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Abstract
Purpose of the Review This review summarizes sex-related changes in the heart and vasculature that occur with aging, both in the
presence and absence of cardiovascular disease (CVD).
Recent Findings In the presence of CVD risk factors and/or overt CVD, sex-specific changes in the number of cardiomyocytes,
extent of the myocardial extracellular matrix, and myocellular hypertrophy promote unique patterns of LV remodeling in men
and women. In addition, age- and sex-specific vascular stiffening is also well established, driven by changes in endothelial
dysfunction, elastin–collagen content, microvascular dysfunction, and neurohormonal signaling. Together, these changes in LV
chamber geometry and morphology, coupled with heightened vascular stiffness, appear to drive both age-related increases in
systolic function and declines in diastolic function, particularly in postmenopausal women. Accordingly, estrogen has been
implicated as a key mediator, given its direct vasodilating properties, association with nitric oxide excretion, and involvement in
myocellular Ca2+ handling, mitochondrial energy production, and oxidative stress.
Summary The culmination of the abovementioned sex-specific cardiac and vascular changes across the lifespan provides
important insight into heart failure development, particularly of the preserved ejection fraction variety, while offering promise
for future preventive strategies and therapeutic approaches.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death
worldwide, accounting for 31% of all reported deaths in 2016
[1]. Moreover, nearly 81% of all CVD-attributable deaths
were among individuals ≥ 65 years old [2], reinforcing the

notion that CVD is predominantly a disease of senescence.
While this general pattern is true for both men and women,
important sex-specific differences exist. For example, accord-
ing to the National Health and Nutrition Examination Survey,
collected from 2013 to 2016, the prevalence of CVD was
lower in premenopausal women compared with age-matched
men, yet surpassed that of men after menopause [2]. Despite
near universal recognition of this sex-by-age interaction, how-
ever, the exact mechanism(s) by which age and sex influence
CVD development and progression remains elusive. This re-
view summarizes sex-related changes in the heart and vascu-
lature that occur with aging, both in the presence and absence
of cardiovascular disease.

Age–Sex Interaction and the Heart

Left Ventricular Structural Remodeling

Both sex and age are known to impact cardiac morphology
(Fig. 1). Data from both the Framingham Heart Study and
Multi-Ethnic study of Atherosclerosis (MESA) demonstrate
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that left ventricular (LV) mass and volume are significantly
greater inmen than women, even after adjusting for height and
body surface area (BSA) [3, 4]. Across the lifespan, absolute
LV mass and LVEDV tend to decrease with healthy aging,
with LVEDV declining more steeply with age, resulting in a
progressive rise in LV concentricity over time [4–8].

In contrast to healthy aging, however, in the presence of
CVD risk factors and/or overt CVD, LV mass increases with
age and is associated with sex-specific cardiac remodeling,
such that women experience greater concentric hypertrophy,
while men tend to develop an eccentric pattern of hypertrophy
[9, 10]. Indeed, studies of chronic pressure overload by aortic
stenosis have found that women demonstrate more concentric
remodeling and less eccentric hypertrophy than men [11–16].
Likewise, in a large dataset of 3,745 women and men under-
going both cMRI and invasive coronary angiography, women
presented with greater concentric remodeling and less eccen-
tric hypertrophy [17•]. Extrapolating these sex-specific pat-
terns of remodeling may provide insight into disease risk
and pathology, where women are two times more likely to
develop heart failure with preserved ejection fraction
(HFpEF) than men, a condition associated with a clustering
of CVD risk factors, and adverse left ventricular remodeling
[18, 19]. While LV concentric remodeling is only present in a
fraction of the HFpEF population [20], it is overrepresented in
women compared with men with HFpEF [21].

At the cellular level, these patterns may be explained by
cardiomyocyte loss, an increase in extracellular matrix, and
myocellular hypertrophy [22–25]. Indeed, aging is associated

with progressive neurohumoral dysfunction that contributes to
cardiomyocyte death [26–31] in a sex-specific manner [32].
Among autopsies of 53 men and 53 women, cardiomyocyte
death with healthy aging occurs to a greater extent in men than
women [33]. This sex difference likely arises from (A) a larger
pool of cardiac stem cells in women that allow for greater
myocyte turnover compared with men [34] and (B) sex-
specific rates of apoptosis. Regarding the latter, men experi-
ence greater rates of apoptosis than women when free of any
cardiovascular disease [35], after acute myocardial infarction
[36], and in heart failure [37].

