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Abstract
Purpose of Review Cardiac magnetic resonance imaging (CMR) use in the context of heart failure (HF) has increased over the
last decade as it is able to provide detailed, quantitative information on function, morphology, andmyocardial tissue composition.
Furthermore, oxygenation-sensitive CMR (OS-CMR) has emerged as a CMR imaging method capable of monitoring changes of
myocardial oxygenation without the use of exogenous contrast agents.
Recent Findings The contributions of OS-CMR to the investigation of patients with HF includes not only a fully quantitative
assessment of cardiac morphology, function, and tissue characteristics, but also high-resolution information on both
endothelium-dependent and endothelium-independent vascular function as assessed through changes of myocardial
oxygenation.
Summary In patients with heart failure, OS-CMR can provide deep phenotyping on the status and important associated patho-
physiology as a one-stop, needle-free diagnostic imaging test.
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Introduction

Heart failure (HF) is a complex clinical syndrome character-
ized by dyspnea or an exertional capacity limitation caused
by impaired ventricular filling or emptying, or both [1].
Currently, an estimated 26 million people are diagnosed with
heart failure (HF) worldwide [2]. It is a leading cause of
hospitalization, and its prevalence is increasing. The increase
in prevalence has been attributed to factors including an ag-
ing population, improvements in the long-term survival of
patients with chronic HF, and a reduction in short-term mor-
tality of other cardiovascular conditions known to cause HF
[2, 3].

A recent joint consensus statement on the classification of
HF has subcategorized HF based on functional and/or

structural abnormalities resulting in either a reduction in
overall systolic function (LVEF ≤40%, heart failure with
reduced ejection fraction, HFrEF), preserved overall systolic
function (LVEF ≥50%, heart failure with preserved ejection
fraction, HFpEF), an intermediate functional classification
(LVEF 40–49%, heart failure with mildly reduced ejection
fraction, HFmrEF), or a classification for functional im-
provement (LVEF ≤40% at baseline and a ≥10 point im-
provement on second measurement with an LVEF ≥40%,
heart failure with improved ejection fraction, HFimpEF)
[4]. These HF phenotypes may display different clinical
characteristics, comorbidities, outcomes, response to thera-
py, and prognoses [5–7]. There is a need for improved rec-
ognition of the specific causes of acute HF to establish an HF
diagnosis, optimize therapy, and improve overall quality of
life for HF patients [4, 8, 9].

Cardiac imaging is routinely used in the investigation of all
HF phenotypes. Echocardiography is typically applied as the
first-line imaging modality for HF. It is less expensive than
other frequently used imaging modalities and widely available
and can be used at the bedside. However, image quality and
accuracy of quantitative results are inconsistent [4].
Importantly, echocardiography provides little information
about the myocardial tissue [10] or coronary vascular
function.
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Cardiovascular magnetic resonance imaging (CMR) is the
current gold standard for quantitative functional assessment of
the heart. CMR is also able to provide detailed information on
cardiac morphology and especially on the composition of
myocardial tissue [11, 12]. This includes the identification of
myocardial edema, fibrosis, or infiltrationwith amyloid, fat, or
iron. Consequently, the use of CMR in patients with HF has
significantly increased over the past decade to aid in diagno-
sis, risk stratification, therapeutic decision-making, and mon-
itoring [13, 14]. CMR has been shown to more accurately
classify HF patients into subgroups based on left ventricular
ejection fraction (LVEF) when compared with echocardiogra-
phy [15]. Additionally, studies have indicated that in patients
with HFpEF, CMR often identifies new pathology in HFpEF
patients and better establishes specific diagnoses than echo-
cardiography [16, 17]. CMR is a versatile, comprehensive
imaging diagnostic tool for the quantitative assessment of car-
diac morphology, function, and tissue status in patients with
HF [13].

