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Abstract
Purpose of Review  Differences in HF biomarker levels by sex may be due to hormonal, genetic, and fat distribution differ-
ences. Knowledge of these differences is scarce, and it is not well established whether they may affect their usefulness in 
the management of HF.
Recent Findings  The different biomarker profiles in women and men have been confirmed in recent studies: in women, 
markers of cardiac stretch and fibrosis (NP and galectin-3) are higher, whereas in men, higher levels of markers of cardiac 
injury and inflammation (cTn and sST2) are found.
The use of new biomarkers, together with growing evidence that a multimarker approach can provide better risk stratifica-
tion, raises the question of building models that incorporate sex-specific diagnostic criteria.
Summary  More and more research are being devoted to understanding sex-related differences in HF. The aim of this review 
is to review the dynamics of HF biomarkers according to sex and in different situations, to learn whether these sex differences 
may affect their use in the diagnosis and follow-up of HF patients.
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Abbreviations
BMI	� Body mass index
CTn	� Circulatory troponins
Gal-3	� Galectin-3
HF	� Heart failure
HFpEF	� Heart failure with preserved ejection 

fraction
HFrEF	� Heart failure with reduced ejection fraction
hs-Tn	� High-sensitivity troponin
NP	� Natriuretic peptide
NT-proBNP	� Amino-terminal pro-peptide fragment
sST2	� Soluble suppression of tumorgenicity 2

Introduction

The current worldwide prevalence of heart failure (HF) 
stands at more than 64 million cases, or 8.5 per 1,000 popu-
lation, making it a growing epidemic associated with signifi-
cant morbidity, mortality and health care costs in both sexes 
[1–3]. This prevalence is higher as age increases, being more 
than 10% in the population over 70 years of age, and it is 
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estimated that the incidence of the disease is higher in the 
elderly [4]. Thus, HF is considered a major problem, since 
despite advances in treatment and prevention, it continues 
to be the leading cause of hospitalization in the world [5, 6] 
and it continues to be the leading cause of hospitalization in 
people over 65 years of age [7].

Although 50% of patients with HF are women, differ-
ences between sexes in the presentation and evolution of 
HF and in biomarker levels have been described, but the 
cause and its clinical implications are not fully understood 
[8]. The predominant phenotype in each sex is well known, 
with heart failure with preserved ejection fraction (HFpEF) 
being more prevalent in women, whereas the risk of heart 
failure with reduced ejection fraction (HFrEF) is higher in 
men. In addition, although women are hospitalized in more 
advanced stages of HF, hospitalizations for HF are more 
frequent in men [9••, 10].

The prevalence and impact of traditional cardiovascular 
risk factors also differ between men and women, with a 
different distribution across the lifespan [11••]. Diabe-
tes mellitus, coronary microvascular dysfunction, and 
immunoinflammatory mechanisms play a greater role in 
the development of HF in women, whereas ischemic heart 
disease with macrovascular coronary disease is the main 
cause of HF in men [12, 13••]. In addition, it is known 
that even the myocardial response to ischemic damage and 
cardiovascular stress is also different between men and 
women [13••].

Despite adjusting for left ventricular ejection fraction 
(LVEF) and natriuretic peptide (NP) levels, clinical pres-
entation also differs between sexes [14]. Women tend to 
show a more advanced clinical picture, with worse func-
tional class, greater congestion and more severe symp-
toms [13••]. However, women have a better prognosis in 
terms of hospitalization and death than men [9••, 15, 16], 

postulating sex-specific regulation of mitochondrial func-
tion and energy metabolism as one of the causes of this 
sexual dimorphism in HF [17].

When analyzing the differences between women and 
men, hormonal reasons are always considered. When oes-
trogen production ceases, an increase in cardiovascular 
risk is demonstrated, which supports the idea of the protec-
tive role of this hormone. It is thought that the function of 
contractile proteins may be hormonally influenced, since 
oestrogenic and androgenic receptors have been detected 
in cardiac tissue; it has also been shown that endogenous 
oestrogens are relatively protective against apoptosis and 
cell death. All this could explain why women have a better 
response to acute coronary ischemia, with higher rates of 
successful reperfusion, smaller infarcts, and less cardiac 
remodelling with greater preservation of left ventricular 
function [8].