Collagen content in the human heart nearly doubles over
the lifespan (from ~ 3.9 to ~5.9%), independent of pathology
[38]. This results in progressive reductions in LV compliance
[39, 40] and is regarded as a primary mechanism of age-
related diastolic dysfunction [22], discussed in more detail in
the following section, “Left Ventricular Diastolic Function.”
Whether an age-by-sex interaction exists with collagen con-
tent in the heart, however, remains unclear. LV systolic and
diastolic stiffness is indeed greater in women than men across
the lifespan, with an apparent acceleration of LV systolic and
diastolic elastance in women beyond 50 years of age [41–43].
In the presence of CVD risk factors, the MESA demonstrated
that LV extracellular volume (ECV), measured by
gadolinium-enhanced MRI, is greater in women than men
until ~ 84 years of age [44]. Likewise, ECV is elevated to a
greater extent in women than men with mild aortic stenosis,
despite women having fewer comorbidities [45]. To what ex-
tent these imaging-based observations reflect expansion of

Fig. 1 Influence of age, sex, and cardiovascular disease on left ventricular
structure. Conceptual left ventricular cross-sectional image, at the level of
the papillary muscles, showing the most common structural adaptations
of the left ventricle (LV) in men and women across the lifespan and in the
presence of cardiovascular disease (CVD) or CVD risk factors.
Beginning with early adulthood, LV mass and volume are greater in

men than women. With healthy aging, mass and volume decline, with
LVEDV declining to a greater extent than LV mass, resulting in more
concentric hypertrophy. In the presence of CVD risk factors and/or CVD,
women tend to develop an eccentric pattern of hypertrophy, while men
tend to develop a concentric pattern of hypertrophy
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extracellular proteins, however, remains incompletely under-
stood, as biopsy studies have reported opposite results among
patients with aortic stenosis [11, 12]. In line with this later
observation, a recent imaging study found greater ECV in
healthy young women compared with age- and health-
matched men, together with greater myocardial blood volume
and myocardial resting and peak perfusion, suggesting that
women may have greater capillary density, rather than a more
developed extracellular matrix per se [46•]. More work is
therefore needed to better define the age-by-sex interaction
of extracellular proteins like collagen and specific mecha-
nisms driving morphological changes over the lifespan and
in the presence of CVD.

Left Ventricular Systolic Function

Clinically, LV ejection fraction (LVEF) is the most widely
used measure to assess systolic function, despite its well-
recognized shortcomings. Consistent with the age- and sex-
related LV structural changes described previously, LVEF
tends to be higher in women than men [47, 48], with studies
reporting both increases [49–51] and decreases [52–57] in
LVEF with advancing age; the latter of which affecting men
more than women. As summarized in Table 1, similar obser-
vations have also been made with more advanced measures of
LV contractility [41, 60, 61], regional tissue deformation in-
dices [62, 63], and twist mechanics [64–66].

Sex hormones seem to be an unlikely source of this age-
related rise in systolic function, given that both estrogen and
testosterone decline with age. This is not to suggest that estro-
gen and testosterone are not involved in the mechanical and
protein function of ventricular myocytes, which they undoubt-
edly are [67–77], just that their role in the age-associated rise
in systolic function seems improbable. Indeed, ovarian hor-
mone deficiency decreases (not increases) myocellular con-
tractile function, and while this function is often restored with
estrogen replacement [68–77], this fails to explain the rise in
systolic function often observed in postmenopausal women.
Likewise, while testosterone is strongly implicated in the den-
sity of L-type Ca2+ channels, sarcoplasmic reticulum Ca2+

availability, the magnitude of the Ca2+ transient, and the max-
imal myofilament responsiveness [67], it seems unlikely to
explain the heightened systolic function observed with age,
especially considering that testosterone levels decline with
age, in both men and women [78–80]. In fact, given that the
age-associated rise in systolic function is attenuated in men
compared with women, for whom testosterone plays a much
more dominant role across the lifespan, argues against testos-
terone being a contributory mechanism.