Coronary vascular function plays an important role in HF,
with a known role of endothelial dysfunction in HF patients
with and without macrovascular ischemic heart disease [18,
19]. Coronary microvascular dysfunction (endothelial-depen-
dent or endothelial-independent) is also associated with car-
diovascular risk factors such as diabetes and hypertension and
is considered an early marker of atherosclerosis [20].
Moreover, endothelial dysfunction has also been identified
as a key part of the pathophysiology of HFrEF and HFpEF,
associated with worse prognosis and increased rates of cardio-
vascular events [21, 22, 23••, 24]. Diagnostic techniques that
can assess endothelium-dependent pathways may thus pro-
vide more meaningful clinical information for personalized
therapeutic decision-making.

Over the past decade, oxygenation-sensitive CMR (OS-
CMR) has emerged as a CMR imaging method capable of
assessing endothelial dysfunction through monitoring changes
of myocardial oxygenation without the use of exogenous
contrast agents, based on the intrinsic magnetic properties of
oxy- and deoxyhemoglobin [25, 26, 27•, 28–30]. The unique
ability of OS-CMR to non-invasivelymonitor changes of myo-
cardial oxygenation has been demonstrated in animal models,
healthy volunteers, and in patients with macrovascular and
microvascular disease states including coronary artery disease
(CAD), ischemia with no obstructive coronary artery stenosis
(INOCA), obstructive sleep apnea (OSA), hypertrophic cardio-
myopathy (HCM), aortic stenosis, dilated cardiomyopathy
(DCM), chronic heart failure, and post-transplantation [26,
27•, 31–34, 35••, 36].

We reviewOS-CMR and discuss its potential contributions
to the investigation of patients with heart failure and introduce
new imaging biomarkers to aid in the risk stratification and
understanding of the underlying pathophysiology in heart fail-
ure patients.

The Blood Oxygen Level-Dependent (BOLD)
Effect

The ability of magnetic resonance imaging (MRI) to harness
the intrinsic magnetic differences of oxygenated vs deoxygen-
ated hemoglobin in blood to visualize changes in oxygenation
states was first demonstrated in 1990 [37]. Changes of the
oxygenation state of hemoglobin in tissue result in changes
of signal intensity in certain MRI images that are sensitive to
the so-called blood oxygen level-dependent (BOLD) effect:
Oxyhemoglobin has no unpaired electrons and no magnetic
moment and does not significantly alter the peri-molecular
magnetic field. Deoxyhemoglobin on the other hand has un-
paired electrons with a destabilizing effect on surrounding
protons, inducing its paramagnetic effect that results in an
accelerated relaxation of surrounding protons. In MRI images
that are “BOLD-sensitive” (typically T2*-weighted images),
this effect leads to a decreased signal intensity of tissue with a
higher concentration of deoxyhemoglobin [37]. Oxygenation-
sensitive CMR (OS-CMR) can utilize the BOLD effect in
cl inical set t ings to monitor dynamic changes in
deoxyhemoglobin concentrations as a marker for myocardial
oxygenation. Such changes can be induced by vasoactive or
other interventions that alter myocardial blood volume and
blood flow or otherwise alter the balance between oxygen
demand and supply [38–43].

Myocardial oxygen balance is subject to a complex cou-
pling between myocardial ventricular function, myocardial
oxygen consumption, and coronary blood flow. Under condi-
tions of an increased myocardial work, healthy coronary vas-
culature will meet the additional oxygen demand by upregu-
lating coronary blood flow through vasodilation [44].
Vasodilation without an associated increase of myocardial
oxygen demand however results in a decrease in
deoxyhemoglobin concentration (static demand, increase of
supply). This change will lead to a reduction of the BOLD
effect in myocardial tissue and thereby to an increase in
BOLD-sensitive MRI signal intensity [38]. Vasoactive inter-
ventions can therefore be used to induce a detectable change
of myocardial oxygenation. Dynamic changes of BOLD-
sensitive MRI signal intensity during OS-CMR image acqui-
sition in combination of vasoactive interventions can therefore
be used as a marker for coronary vascular function.