HF biomarker concentrations are known to differ 
between men and women, but the clinical significance of 
these differences remains poorly understood [18]. We can-
not forget that women are still underrepresented in clinical 
trials, having less knowledge of their evolution, manage-
ment and treatment, which may also contribute to the lack 
of knowledge on this issue. Furthermore, about cardiovas-
cular disease in general, we should pay attention to sex and 
gender, as these are nuances that also influence clinical 
outcomes. Sex encompasses biological differences, from 
gene expression to hormonal influence; whereas gender 
involves culture, different roles and behaviour between 
men and women, which also vary across societies and 
historical periods [19].

The aim of this review is to analyse these sex-associated 
differences in HF, with emphasis on biomarkers and their 
novel aspects. Figure 1 shows a summary of the most char-
acteristic sex differences in HF.

Fig. 1   Sex differences in Heart 
Failure. ACEI: angiotensin 
converting enzyme inhibitors; 
ARB: angiotensin receptor 
blocker; CA125: Carbohydrate 
125; CRT: cardiac resyn-
chronization therapy; HFrEF: 
Heart failure reduced ejection 
fraction; HFpEF: Heart failure 
with preserved ejection fraction; 
ICD: implantable cardioverter 
defibrillator; NP: Natriuretic 
peptides; sST2: Soluble sup-
pression of tumorogenesis-2
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Sex Differences in Biomarkers of Hear Failure

Plasma biomarkers are useful tools in the diagnosis and 
prognosis of HF. There are cardiac-specific biomarkers, 
such as natriuretic peptides (NP) and high-sensitivity tro-
ponins (hsTn), which are widely represented in clinical 
practice. However, other biomarkers have not yet been 
included in practical HF management, such as galectin-3 
(Gal-3) and soluble suppression of tumorigenicity 2 (sST2) 
[20]. The large number of potential circulating biomark-
ers reflects the complexity of HF pathogenic pathways. 
Although ideally, each biomarker should correspond to a 
single point in the pathogenesis of HF, in reality, receiving 
an accurate clinical interpretation of peak concentrations 
is challenging due to the changes observed in most current 
biomarkers because of the extensive overlap of different 
phenotypes [21].

Sex-related differences in HF biomarker levels may be 
due to genetic, epigenetic and environmental differences, 
as well as the effect of sex hormones and the different dis-
tribution of body fat between men and women [13••, 22]. 
There is still a knowledge gap regarding the biology or 
physiology of these different marker concentrations, and 
they have an implication to consider in the diagnosis and 
follow-up of patients with HF, and it may be necessary 
to develop sex-specific diagnostic or predictive models 
[13••]. In general, women tend to have elevated levels of 
biomarkers associated with cardiac stretch and fibrosis, 

whereas men have higher levels of markers associated 
with cardiac injury and inflammation [23] (Table 1).

Natriuretic Peptides

Natriuretic peptides (NP) are a group of polypeptides 
secreted mainly by the heart, kidneys and vascular endothe-
lium. They regulate cardiovascular homeostasis, control-
ling intravascular volume and blood pressure, with diuretic, 
natriuretic and vasodilator properties [13••]. NPs are mainly 
biomarkers of myocardial stretch, with BNP and NTproBNP 
being the most widely used in clinical practice for the diag-
nosis and prognosis of patients with HF [9••, 24].

It is widely known that HF is a complex phenotype, so 
we must carefully assess differences in NP levels between 
men and women, because these differences may be related 
to the differential prevalence of HFrEF vs. HFpEF between 
men and women [13••]. Female sex has been described as a 
strong predictor of elevated natriuretic peptides [18] as sev-
eral studies have shown that NT-proBNP levels are higher 
in women than in men [2]. However, NT-proBNP appears to 
be a stronger predictor of risk in men than in women, dem-
onstrating a greater presence of ICrEF in men and higher 
levels of NT-proBNP [2].