In contrast to the sex hormone hypothesis, many believe
that this “heightened” contractility is reflective of a necessary
adaptation to maintain optimal output in the face of higher
resistance. Indeed, it is now well established that large-artery

stiffness increases with age [41, 81–83] and is higher in wom-
en [41, 81, 84–86], independent of vascular disease or risk
factors [41, 81, 82, 87]. To maintain optimal output, the left
ventricle must therefore develop greater systolic stiffness
[88–92]. That end-systolic elastance is elevated in women,
particularly in older women, supports this interpretation [41,
59]. The exact mechanism for this augmented systolic perfor-
mance, however, remains incompletely understood. To date,
there is no clear evidence for heightened inotropy (e.g. circu-
lating catecholamines, calcium affinity, etc.). Instead, alter-
ations in chamber geometry with age and sex is likely to play
the most dominant role. In accordance with the left ventricle’s
unique helical muscle fiber orientation, contraction of the en-
docardial fibers contributes to longitudinal shortening, while
contraction of the epicardial fibers contributes to circumferen-
tial shortening and left ventricular twist [93]. Age, along with
presence of cardiovascular risk factors with/without overt
structural remodeling, is associated with impaired subendo-
cardial function [94], giving rise to reduced global longitudi-
nal shortening [95, 96], for which arterial stiffness is a likely
contributor [97], particularly in women [98]. At the same time,
subepicardial function remains relatively unaffected, allowing
for the longer lever arm of the epicardial fibers to dominate,
resulting in increased circumferential shortening and in-
creased left ventricular twist, together of which help to main-
tain (and even augment) left ventricular ejection fraction [99,
100] (Fig. 2). Accordingly, given the structural changes that
occur with age (i.e. concentric remodeling, subendocardial
dysfunction, sphericity), especially in women, and in the pres-
ence of cardiovascular disease/risk factors [4, 41, 64, 94, 101,
102], mechanical factors seem to play the most influential
role.

Left Ventricular Diastolic Function

Both age and female sex are associated with increased LV
stiffness, related to concentric remodeling, increased collagen
deposition, and loss of estrogen. As a result, the LV end-
diastolic pressure–volume relationship is shifted leftward with
healthy aging [39, 40], a result which is augmented in elderly
females [103]. Moreover, age and female sex appear to affect
other components of diastole, including early and late diastol-
ic filling patterns [58, 59, 104, 105], as summarized in
Table 2.

The majority of results to date suggest that postmenopausal
status is strongly related to impaired LV relaxation, with most
population-based studies showing accelerated age-related im-
pairments in LV relaxation in women after 50 years of age (the
average onset of natural menopause). While the exact mecha-
nism for this age-by-sex interaction remains incompletely un-
derstood, estrogen is likely a key mediator for age-related
diastolic dysfunction in women. Indeed, estrogen is a direct
vasodilator [106, 107]; it promotes nitric oxide excretion [108,
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109] and directly impacts myocellular calcium (Ca2+) han-
dling; all of which could impact diastolic performance.

Myocardial relaxation is inherently dependent on the re-
moval of Ca2+ from the cytosol, primarily through

sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a)
uptake into the sarcoplasmic reticulum and sodium/calcium
exchanger (NCX) extrusion from the cell [110, 111].
Although the effect of sex hormones on NCX remains

Table 1 Summary of literature evaluating the influence of age and sex on left ventricular systolic function

First author,
year

Subjects Age (years) Results

Redfield
et al.,
2005 [41]

2042 subjects (984 men, 1058 women) ≥ 45 Age: ↑ end-systolic elastance (Ees)
Age × Sex: adjusted for age, LV systolic elastance was higher in

women than men. LV systolic elastance increased with age in
men and women, but more steeply in women. Ees adjusted for
chamber size (LVEDV) increased with age, but not when sex
was added to the model.

Hayashi
et al.,
2015 [58]

265 subjects without abnormal clinical,
electrocardiographic, and
echocardiographic findings

20–89 Age: s’ ↔
Sex: s’ ↔
Age × Sex: none

Hoshida
et al.,
2016 [59]

479 hypertensive subjects (267 men,
212 women)

< 65, 65–74, > 75 Age: ↔ EF
Sex:↔ stress corrected fractional shortening (FS/Ees)
Age × Sex: stress corrected fractional shortening (FS/Ees) related

to age in women but not men

Hayward
et al.,
2001 [60]

30 subjects (14 men, 16 women) with
normal LV function and no history of
MI or HF

48–75 Age: not assessed
Sex: women ↑ ESPVR and PRSWR
Age × Sex: not assessed

Celentano
et al.,
2003 [61]

517 normotensive and hypertensive
subjects with no history of CV or
endocrinal disease

20–70 Age: not assessed
Sex: normotensive and hypertensive stress-corrected mid wall

shortening was higher in women than men, independent of LV
geometry, body size, age, and heart rate