Vasoactive Interventions for Assessing
Coronary Vascular Function

Vasoactive stress can be induced through several different
mechanisms including pharmacologic vasodilation (increase
of blood/oxygen supply, no significant change of oxygen de-
mand) or physical stress (increase of blood/oxygen supply
with associated increase of oxygen demand). CMR stress
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testing typically relies on pharmacologic vasodilators to in-
duce a response from the myocardial vasculature.
Endothelium-independent pharmacologic vasodilators such
as adenosine act to uncouple myocardial blood flow from
oxygen demand, inducing excess (above demand level) myo-
cardial perfusion in healthy tissue. This intervention decreases
deoxyhemoglobin concentration and results in an increased
OS-CMR signal intensity [45]. Endothelium-dependent vaso-
dilation through the use of respiratory maneuvers can be uti-
lized to assess changes in myocardial oxygenation through the
actions of carbon dioxide (CO2), a known vasodilator [46].
An inadequate response of the coronary vasculature to an
increased demand results in a higher concentration of
deoxyhemoglobin. OS-CMR has been used to assess each of
these different mechanisms, each with their own strengths and
limitations for overall feasibility and ability to add information
in the clinical context of heart failure.

OS-CMR in Heart Failure

The diagnostic work-up of patients with suspected HF con-
sists of an assessment of left ventricular systolic function and
the determination of the presence or absence of ischemic dis-
ease [47].

Heart Failure: Ischemic vs Non-ischemic
Cardiomyopathy

Coronary artery disease (CAD) accounts for approximately
half of acute HF patients and half of HFrEF patients [48].
Given the therapeutic options of coronary revascularization
and prevention treatment, the determination of the presence
or absence of ischemic heart disease is critical to clinical
decision-making in patients with HF. Coronary angiography
is the current gold standard test to identify obstructive CAD,
with fractional flow reserve (FFR) being a quantitative marker
for the hemodynamic relevance of an observed coronary ar-
tery stenosis.

While first-pass perfusion stress CMR is currently not a
first-line strategy for the investigation of patients with HF if
non-ischemic etiology is suspected [1], its utility in suspected
ischemic HF is however undisputable. Recent studies have
demonstrated that stress CMR may not only be very accurate
in identifying tissue subject to severe coronary artery stenoses,
but also be part of the most cost-effective strategies to do that
[49, 50]. Additionally, the clinical use of first-pass perfusion
stress CMR has been associated with less coronary angiogra-
phies in patients with suspected CAD and in less revascular-
izations, even when compared to coronary angiography with
FFR, all with similar clinical outcomes [51].

CMR first-pass perfusion is limited by the need for the
intravenous application of gadolinium-based contrast agents
and vasodilatory agents.

OS-CMR of coronary vascular function does not require
contrast agents. In combination with adenosine, it can be used
for assessing myocardial perfusion and oxygenation in a num-
ber of disease states [28]. In patients with CAD, adenosine
OS-CMR could accurately detect regionally reduced myocar-
dial perfusion and oxygenation in myocardial territories
downstream of a significant coronary artery stenosis [52,
53]. Additionally, adenosine OS-CMR studies detected a re-
gional myocardial perfusion and oxygenation dissociation in
non-flow limiting CAD, indicating that perfusion deficits do
not always indicate underlying oxygenation deficits [54–56].

A dissociation between myocardial perfusion and oxygen-
ation may be an important pathophysiologic component in HF
and therefore critical for our understanding of the pathophys-
iology of HF, with an impact on management strategies in
both, ischemic and non-ischemic HF. This is particularly im-
portant in light of recent evidence that when comparing med-
ical therapy to procedural intervention as a first-line treatment
strategy, there were no significant changes in patient clinical
outcomes [51, 57].

The endogenous contrast in OS-CMR that eliminates the
need for gadolinium-based contrast agents represents a first
important step in moving towards a needle-free CMR non-
invasive stress test [52, 58]. An approach using vasodilatory
agents however still requires an inconvenient and mildly risky
administration of pharmacologic agents. Moreover, adenosine
and analogues induce vasodilation through endothelium-
independent mechanisms. A microvascular response to in-
creased myocardial oxygen demand however may use
endothelium-independent or endothelium-dependent mecha-
nisms. However, endothelial-dependent dysfunction has sig-
nificant prognostic value in HF and has been associated with
an increased mortality risk in patients with HF [19, 59].
Endothelium-dependent interventions more accurately resem-
ble physiological stress and may be more informative in terms
of therapeutic consequences [60, 61].