In the general population, basal NTproBNP levels have 
been found to be higher in women than in men, especially 
in premenopausal women [13••, 25, 26]. It appears that 
sex hormones play a role in this difference, and there is 

Table 1   Sex differences in Heart Failure biomarkers

CA125: Carbohydrate 125; GDF-15: Growth differentiation factor-15; NT-proBNP: Amino-terminal molecule of Brain Natriuretic Peptide; 
sST2: soluble suppression of tumorogenesis-2

Biomarkers Diagnostic value Sex differences Modulators

General population HF population

BNP
NT-proBNP

Cardiac stretching and conges-
tion

Higher levels in women Inconsistent results in several 
papers: Higher levels in 
women if classified by ejec-
tion fraction

Age and oestroges increase 
biomarker levels

Obesity ante testosterone 
induced lower levels

Cardiac troponins Myocyte injury Lower leves in women Lower levels in women Testosterone-induced hypertro-
phy and apoptosis

Oestrogen-induced suppression 
of cardiomyocyte apoptosis

sST2 Extracellular matrix remod-
eling and fibrosis

Lower leves in women Higher levels in men with 
chronic HF

Sex hormones (testosterone and 
estradiol increase levels in 
men, estrogens decrease levels 
in women), obesity

Galectin-3 Extracellular matrix remod-
eling and fibrosis

Higher levels in women No differences, but it is more 
associated with incident HF 
in women

Body fat increases biomarker 
levels

GDF-15 Inflammatory response Lower levels in women Unknown Unknown
CA125 Congestion Variation in women by 

the menstrual cycle
Higher in women than in men Menstruation, endometriosis, 

and rise in ovarian cancer 
CA125 concentration
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now strong clinical evidence that testosterone decreases 
cardiac NP levels, which may explain these lower NP lev-
els in men [9••, 13••, 27]. One possible explanation for 
this is the up-regulation of neprilysin activity by testos-
terone, although this mechanism has not been fully eluci-
dated [13••, 28]. This hypothesis could explain both the 
differences observed in premenopausal women compared 
to young men of the same age range, as well as the change 
in NP levels after menopause, since studies have shown 
that postmenopausal women have lower NT-proBNP levels 
than premenopausal women [9••, 13••].

In the HF population, the different levels of NP in terms 
of sex show inconsistent results in several papers. Some 
studies show that the mean NP concentration seems to be 
slightly higher in men [13••], this would imply that in this 
state of excessive NP production such as HF, the effects 
of sex hormones are overridden, and plasma levels may 
no longer reflect sex-specific changes. However, in other 
studies, it has been shown that women had moderately 
higher levels of NT-proBNP when comparing women and 
men with HF and the same LVEF [29, 30••].

There are also conflicting data regarding prognosis and 
sex-specific differences in NP. There are studies that found 
no sex-specific differences [31, 32] but, at very high levels 
of NT-proBNP, there was a trend toward higher mortality 
in women compared to men at similar levels [32]. In other 
studies and meta-analyses, NT-proBNP was more strongly 
associated with the incidence of HF in men than in women 
[13••, 33].

Special mention should be made of obesity, which is 
known to favour a state of relative cardiac NP deficiency, 
perhaps associated with the fact that visceral fat appears 
to increase testosterone levels, which decrease cardiac 
NP levels [34, 35] perhaps associated with the fact that 
visceral fat appears to increase testosterone levels which 
decrease NP levels [29, 36]. Shutahar et al. have recently 
shown that, in the general population, the decrease in NT-
proBNP levels associated with male sex was more impor-
tant than the reduction in NT-proBNP levels associated 
with obesity [13••, 36]. These observations may have clin-
ical implications regarding the choice of the optimal cut-
off value to rule out HF, with sex-specific cut-off points 
being necessary to rule out HF in the general population 
(e.g., lower NT-proBNP cut-off points in men), and not 
so much considering obesity. In contrast, in the HF popu-
lation, it has been shown that NT-proBNP levels are up 
to 60% lower in obese patients, with sex-related effects 
being more subtle and obesity playing a more important 
role [13••]. Therefore, in patients with HF it does seem 
interesting to establish a lower cut-off point in obese indi-
viduals to estimate the severity of the disease, the differ-
ences between men and women not being so necessary in 
this regard.