Age × Sex: not assessed

Gruner
Svealv
et al.,
2006 [62]

82 healthy subjects 20–29, 50–59, and 60–69 Age: LV systolic amplitude, LV maximal systolic velocity ↓;
time to maximal systolic velocity ↑

Sex: AVP-FS ↑ in women, LVEF tended (p = 0.06) to be ↑ in
women

Age × Sex: not assessed

Foll et al.,
2010 [63]

62 healthy subjects (32 men, 30 women) 20–40, > 40–60, > 60 Age: ↓ peak systolic long axis velocity and peak systolic apical
rotation, ↑ time to peak systolic long axis velocity, and time to
peak apical systolic rotation

Age × Sex: systolic long-axis velocity decreased to a greater
extent in women

Yoneyama
et al.,
2012 [64]

1478 subjects (MESA) 45-54,55–64,65–74,75–84 Age: torsion and LVEF ↑
Sex: torsion ↑ women than men
Age ×Sex: LV torsion increased with advancing age, and women

had greater LV torsion than men in all age groups

Hung et al.,
2017 [65]

1105 asymptomatic subjects 67–70, 71–73, 73–76,
76–80, 80–89

Age: ↓ longitudinal strain; ↑ circumferential strain, twist, and
torsion

Sex: ↑ longitudinal and circumferential strain, torsion, and twist
in women vs. men

Age × Sex: torsion increased with age in women > men. Global
longitudinal strain decreased with age in women > men

Nio et al.,
2017 [66]

82 healthy subjects 19–32, 45–58 Age: LV ejection fraction, twist, torsion, twist velocity, apical
rotation ↑

Sex: LV ejection fraction, circumferential strain, circumferential
strain rate ↑ women vs. men

Age × Sex: apical rotation, apical rotational velocity,
circumferential strain, and circumferential strain rate ↑ in men
than women with age

LV left ventricle, EF ejection fraction, AVP-FS atrioventricular plane-fractional shortening, ESPVR end-systolic pressure volume relationship, PRSWR
preload recruitable stroke work relationship
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inconclusive, SERCA2a’s response to hormonal changes has
been well documented, at least in preclinical models of human
aging. For example, ovariectomy (OVX) in middle and old
age normotensive rats reduces phosphorylated phospholam-
ban (PLB), responsible for facilitating SERCA2a activity,
resulting in decreased lusitropy and increased cardiac filling
pressures, with the older OVX rats experiencing the worst
diastolic dysfunction. That G protein–coupled estrogen recep-
tor (GPER) activation significantly improves LV lusitropy in
this model—resulting in greater SERCA2a expression and
reduced interstitial collagen content—strongly supports estro-
gen as a principle determinant of age-by-sex-related diastolic
dysfunction [112]. Similar results have also been reported
across different strains of OVX rats and experimental models,
including direct GPER knockout in transgenic mice [70, 71,
113]. Furthermore, estrogen treatment in a well-established
translational nonhuman primate model of menopause pre-
served diastolic function, in part, by modulating calcium ho-
meostasis [114]. Although not always consistent, the benefi-
cial effect of estrogen on diastolic function has also been dem-
onstrated by hormone replacement therapy trials in women, as
reviewed by Maslov and colleagues [115]. Less work has
been performed evaluating the influence of male gonads and
associated sex hormones, on diastolic (dys)function. In male
mice, following bilateral removal of the testes (GDX), evi-
dence of diastolic dysfunction has indeed been observed in
both isolated myocyte preparations and in vivo [116]. It re-
mains unclear, however, whether this effect is directly related
to testosterone itself or the reduction in estradiol via aromati-
zation of testosterone. While direct cardiomyocyte treatment

with testosterone influences Ca2+-related gene expression
[117], more work in this area is needed.

Diastole is a highly energy-dependent process [118]. Under
normal conditions, the majority of ATP is produced from
oxidative phosphorylation in the mitochondria. Impairments
in ATP generation, whether from impaired oxygen delivery or
oxidative phosphorylation, could therefore have direct effects
on diastolic function. We and others have described clear sex
differences in the presentation of myocardial ischemia, which
often develops in the presence of age and/or cardiovascular
risk factors. For a more detailed review of sex-specific pat-
terns of myocardial ischemia, the reader is directed to the
following comprehensive reviews: [119, 120]. While we have
observed some evidence to support a role for myocardial is-
chemia in the development of diastolic dysfunction in women
with signs and symptoms of ischemia with no obstructive
coronary artery disease [121–123], investigations are current-
ly underway to evaluate both the direct and indirect effect of
myocardial ischemia on diastolic function in this bourgeoning
clinical population.