Respiratory challenges, especially manipulations in blood
carbon dioxide (CO2) and oxygen levels, were explored due
to their ability to act as endothelial-dependent vasoactive
mechanisms. Inhaled gas and breathing maneuvers have been
investigated based on the underlying principle that alterations
in arterial carbon dioxide, and to a lesser extent oxygen, result
in endothelial-dependent vascular changes similar to those
obtained with physiologic stress [62]. Carbon dioxide (CO2)
is a significant modulator of vascular tone in the cerebral and
coronary circulation, with hypercapnia resulting in vasodila-
tion and hypocapnia resulting in vasoconstriction [46, 63].

OS-CMR studies have been performed by directly modu-
lating the percentage of carbon dioxide in inhaled air through
a face mask or nasal cannula, resulting in consistent and
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reproducible changes in signal intensity [64–67]. Recently,
OS-CMR with intermittent carbon dioxide was successfully
used to perform a rapid, whole heart, free-breathing acquisi-
tion in an animal model [68]. Induced hypercapnia however is
associatedwith often intolerable side effects related to the urge
to breathe and associated anxiety [69].

Respiratory maneuvers such as hyperventilation and
breath-holding have also been evaluated in humans for their
ability to modify oxygen and carbon dioxide concentrations
without the need for inspired gas manipulations or additional
equipment [40, 70, 71].

A combination of hyperventilation with a subsequent
breath-hold as a standardized breathing maneuver has
emerged as an effective mechanism of inducing vasoactive
stress [25, 67, 72, 73]. The standardized breathing maneuver
consists of a 60-s period of paced deep breathing
(hyperventilation) at 30 breaths per minute, inducing coronary
vasoconstriction, followed by a voluntary maximal breath-
hold, inducing coronary vasodilation (Fig 1) [26].

This maneuver in combination with OS-CMR has demon-
strated breathing-induced changes in myocardial oxygenation
(BMORE) in a healthy population [43, 74]. BMORE OS-
CMR can detect blunted myocardial oxygenation in myocar-
dial territories subtended by an angiographically significant
coronary artery stenosis in both animal models and patients
with CAD [26, 27•]. Of note, BMORE OS-CMR may have a
more significant effect on myocardial oxygenation changes
than adenosine OS-CMR, with less side effects [45]. Used in
conjunction with the endogenous contrast of OS-CMR,
BMORE was shown to provide a safe, fast, non-invasive,
and convenient method for assessing coronary vascular func-
tion, without the use of needles, exogenous contrast agents,
radioactivity, or specialized additional equipment.

Heart Failure—Microvascular Dysfunction

Adenosine and OS-CMR have demonstrated to be feasible
and accurately identify CAD through a regionally impaired

Fig. 1 Oxygenation-sensitive CMR (OS-CMR) scanning protocol with
pharmacologic stress agent or using a standardized breathing maneuver.
Hyperventilation leads to a coronary vasoconstrictive response through a
decrease in arterial carbon dioxide, while the following breath-hold

increases arterial carbon dioxide and induces coronary artery dilatation.
Myocardial signal intensity changes in OS-CMR images are measured at
the end of the hyperventilation (maximal vasoconstriction) to the end of
the breath-hold (maximal vasodilatation).
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myocardial perfusion and oxygenation response in areas of
macrovascular disease.

OS-CMR has also been used to assess microvascular dis-
ease and dysfunction.

Ischemia With No Significant Coronary Artery Disease

Reports estimate that up to half of patients who undergo a
coronary angiography have no obstructive CAD, a clinical
scenario that is especially prevalent in women [75, 76•].
Studies have demonstrated that over 50% of patients with
ischemia with no obstructive coronary artery disease
(INOCA) have microvascular dysfunction (MVD) [77].