Cardiac Troponins

Cardiac troponins are mainly markers of myocardial 
ischemia, establishing as the specific marker of cardiac 
injury. Thus, troponin levels may be elevated in HF due to 
multiple mechanisms, not only because of ischemia caused 
by macrovascular and microvascular coronary artery dis-
ease, but also due to the state of inflammation and neurohor-
monal overactivation, leading to infiltrative processes and 
myocardial apoptosis. In healthy individuals, circulating tro-
ponin (cTn) levels are higher in men than in women [13••, 
37].This has been attributed to differences in left ventricular 
mass and the protective antioxidant role of estrogens [30••].

Since the predominant use of high-sensitivity techniques, 
cTn has been found to be elevated in the majority of HF 
patients and high-sensitivity troponin (hs-Tn) has been 
established as a strong predictor in patients with chronic 
HF [38]. In most studies, there is no evidence of sex-specific 
differences in cTn levels, but the data are sometimes partial 
[39]. In the sex-specific analyses of Suthahar et al. cTn levels 
were higher in men and remained significantly associated 
with HF in men [31]. It has also been observed that when 
stratifying by sex and phenotype, there is a stronger predic-
tive association of hs-Tn with outcome in men with HFpEF 
than in women, but the same association was not found in 
patients with HFrEF [40].

The pathophysiology of sex-related differences in cTn 
levels is not known. It is thought that perhaps the higher 
prevalence of cardiac comorbidities in men (e.g., atrial 
fibrillation, ventricular arrhythmias, coronary artery dis-
ease, cardiomyopathies, myocarditis), together with their 
specific hormonal mechanisms (e.g., testosterone-induced 
hypertrophy and cardiomyocyte apoptosis) could contrib-
ute to the higher cTn concentrations observed in male HF 
patients. In contrast, the different mechanisms of myocardial 
injury present in women (e.g., coronary microvascular dis-
ease), together with the cardioprotective effects of oestro-
gens (e.g., suppression of cardiomyocyte apoptosis), could 
explain the relatively lower cTn concentrations in women 
with HF [13••, 30••].

Although the diagnostic value of cTn in HF is limited, it 
does clearly predict the incidence of HF in the general popu-
lation [13••] and its prognostic value in HF patients appears 
increasingly robust. However, we still have few data on sex-
related differences in this prognostic value of cTn in patients 
with HF [5, 41]. In this regard, it is interesting to note that 
the T isoform (cTnT) appears to be similarly associated 
with adverse events in both sexes, whereas I (cTnI), which 
is measured with a more sensitive assay, is more associated 
with adverse events in men with HF-PEF than in women 
with HFpEF [40].

Obesity also influences cTn levels. According to 
Ndumele et al. data, obesity is strongly associated with 
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higher cTn levels [42]. It is hypothesized that adipokines 
could lead to adverse cardiac remodelling as a conse-
quence of cardio-deleterious signals or even direct dam-
age to cardiac tissue. It also seems important to take into 
account sex differences in this regard, given the differences 
in fat distribution between men and women and the higher 
overall prevalence of obesity in women [13••, 42].

Soluble Suppression of Tumorgenicity 2 (sST2)

ST2 is a member of the IL1 family and is proposed as 
a novel biomarker associated with ventricular fibrosis 
and remodelling. The ST2 gene encodes two isoforms, 
the transmembrane form or ligand (LST2) and the solu-
ble form (sST2). The sST2 form is produced in cardio-
myocytes in response to myocardial stretch, and acts as 
a "decoy" receptor for IL-33, thus promoting myocardial 
damage by inhibiting the cardioprotective effects of IL33-
ST2L interaction [43].

