developed; however, selinexor re-
mains the most promising yet for cancer treatment.

7. Targeting translational elongation using homoharringtonine.
Omacetaxine mepesuccinate, a semisynthetic analog of
homoharringtonine, is approved for third-line treatment
of CML [95, 96]. Homoharringtonine (omacetaxine) pre-
vents the elongation step of protein synthesis by
interacting with the A-site of the ribosome and disrupting
the positioning of aminoacyl-tRNAs [97-99]. Outside of
its approved indication in CML, omacetaxine has been
studied in various combination regimens for AML. In a
phase 2 clinical study, homoharringtonine and sorafenib
in combination have demonstrated encouraging activity in
relapsed or refractory FLT3-ITD AML [100].
Homoharringtonine has been safely combined with
cytarabine for the treatment of AML, resulting in the im-
provement of complete remission [101]. In a randomized,
controlled, phase 3 study of 620 patients with de novo
AML, the triple-drug regimen of homoharringtonine,
cytarabine, and daunorubicin substantially outperforms
the combination of cytarabine and daunorubicin [102].

Conclusion

Globally, cancer is responsible for about 9.6 million deaths
annually. New targets and concepts are urgently needed to
address cancer-related mortality and morbidity. While transla-
tion inhibitors have gradually entered clinical development,
new insights into how these agents preferentially repress the
level of key proteins, such as C-MYC and PD-L1, could sub-
stantially accelerate the rate of discovery and clinical
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development. Work on predictive biomarkers is critically
needed to treat the right patient population.
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