An improved understanding of the underlying pathophysi-
ology of INOCA would help guide personalized treatment
strategies in these patients with a known increased risk of
cardiovascular events and the development of HFpEF [76•,
77].

Adenosine stress perfusion CMR demonstrated subendo-
cardial myocardial perfusion deficits in patients with INOCA
[78]. However, these findings have not been replicated in
subsequent studies utilizing adenosine stress perfusion CMR
and OS-CMR [79]. Recently, novel biomarkers derived from
BMORE OS-CMR images demonstrated regional heteroge-
neity in the myocardial oxygenation of INOCA patients with-
out globally reduced oxygenation or perfusion abnormalities
[35••] (Fig 2).

Regional myocardial deficits are consistent with previous
observations of a maladaptive physiologic response to exer-
cise and heterogenous flow in MVD, suggested to be a result
of a variable combination of increased vasoconstriction and
impaired vasodilation [80, 81]. These findings suggest a po-
tential role of endothelium-dependent microvascular dysfunc-
tion in this patient population [35••], consistent with previous-
ly published evidence for heterogeneity of microvascular
function [80].

Non-ischemic Heart Failure

Once significant CAD is excluded, the accurate identifica-
tion of the etiology and associated pathomechanisms with
HF often remains a significant clinical challenge. CMR has
demonstrated increased diagnostic accuracy when com-
pared to echocardiography in a non-ischemic HF popula-
tion [16, 17]. Beyond the more accurate information on
function including strain however, the potential of OS-
CMR to investigate myocardial oxygenation and therefore
provide additional insights on the individual underlying
pathophysiology has been demonstrated in patients with
non-ischemic HF.

OS-CMR has been used to investigate a number of micro-
vascular disease states characterized by microvascular dys-
function. OS-CMR demonstrated a globally reduced

BMORE in patients with obstructive sleep apnea, especially
when undergoing positive airway pressure therapy, and after
heart transplantation even in the absence of cardiac allograft
vasculopathy [34, 36]. Preliminary evidence from OS-CMR
studies has demonstrated a reduced BMORE in HFrEF and
with healthy aging [82, 83]. In a non-ischemic, dilated cardio-
myopathy population, one study utilizing adenosine OS-CMR
found a reduced myocardial perfusion response without a con-
comitant reduction in myocardial oxygenation, suggesting a
dissociation between microvascular dysfunction and oxygen-
ation [32]. Mahmod et al have demonstrated a reduced perfu-
sion and oxygenation reserve in severe aortic stenosis without
epicardial CAD, indicating coronary microvascular dysfunc-
tion [33]. The perfusion-oxygenation reduction seen in severe
aortic stenosis with left ventricular hypertrophy is consistent
with previous OS-CMR findings in a hypertensive left ven-
tricular hypertrophy population [84]. In an overt hypertrophic
cardiomyopathy (HCM) population, adenosine OS-CMR
demonstrated an impaired myocardial perfusion/oxygenation.
In HCM mutation carriers without overt left ventricular hy-
pertrophy, a reduction in overall myocardial oxygenation was
observed without a corresponding reduction in perfusion that
was associated with a risk for arrhythmia [31, 85]. Impaired
myocardial oxygenation and vasodilation was also observed
in pulmonary hypertension with unobstructed epicardial cor-
onary arteries likely reflecting microvascular dysfunction
[86].

The impaired myocardial oxygenation response in these
populations is consistent with our current understanding of a
higher oxidative stress, reduced nitric oxide production, and
endothelial dysfunction in these populations [34].

OS-CMR provides information on myocardial oxygena-
tion and can obtain quantitative markers of myocardial ische-
mia andmicrovascular dysfunction across a number of disease
states (Fig 3).

Table 1 provides an overview of studies on myocardial
oxygenation in patients with heart failure.