In the general population, sST2 levels are higher in men, 
and a similar trend is observed in HF patients [18, 44, 45]. 
Data regarding these differences are scarce and contradic-
tory, and although in general there appear to be higher lev-
els of sST2 in males, this cannot be explained by hormonal 
influence alone. There is research indicating that both tes-
tosterone and oestradiol levels are significantly associated 
with sST2 levels. For example, in some work in women, 
oestrogen hormone therapy was associated with lower sST2 
levels, while in other studies sex hormones did not correlate 
with sST2 levels [13••].

Elevated sST2 levels have prognostic implications in 
HF patients, but sex-specific data are limited [9••, 31]. 
It does not appear that the influence of sex hormones can 
explain sex differences in sST2, nor is the pathophysiology 
of these sex-specific differences in healthy individuals and 
HF patients known [46, 47]. In the multimarker study by 
Lew et al. no significant association between sexes was evi-
dent overall, but significantly lower levels were observed in 
postmenopausal women compared with men of the same age 
[48]. Recently, Arrieta et al. demonstrated that sST2 was an 
independent factor for fibrosis in patients with severe aortic 
stenosis. In this study, men had higher levels of fibrosis and 
sST2, with a positive correlation with greater ventricular 
dilatation and hypertrophy [49]. Despite these observations, 
it is still unknown whether sex-specific differences in sST2 
levels have a clinical and prognostic implication in patients 
with HF.

At present, obesity has not been described as having a 
significant influence on sST2 levels. There is some data from 
animal studies indicating that sST2 expression is decreased 
in adipose tissue, heart and liver of obese mice compared to 
non-obese controls [13••].

Galectin‑3 (Gal‑3)

Galectin-3 is a profibrotic protein secreted mainly by mac-
rophages, its expression being essential for tissue repair 
after injury. However, persistent elevation of galectin-3 
generates a state of inflammation that leads to fibrosis and 
adverse remodeling [50]. Unlike NPs and cTn, plasma 
levels of Gal-3 come from sources other than the heart, 
such as adipose tissue, lungs, hematopoietic tissue and 
liver. Thus, its levels are less influenced by cardiac load-
ing conditions and for this reason it is already included in 
American guidelines with a class II indication as a diag-
nostic and prognostic marker in patients with HF [41].

In the general population, several studies have shown 
that women have slightly higher levels of galectin-3 than 
men, without knowing the cause of this difference [13••, 
51]. It is postulated that differences in fat mass may be an 
explanation, rather than differences in sex hormones [52].

In the HF population there are no consistent data 
regarding sex-specific differences in Gal-3 levels [31]. 
Some studies describe a trend of slightly higher galectin-3 
levels in male HF patients; whereas in other studies Gal-3 
levels were similar in both sexes or more associated with 
incident HF in women [13••, 18, 53]. Dekelva et al. in 
a cohort of percutaneously treated myocardial infarction 
patients, observed higher Gal-3 levels in women, together 
with a higher incidence of heart failure and left ventricular 
hypertrophy [54]. These are preliminary and unconfirmed 
data, without being able to establish their sex-specific 
implication for predicting the incidence of HF or disease 
progression [31, 55].

Growth Differentiation Factor‑15 (GDF‑15)

Growth differentiation factor-15 is a member of the trans-
forming growth factor-β (TGF-β) superfamily of cytokines 
with antiapoptotic, antihypertrophic, and anti-inflammatory 
properties [21]. Its production is predominantly extracar-
diac (lungs, liver and kidneys) [56] and in general has anti-
inflammatory, antioxidant and antiapoptotic properties, 
giving it a cardioprotective role [57]. Ischemia and reperfu-
sion injury induces GDF15 expression in cardiomyocytes, 
which is associated with inflammation and cardiac fibro-
sis. Elevated concentrations of GDF15 also seem to predict 
the occurrence of atrial fibrillation, cardiac thrombosis and 
cardioembolic stroke [58–60]. GDF15 is thus considered 
a promising biomarker and a potential therapeutic target 
for the treatment of HF, and several studies are currently 
underway.