Abnormalities in mitochondrial energy production can also
contribute to impaired diastolic function via oxidative stress,
as is increasingly recognized in the pathogenesis of heart fail-
ure [124, 125]. Upon ischemia/reperfusion, female Sprague
Dawley rat hearts express lower rates of ROS production com-
pared with age-matched male hearts via posttranslational
modification of mitochondrial proteins [126], with estrogen
being strongly implicated as the principle cardioprotective
agent. Indeed, preclinical ischemia/reperfusion studies incor-
porating OVX with and without exogenous estradiol

Fig. 2 Twist mechanics and altered strain contributions to left ventricular
ejection fraction with age, sex, and cardiovascular disease. a Left
ventricular myofiber architecture, changing from a left-handed helix in
the subepicardium to a right-handed helix in the subendocardium.
Contraction of these two opposing myofiber layers gives rise to
circumferential and longitudinal shortening about the long axis of the
cylinder. Note the longer lever arm of the subepicardial fibers compared
with the subendocardial fibers. When both layers contract
simultaneously, the epicardial fibers have a mechanical advantage,

dominating the overall direction and magnitude of rotation. This
mechanical advantage is augmented in conditions with impaired
subendocardial function and/or a greater subepicardial radius (i.e.
concentric hypertrophy). b Conceptual model illustrating patterns of
change in left ventricular tissue deformation, twist mechanics, and
ejection fraction through the onset of early mechanical dysfunction
(associated with age, sex, and cardiovascular comorbidities), heart
failure with preserved ejection fraction (HFpEF), and heart failure with
reduced ejection fraction (HFrEF)
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treatment suggest that estrogen promotes electron transport
chain activity and ATP production [127], upregulates mito-
chondrial antioxidants [128], and downregulates mitochondri-
al apoptotic pathways [129]. With regard to cardiac patholo-
gy, estradiol treatment in an OVX mouse model of hypertro-
phic cardiomyopathy prevents energy dysregulation, reduces
ROS formation, and improves diastolic function [130]. ROS
production also serves as a scavenger to nitric oxide, a key
regulator of normal diastolic function [131–136]. Indeed,

cardiomyocytes possess both the “endothelial” and “neuro-
nal” isoforms of nitric oxide synthase (NOS), with neuronal
NOS most strongly implicated in cardiac relaxation, via ef-
fects on phospholamban phosphorylation [132–136].
Uncoupling of NOS often occurs during oxidative depletion
of its co-factor tetrahydrobiopterin (BH4), leading to produc-
tion of superoxide instead of NO. Estrogen is known to mod-
ulate BH4, and therefore may represent a key source of dia-
stolic dysfunction in aged postmenopausal women. For

Table 2 Summary of literature evaluating the influence of age and sex on left ventricular diastolic function

First author,
year

Subjects Age (years) Results

Okura et al.,
2009 [104]

1333 healthy subjects w/o known heart
disease or hypertension

10–89 Age: E, E/A, e’ ↓; A, A’, E/E’ ↑
Sex: in young men and women (10–29 years) e’ ↔; e’↑

premenopausal women than men (30–49 years);
Age × Sex: e’ ↑ men than women (70–79 years; i.e. accelerated age

effect in older women)

Daimon et al.,
2011 [105]

700 healthy Japanese volunteers 20–79 Age: E, E/A ratio, e’ ↓
Sex: women < 50 years, ↑ E, E/A ratio, e’ than men
Age × Sex: > 50 years, E, E/A ratio, e’ ↔ men and women, with

significant age × sex interaction

Hayashi et al.,
2015 [58]

265 subjects without abnormal clinical,
electrocardiographic, and
echocardiographic findings

20–89 Age: e’ ↓
Sex: e’ ↔, excepted for 40–59 years age group, women > men
Age × Sex: none

Hayward
et al., 2001
[60]

30 subjects (14 men, 16 women) with
normal LV function and no history of MI
or HF

48–75 Age: not assessed
Sex: Women ↓ passive diastolic compliance
Age × Sex: not assessed

Gruner Svealv
et al., 2006
[62]