OS-CMR and Myocardial Strain

While LVEF has been widely used for subclassifying HF
phenotypes, it is not a sensitive marker of more subtle changes
in myocardial function. Therefore, measuring myocardial de-
formation, or strain, using imaging has received more and
more attention as a useful approach for detecting subclinical
changes in myocardial function with better risk stratification
than LVEF [4, 87, 88]. Strain imaging can evaluate strain in
the three distinct layers of myocardial muscle fibers, i.e.,
endo-, mid-, and epicardium [89]. Strain is reported as defor-
mation in three different directions, radial (concentric wall
thickening), longitudinal (shortening of the ventricular long
axis), and circumferential (tangential/rotational deformation)
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[89]. Longitudinal strain can be used to predict LVEF change
and HF phenotype as persistent HFrEF or HFimpEF [90] and
appears to be a more accurate predictor of decompensation
and mortality in both acute and chronic heart failure patients
than LVEF [91–93]. Global longitudinal strain has therefore

been found to add incremental value and have greater prog-
nostic value than LVEF [92]. These findings have led some
authors to suggest the standard use of strain parameters in all
HF patients to assess both systolic and diastolic dysfunction
[4, 94, 95].

Fig 2 The impact of the breathing maneuver induced changes in
myocardial oxygenation reserve on the myocardium and associated
heterogenous myocardial oxygenation changes as reflected by a change
of signal intensity in OS-CMR images in the 3 spatial dimensions.
Regional heterogeneity in myocardial oxygenation in women with
INOCA compared with healthy volunteers. Schema demonstrating the
determination of regional variability in signal intensity using radial,
circumferential, and longitudinal differences. Radial differences were
defined as the sum of the absolute differences between the endo- and

epicardium in each of the myocardial segments. Circumferential
differences were the sum of the absolute differences between
myocardial segments within the endo- and epicardium. Longitudinal
differences were the sum of the absolute differences within the endo-
and epicardium for corresponding segments of each slice acquired.
INOCA, ischemia with no obstructive coronary artery disease; OS-
CMR, oxygenation-sensitive cardiac magnetic resonance imaging; SI,
signal intensity; *P<0.05; **P <0.01 (figure modified from Elharram,
Circulation, 2021)

Heart Failure Coronary Artery Disease Healthy 

60F Non-Ischemic Dilated 
Cardiomyopathy 

53M LAD stenosis  
FFR: 0.58

54F Healthy Volunteer

Fig 3 Oxygenation-sensitive
CMR (OS-CMR) in a heart
failure patient demonstrating a
globally impaired myocardial
oxygenation reserve, in a patient
with coronary artery disease with
a significant left anterior
descending (LAD) lesion with a
fractional flow reserve of 0.58
demonstrating regionally
impaired myocardial
oxygenation, and a healthy
volunteer demonstrating a
globally increased myocardial
oxygenation response to a
combined vasoactive breathing
maneuver.
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Strain imaging has traditionally been assessed by speckle
tracking echocardiography.

CMR strain techniques such as fast strain-encoded CMR
(fSENC), feature tracking (FT), or tissue tracking (TT) have
emerged as convenient and readily available techniques that
can accurately and reproducibly obtain strain parameters
[96–98]. CMR FT-derived longitudinal strain recently dem-
onstrated good correlation to echocardiography in the setting
of acute myocardial infarction [99]. Combined CMR fSENC
with standardized breathing maneuvers can yield a high diag-
nostic accuracy (95% sensitivity) for the detection of patients
with suspected CAD, with significantly shorter acquisition
times than established methods [100••].

In contrast to fSENC, CMR FT/TT does not need addition-
al images as it can measure strain in routine cine images as
used for ventricular volumes [101, 102]. Stress longitudinal
strain from CMR FT with vasodilator stress was an incremen-
tal and independent predictor of adverse cardiac events in
patients with known or suspected CAD [103]. In the context
of HF, CMR reveals a transmural strain gradient from endo-
cardium (highest strain) to epicardium (lowest strain values)
that is blunted in patients with HF and lower ejection fraction
(HFmEF and HFrEF) [101]. CMR FT has been suggested as
having potential to be the new gold standard for assessment of
systolic function [104]. Additionally, abnormal longitudinal
strain has been found to be a useful prognostic marker in
patients with HFpEF and in patients with dilated cardiomyop-
athy, incremental to LVEF [57, 105•, 106]. The observed
longitudinal strain impairment reflects LV stiffness and im-
paired relaxation, causes for the observed “diastolic dysfunc-
tion” in HFpEF [94, 105•, 107]. However, although diastolic
dysfunction plays a fundamental role in the pathophysiology
of HFpEF, worsening of diastolic dysfunction is associated
with other cardiometabolic comorbidities and even physiolog-
ical aging [108]. Therefore, strain parameters should be used
in a proper clinical context and in conjunction with other im-
aging parameters.