Although women appear to have slightly lower levels of 
GDF-15 than men, sex differences in plasma GDF-15 levels 
have not yet been clearly established. [13••, 61].
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Carbohydrate Antigen 125 (CA125)

Carbohydrate antigen 125 (CA125, also called mucin 16 
[MUC16]) is a high molecular weight glycoprotein encoded 
by the MUC16 gene and expressed on the surface of pleural, 
peritoneal and pericardial epithelial cells [62]. Although its 
use was initially based on the monitoring of ovarian onco-
logic processes, CA125 has also been shown to be elevated 
in many other situations related to volume expansion, such 
as cirrhosis, renal failure and heart failure [63]. It is thought 
that elevated hydrostatic pressure, mechanical stress and 
inflammatory stimuli in the context of congestion may acti-
vate mesothelial cells on serosa surfaces, inducing the pro-
duction and plasma elevation of CA125 [62]. Recent studies 
have confirmed the usefulness of changes in plasma CA125 
concentration in predicting mortality and readmission, espe-
cially during the first months after an episode of decompen-
sated HF [62, 63]. In terms of therapeutic implications, it 
has been shown that patients at lower risk are those with a 
greater reduction in CA125 after the first month after admis-
sion; on the other hand, patients who maintain elevated lev-
els or those whose levels increase during follow-up appear 
to be at higher risk [64].

It is important to note that there is a time interval between 
the onset of congestion and the release and rise of CA125 
and that we must take this into account in order to correctly 
interpret CA125 as a surrogate marker of congestion. Conse-
quently, we will find higher plasma CA125 levels in patients 
with more progressive and prolonged congestion (days to 
weeks) than in patients with more acute congestion (minutes 
to hours) [63]. An advantageous property of CA125 com-
pared to NPs is that its levels are not significantly affected by 
age, LVEF and renal function, being this relevant in its clini-
cal application for the evaluation of cardiorenal syndrome as 
well as in elderly patients and patients with HFpEF [63, 64].

We do have to keep in mind that CA125 can be elevated 
under physiological conditions such as pregnancy or men-
struation and CA125 levels have been shown to differ during 
the menstrual cycle, with higher values during endometrial 
shedding in menstruation due to the inflammatory process 
[65]. However, this menstrual surge does not bring CA125 
values to concentrations similar to those required for a diag-
nosis of HF [30••]. Recently, Menghoum et al. described 
significantly higher CA125 levels in women than in men, 
further demonstrating that CA125 levels were a strong and 
independent predictor of HF hospitalization in patients with 
HFpEF [66]. However, in this study, no differences in abnor-
mal CA125 values were found between men and women, 
suggesting that sex does not appear to be an independent 
factor in elevating CA125 levels. The authors explain these 
findings by the higher proportion of women in the HFpEF 
population, and therefore this effect of sex on CA125 levels 
might be expected [66].

Also this study by Menghoum et al. revealed an inverse 
association between body mass index and CA 125 levels, a 
finding already reported in patients with metabolic syndrome 
[67]. The cause of this inverse correlation is not known, but 
the most convincing hypothesis suggests that a lower body 
mass index is associated with a poor prognosis in HF and 
therefore increased CA125 could be an indicator of poor 
prognosis, related to these metabolic changes in advanced 
disease with a lower body mass index [66, 67].

Female Specific Situations

Takotsubo cardiomyopathy is an entity that mainly affects 
women, especially postmenopausal women. It has been 
observed that these patients have lower troponin levels and 
higher NP levels than when the aetiology is coronary artery 
disease and may be of interest in the differential diagnosis 
[9••]. However, no prognostic association has been estab-
lished with these different biomarker values [68].

NP levels could be nonspecific and elevated for other 
causes such as pulmonary embolism or preeclampsia in 
peripartum cardiomyopathy. However, it seems that higher 
baseline NT-proBNP levels predict lower recovery of cardiac 
function at 6 months [69–71]. Other more specific biomark-
ers have been studied in peripartum cardiomyopathy (e.g. 
prolactin, placental growth factor…) but although there is 
evidence that they may be elevated for a long time after the 
process and even correlate with recovery of cardiac func-
tion, their implementation in clinical practice has not been 
established [72].