82 healthy subjects 20–29, 50–59,
and 60–69

Age: LV early diastolic filling amplitude, LV maximal early diastolic
filling velocity ↓; LA contraction amplitude, LA maximal
contraction velocity, LA contraction time, LA filling fraction ↑

Sex: LA contraction amplitude, LA filling fraction, LA maximal
contraction velocity ↓ women vs. men

Age × Sex: not assessed

Foll et al.,
2010 [63]

62 healthy subjects (32 men, 30 women) 20–40, > 40–60,
> 60

Age: ↑ peak diastolic radial and long-axis velocity, ↑ time to peak
diastolic radial and long-axis velocity

Age × Sex: diastolic long-axis velocity decreased to a greater extent in
women, ↓ time to peak apical diastolic rotation in aging women

Hung et al.,
2017 [65]

1105 asymptomatic subjects 67–70, 71–73,
73–76, 76–80,
80–89

Age: ↑ LA volume, mitral inflow deceleration time, and E/e’; ↓ E/A
ratio, e’

Sex: e’ ↓ women vs. men
Age × Sex: e’ declines more with age in women vs. men

Nio et al.,
2017 [66]

82 healthy subjects 19–32, 45–58 Age: longer isovolumic relaxation times, slower early diastolic
velocities (E and e’), with faster A and a’. Delayed time to peak
untwisting, with lower peak diastolic apical circumferential strain
rates.

Sex: time to peak untwisting rate, basal circumferential diastolic strain
rate was faster in women than men

Age × Sex: time to peak untwisting velocity and time to peak basal and
apical rotational velocity were later in men than women

Hoshida et al.,
2016 [59]

479 hypertensive subjects (267 men, 212
women)

< 65, 65–74,
> 75

Age: ↑ E/e’ and E/e’ adjusted for stroke volume index
Age × Sex: women ≥ 75 years, ↑ E/e’ and E/e’ adjusted for stroke

volume index

E early mitral inflow velocity, A late mitral inflow velocity, e’ early annular tissue velocity, E/e’ a surrogate measure of left ventricular end-diastolic
pressure, LA left atrium
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example, OVX rats demonstrate reduced cardiac BH4 concen-
tration, and BH4 treatment after OVX improves lusitropy and
reduces cardiac filling pressures, collagen content, and ROS
production [137].

As mentioned, estrogen is also a direct vasodilator of the
arterial system [106, 107]. While this may explain at least part
of the female-dominant pattern of nonobstructive coronary
artery disease we and others have observed in middle-aged
women [138–140], it may also provide insight into the accel-
erated impairment in early diastolic function seen in older
women. For example, ventricular-arterial coupling is an im-
portant contributor to cardiac mechanics and hemodynamic
control. Alterations in the stiffness of the central vascular sys-
tem elevate cardiac afterload and compromise cardiac effi-
ciency [141–143], with the added potential of decreasing cor-
onary perfusion [144, 145]. While this mechanism of diastolic
dysfunction has been implicated in hypertension, diabetes,
and heart failure [146–148], the age-by-sex interaction of this
proposed mechanism has not been well described, warranting
further investigation.

Age–Sex Interaction and the Vasculature

The vascular system is commonly divided into two levels: the
mac r ov a s c u l a t u r e a nd m i c r ov a s cu l a t u r e . Th e
macrovasculature is composed of large elastic arteries that
buffer intermittent increases in pulsatility following left ven-
tricular ejection and muscular arteries that serve as conduit
vessels to supply blood to the microvasculature (< 300 μm
in diameter), for subsequent tissue perfusion and oxygenation.
The microvasculature is therefore composed of arterioles, cap-
illaries, and venules. As mentioned, vascular stiffness in-
creases with age [81–83], independent of vascular disease or
risk factors [81, 82, 87], and is higher in women [81, 84–86].
Multiple mechanisms have been proposed to explain age- and
sex-dependent vascular stiffening, including endothelial dys-
function, changes in vascular protein composition (i.e.
elastin–collagen content), microvascular dysfunction, and
neurohormonal signaling, each of which is discussed in more
detail herein.

Endothelial (Dys)function

The vascular endothelium, a single-cell layer lining the inner
lumen of all blood vessels, plays a pivotal role in blood flow
regulation by synthesizing and secreting vasoactive mole-
cules, principally nitric oxide (vasodilator) and endothelin-1
(vasoconstrictor).