In recent studies, myocardial oxygenation as measured by
OS-CMR and MORE parameters correlated with
echocardiography-derived LV strain parameters in patients
with aortic stenosis. These impairments were shown to be
reversible with improved myocardial perfusion, oxygenation,
and strain parameters 8 months post aortic valve replacement
[33]. In a CAD population, post-stenotic hyperoxia-induced
myocardial oxygenation deficits were found to be accompa-
nied by reduced diastolic strain [109]. As OS-CMR is mostly
performed using slightly modified regular cine sequences, one
set of images yields data on both myocardial oxygenation and
myocardial strain. Importantly, this can be done in a dynamic
setting. Preliminary evidence utilizing OS-CMR images to
derive strain response to stress demonstrated the ability of
the technique to assess myocardial strain in young adults born
pre-term before and after exercise intervention [110].

Strain CMR imaging studies have highlighted the ability of
OS-CMR to obtain dynamic information on myocardial oxy-
genation and function providing both functional and vascular
information in one acquisition. OS-CMR markers in combi-
nation with CMR strain parameters to investigate HF on an
individual basis may then allow for a more robust, personal-
ized imaging evaluation.

Limitations of OS-CMR

The limitations of both CMR and OS-CMR include a lack of
access to scan time, cost, inability to image patients with spe-
cific contraindications such as claustrophobia, issues between
subspecialties, and a lack of local expertise [111]. OS-CMR
with breathing maneuvers may however help alleviate some
of these issues, as it does not require contrast agents, special-
ized equipment, or the presence of a trained physician at the
scanner. Local expertise will be necessary only in training
patients in deep, paced breathing. However, the need for spe-
cific strategies and software algorithms and to analyze the
dynamic changes related to tissue oxygenation and strain eval-
uation remain a significant limitation of OS-CMR. CMR soft-
ware is costly and can be a barrier to widespread implemen-
tation where manual annotation and analysis is time-
consuming and can introduce human error.

Conclusion

In patients with heart failure (HF), CMR offers a wide range of
quantitative markers that provide important diagnostic and
prognostic information. The addition of oxygenation-
sensitive CMR (OS-CMR) will further improve clinical
decision-making by novel insights into the role of coronary
vascular function in this context. This includes the differenti-
ation of ischemic from non-ischemic etiology of HF (by iden-
tifying regional abnormalities of coronary vascular function,
but also by providing information on the regional integrity and
homogeneity of vascular function). Importantly, the use of
breathing maneuvers in combination with OS-CMR allows
for assessing endothelium-dependent function.

OS-CMR has already been applied in multiple studies of
patients with various cardiac diseases associated with HF,
such as cardiomyopathies, valvular heart disease, arterial hy-
pertension, and patients with microvascular dysfunction in the
absence of coronary artery stenosis.

Comprehensive CMR scans can therefore be used to quan-
titatively study markers of cardiac morphology, volumes,
gross function, strain, myocardial tissue composition, and vas-
cular function, all as part of a safe, needle-free scan. The
multiparametric approach that uses oxygenation-sensitive cine
imaging for function and vascular function allows for short,
cost-efficient scan protocols.
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Future OS-CMR studies should focus on validation in larg-
er populations and comparative analyses of its clinical utility
in various etiologies. Furthermore, the use of deep learning
techniques will allow for identifying novel biomarkers for an
improved personalized risk stratification and management
strategies in patients with heart failure.
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