Future Directions

Multiparametric assessment in the diagnosis and follow-up 
of HF is already a reality in the management of HF, along 
with precision medicine that allows us to more precisely 
define the patient's phenotype in order to choose the most 
beneficial treatment in each case [76–78]. Within this mul-
tiparametric assessment is the use of different biomarkers in 
combination (multimarker approach), and there are already 
data on sex differences, especially in the HFpEF spectrum 
[79–81].

There are some studies that investigated sex-differences 
in HF patients using high-throughput protein biomarker plat-
form using Proximity Extension Assay (PEA) technologythe. 
Fatty acid binding protein 4 (FABP-4), secretoglobin family 
member 2 3A (SCGB3A2), paraoxonase 3 (PON3), and tre-
foil factor 3 (TFF-3) showed higher mean levels in women, 
whereas levels of matrix metalloproteinase-3 (MMP-3), 
ST2s, and myoglobin (MB) were higher in men. However, 
although multiple proteins related to cardiovascular disease 
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and HF showed sex differences at baseline, no relationship 
was found over time or with events at follow-up between 
women and men with HF [82, 83].

The use of proteomics, metabolomics and circulating 
microRNAs is a promising strategy for early diagnosis and 
risk stratification of patients with HF [84]. This more basic 
research is also increasingly taking sex and gender differ-
ences into account [85]. The use of microRNAs (miRNAs) 
as biomarkers for diagnosis, follow-up and prognosis in HF 
is being studied. These miRNAs are small non-coding RNAs 
that play an important role in the regulation of gene expres-
sion [86]. It seems that the expression of these miRNAs is 
significantly influenced by sex: on the one hand, with the 
direct effect of oestrogens driving the expression of some of 
these miRNAs, which also seem to have protective functions 
[86, 87]; and on the other hand, because the X chromosome 
encodes more than 100 miRNAs that could escape the inac-
tivation of this chromosome, so they would be expressed at 
a higher level [88], with many of these miRNAs X-linked 
associated with microvascular and myocardial involvement 
[86]. This knowledge of miRNAs and the influence that sex 
has on them could contribute to the differences in the patho-
physiology of HF between men and women, especially in 
HFpEF [86]. In addition, with the increasing advances in 
gene therapy with RNA, being able to silence or activate 
regulatory pathways, we are invited to think about possible 
future treatments in this sense [85, 86].

Artificial intelligence and machine learning are also being 
used as tools in HF management [89]. There are already 
some data in this regard, with studies in which machine 
learning models have been applied to predict the incidence 
of HF in asymptomatic individuals and in which some dif-
ferences by sex have been revealed, with markers of inflam-
mation (such as FABP4 and interleukin-6) being higher in 
the female population with a higher risk of developing HF or 
cardiovascular death. In contrast, in a male-dominated phe-
notype, biomarkers of remodelling such as troponin, sST2 
and C-type natriuretic peptide were elevated and the risk 
increased fivefold [90].

Conclusion

Although it is well known that there are sex differences in 
the pathophysiology, presentation, and progression of HF, 
these differences in the levels and clinical interpretation of 
HF biomarkers are less well established.

It appears that the influence of sex on biomarker levels 
is greater or best known in the general population than in 
HF patients and the different biomarker profiles in women 
and men have been described in recent studies: in women, 
markers of cardiac stretch and fibrosis (NP and galectin-3) 
are higher, whereas in men, higher levels of markers of 

cardiac injury and inflammation (cTn and sST2) are found. 
However, it remains to be elucidated whether these differ-
ences have clinical significance and whether it is necessary 
to identify sex-specific cut-off points for the diagnosis and 
follow-up of HF.

This, together with the growing evidence that multipara-
metric assessment using different biomarkers (multimarker 
approach), in addition to the use of artificial intelligence and 
machine learning can provide better risk stratification and 
should lead us to build models that incorporate sex-specific 
diagnostic criteria. This will allow us to achieve equitable 
care for men and women and ultimately improve HF treat-
ment and patient care.
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