Endothelium-dependent vasodilation may be invoked by
either chemical (acetylcholine) or mechanical (increase in
blood flow and shear stress) stimuli, the latter of which is
the principle of flow-mediated dilation (FMD), an index of

coronary endothelial health/function [149] along with overall
endothelial function. Both acetylcholine-mediated vasodila-
tion and flow-mediated dilation (FMD) decrease with age in
men, but remain preserved in women typically until the onset
of menopause, after which endothelial dependent vasodilation
markedly declines [150, 151]. In accordance with the biolog-
ical timeline of these results, the majority of work strongly
implicates estrogen and testosterone as primary mediators of
endothelial-dependent vasodilation. Indeed, both estrogen and
testosterone increase NO production via receptor-mediated
activation of endothelial NO synthase. Accordingly,
endothelial-dependent vasodilation declines with age in both
men and women [150–153] and is attenuated in premenopaus-
al women treated with a gonadotropin-releasing hormone an-
tagonist (GnRH-ant) [154] and young men treated with an
aromatase inhibitor, which blocks endogenous production of
estrogen [155], and restored by estradiol treatment [154,
156–159]. Less clear is the role of testosterone in the regula-
tion of endothelial function, as results from several cross-
sectional studies evaluating FMD in men with low serum tes-
tosterone remain equivocal [160–164]. Both testosterone and
estrogen possess antioxidant and anti-inflammatory properties
that are lost in hormone-deficient states, regarded as the prin-
ciple mechanism linking sex hormones with endothelial-
dependent vasodilation [165–168].

Less established, but increasingly recognized, is the role of
endothelin-1 on endothelial function both with aging and be-
tween sexes. Endothelin-1 is a potent vasoconstrictor pro-
duced and released by endothelial cells that acts on two recep-
tor subtypes, ETA and ETB, located on the vascular smooth
muscle [169]. In addition, ETB receptors are also located on
the endothelium and mediate vasodilation [169, 170].
Emerging evidence suggests that endothelin-1 receptors may
be sexually dimorphic [171•] [172], with endothelin-1 prefer-
entially binding to ETB receptors in women [173]. Moreover,
endothelin-1-mediated vasoconstriction appears to be aug-
mented with age [174, 175], with ETB-mediated vasodilation
potentially lost in postmenopausal women [176]. Whether
targeting endothelin receptors can improve cardiovascular dis-
ease outcomes, quality of life, and overall survival remains
largely unknown, but with the advent of endothelin receptor
antagonists, has great potential of being addressed within the
next decade.

Elastin–Collagen Content

Large blood vessels like the aorta are inherently “elastic,”
facilitating blood vessel distension with each heartbeat (i.e.
stroke volume), dampening velocity and pressure fluctuations,
and maintaining consistent unidirectional blood flow.
Vascular elasticity is predominantly mediated by the balance
between collagen—a stiff scaffolding protein—and elastin—
an elastic protein designed to facilitate the repetitive distention
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of the vessel. In male rodents, aging is associated with a pro-
gressive shift in the collagen–elastin ratio, whereby elastin is
degraded with age and collagen expression is increased
[177–179]. To our knowledge, however, this work has not
been replicated in female rodents, rendering our understand-
ing of sex-by-age-related differences in vascular protein com-
position incomplete. In nonhuman primates, aortic stiffness
increases with age to a greater extent in male versus female
monkeys, attributable to preserved collagen but decreased
elastin among old male monkeys that was larger in magnitude
than that observed in old female monkeys [180]. Notably,
several cross-species differences in specific collagen isoform
changes with aging appear to exist, at least between mice and
monkeys, highlighting the need to extend these observations
to humans (of both sexes). Unfortunately, aside from a limited
number of autopsy studies completed more than three decades
ago [181–185], our clinical understanding remains limited.
Nevertheless, despite several challenges with interpreting
these early data, including issues surrounding differences in
both the location of dissection (abdominal aorta vs thoracic)
and prior health status of the individuals included, it does
appear that human aging is indeed associated with a similar
shift in collagen–elastin ratio. While the exact mechanism
driving age (and potentially sex) related changes in the bal-
ance between collagen and elastin remains incompletely un-
derstood, reactive oxygen species and inflammation—which
could degrade elastin and increase the deposition of
collagen—are thought to play a major role [168]. More work
is needed, however, to truly address this question.

Microvascular (Dys)function

We and others have shown that coronary microvascular dys-
function (CMD) is more prevalent in women than men
[186–188], and several reports of “microvascular dysfunc-
tion” in HFpEF have also recently emerged, touting microvas-
cular dysfunction as a promising therapeutic target in this
burgeoning condition that predominantly impacts older wom-
en [189, 190]. This has led to the hypothesis that risk factor
conditions (age, obesity, dysglycemia, hyperlipidemia), in-
cluding loss of estrogen, promote a pro-inflammatory, pro-
oxidative state, rending the microvasculature vulnerable
[191, 192]. Thus, while “microvascular dysfunction” may
present itself in specific end-organs like the myocardium
(i.e. coronary microvascular dysfunction, and associated is-
chemia, structural remodeling, systolic/diastolic dysfunction),
this conceptual framework suggests that microvascular dys-
function is likely systemic in nature.

The assessment of “microvascular function” has therefore
taken a broad approach in recent years, ranging from circulat-
ing biomarkers (sICAM-1 [soluble intercellular adhesionmol-
ecule-1], sVCAM-1 [soluble vascular adhesion molecule-1],
sE-selectin [soluble E-selectin], and vWF [von Willebrand

factor]), structural imaging approaches like optical coherence
tomography [193], and darkfield microscopy [194–196] to
limb reperfusion measurements following a brief period of
tissue ischemia (i.e. reactive hyperemia) [197, 198]. While
each of these endpoints have been studied in the context of
specific cardiovascular and/or metabolic diseases, unlike stud-
ies evaluating macrovascular endothelial function, population
studies exploring sex and the influence of healthy aging on
microvascular endpoints remain limited. More work is there-
fore needed to fully elucidate the impact of age and sex on
microvascular dysfunction, along with specific mechanisms
contributing to its prevalence.

Neurovascular Control

Accumulating evidence suggests that both sex and age influ-
ence autonomic neural control of vascular tone. For example,
the incidence of orthostatic intolerance is much higher in
young women than young men, related to an apparent attenu-
ation of peripheral vasoconstrictor responsiveness to sympa-
thetic activity [199–201]. Where a significant relationship ex-
ists between sympathetic nerve activity and total peripheral
resistance in young men, this relationship is absent in young
women [202], attributable to greater β-adrenergic-mediated
vasodilation in young women [203, 204]. Indeed, the relation-
ship between sympathetic nerve activity and total peripheral
resistance is restored in young women via systemic β-
adrenoreceptor blockade [204]. After ~ 40 years of age, how-
ever, the autonomic nervous system plays a much more dom-
inant role in the control of blood pressure [205], a response
largely attributable to a reduction in β2-adrenergic receptor
(β2AR)–mediated vasodilation [203, 206, 207]. While the
exact mechanism for this finding remains incompletely under-
stood, reduced NO bioavailability has been implicated [207].
Moreover, aged postmenopausal women have greater vaso-
constrictor responses to norepinephrine [203], which may be
related to greater sympathetic transduction of sympathetic
nerve activity [208]. It is interesting to consider these findings
in the context of popular cardiovascular therapeutics, particu-
larly beta- and alpha-blockers. Caution may therefore be war-
ranted as we promote certain classes of drugs that have
worked well in male-dominated conditions like heart failure
with reduced ejection fraction (HFrEF) to more female-
dominant conditions like HFpEF.

Conclusions

Taken together, there is clear evidence that both age and sex
influence the cardiovascular system. Sex-specific cardiomyo-
cyte loss, an increase in extracellular matrix, and myocellular
hypertrophy work in tandem in the presence of CVD risk
factors and/or overt CVD to promote unique patterns of LV
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remodeling in women and men. In addition, age- and sex-
specific vascular stiffening is also well established, driven
by changes in endothelial dysfunction, elastin–collagen con-
tent, microvascular function, and neurohormonal signaling.
Together, these changes in LV chamber geometry and mor-
phology, coupled with heightened vascular stiffness, appear to
drive both age-related increases in systolic function and de-
clines in diastolic function, particularly in postmenopausal
women. Estrogen is indeed implicated as an important medi-
ator of the aforementioned changes, given that it is a direct
vasodilator, promotes nitric oxide excretion, and impacts
myocellular Ca2+ handling, mitochondrial energy production,
and oxidative stress. The culmination of these sex-specific
cardiac and vascular changes across the lifespan may provide
key insight into heart failure development, particularly of the
preserved ejection fraction variety. While knowledge gaps
remain, as outlined herein, the collective insight currently
available offers great promise for future preventive strategies
and therapeutic approaches.
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