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Abstract
Purpose of Review To provide insight into the role of urine biomarkers and electrolytes for the management of heart failure.
Recent Findings The age-dependent decrease in glomerular filtration rate due to loss of functional nephrons occurs at a faster
pace in heart failure, potentially exacerbated by episodes of acute kidney injury. Urine biomarkers have not convincingly
demonstrated to improve detection of irreversible renal damage and predict long-term renal trajectories, compared with serial
creatinine measurements. Recent data show that natriuresis and diuretic response track poorly with glomerular filtration, but
strongly with prognosis. Urine sodium concentration > 50–70 mmol/L was recently put forward through expert consensus as an
adequate diuretic response.
Summary The value of urine biomarkers to detect structural renal damage in heart failure remains unsure and the latter is
probably uncommon, especially over short-term follow-up. Urine electrolytes on the other hand predict diuretic response
accurately and may allow better diuretic titration.
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Introduction

The heart and kidneys are closely intertwined in the patho-
physiology of heart failure. By ensuring an adequate cardiac
output at low cardiac filling pressures, the heart can propel the
whole body’s blood content (i.e., 5–6 L) through the renal
vasculature every 4 min in normal circumstances. In heart
failure, both low cardiac output and systemic venous conges-
tion may contribute to impaired renal perfusion and cause
acute kidney injury [1, 2]. Repetitive or long-standing events
eventually accelerate nephron loss, enhancing the progression
of chronic kidney disease (CKD) [3, 4•]. The kidneys on the
other hand are responsible for sodium homeostasis, which
plays a central role in the occurrence of congestion in heart
failure [5].

In routine clinical practice, renal function is almost exclu-
sively assessed by serum creatinine (Cr) or Cr-based estima-
tions of the glomerular filtration rate (GFR). However, this
approach has well-known limitations such as Cr analytic assay
variability, Cr secretion by the proximal renal tubules (render-
ing it an imperfect biomarker for glomerular filtration), as well
as dependency of serum Cr levels on muscle mass, diet, and
physical activity [6–9]. Moreover, serum Cr levels may tran-
siently increase in heart failure, not necessarily reflecting
nephron loss or structural renal damage [10–12].
Alternatively, increased serum Cr may represent
hemoconcentration associated with proper decongestion and
favorable clinical outcome [13, 14]. Finally, neither serum Cr
nor GFR estimates track reliably with natriuresis or response
to diuretic therapy [15]. Importantly, both the latter are im-
paired from the beginning in heart failure and have emerged as
powerful prognostic markers independently from the underly-
ing GFR [16, 17, 18•, 19, 20••].

Urine biomarkers and electrolytes may help to answer 2
fundamental questions. First, is structural (and hence irrevers-
ible) renal damage implied when confronted with an increased
serum Cr? And second, how to assess the response to diuretic
therapy and tailor decongestive treatment? This review aims
to offer comprehensive answers on both these questions.
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Evolution of Renal Function in Heart Failure

Glomerular Filtration Rate and Number of Functional
Nephrons

GFR, assessed through serum Cr measurements, is a pow-
erful predictor of prognosis in both acute and chronic
heart failure, outperforming cardio-specific parameters
such as left ventricular ejection fraction [21, 22].
Importantly, total GFR constitutes the product of the num-
ber of functional nephrons with their average individual
filtration rate (i.e., single-nephron GFR) [23]. While the
latter is quite dynamic and strongly influenced by intra-
glomerular and systemic hemodynamics as well as neuro-
humoral activation, the number of functional nephrons is
rather fixed and slowly decreases with normal aging.
Starting from approximately 1 million nephrons per kid-
ney at birth, 5000–10,000 are lost every year with healthy
aging [24]. This corresponds to an age-related decline in
GFR of ≤ 1 mL/min/1.73 m2 per year with the single-
nephron GFR remaining stable around 80 nL/min [24].
The robust relationship between lower GFR and higher
risk for all-cause mortality in stable circumstances may
thus intuitively be explained as the number of functional
nephrons being a good surrogate for biological age of the
kidneys [25].

Increased Nephron Loss in Chronic Kidney Disease

In its purest sense, CKD is defined as a greater loss of
functional nephrons than would be anticipated through
healthy aging. Obviously, it is inconceivable to use this
definition in clinical practice as the number of functional
nephrons can only be evaluated through biopsy. A GFR <
60 mL/min/1.73 m2 is therefore used as a reasonable sur-
rogate, with this cutoff corresponding to a > 50% loss of
functional nephrons at a normal single-nephron GFR [26].
Importantly, an increased single-nephron GFR may com-
pensate for a loss of functional nephrons, reducing the
impact on the total GFR assessed by serum Cr.
Therefore, (micro-)albuminuria is an integral part of the
CKD definition in patients with a GFR ≥ 60 mL/min/
1.73 m2 [26]. The assumption is that in such patients, an
increased urinary albumin (≥ 30 mg/g Cr) reflects an in-
creased single-nephron GFR (i.e., glomerular hyper-filtra-
tion) and consequently a lower number of functional
nephrons than reflected by the total GFR. Moreover, glo-
merular hyper-filtration is a key pathophysiological mech-
anism underlying further CKD progression, as it results in
accelerated podocyte loss and a dysfunctional glomerular
basement membrane [27]. Indeed, albuminuria is consis-
tently associated with the risk of CKD progression and
development of end-stage renal disease [28, 29].

Increased Nephron Loss in Heart Failure

In the effect of n-3 polyunsaturated fatty acids in patients with
chronic heart failure (GISSI-HF) trial, the mean decrease in
estimated GFR was 2.57 mL/min/1.73 m2 per year over a 3-
year follow-up period [4•]. Assuming a normal single-
nephron GFR, this would translate into a loss of approximate-
ly 25,000 functional nephrons per year, or 2.5–5 times the
number expected through healthy aging only. Because many
of these patients have glomerular hyper-filtration and hence an
increased single-nephron GFR, this is likely an underestima-
tion. Importantly, even after adjustments for risk factors of
CKD progression, heart failure patients in the GISSI-HF trial
still demonstrated an abnormally rapid decline of the GFR
over time [4•]. Additionally, in a matched cohort of 3.4 million
individuals without heart failure and 156,743 heart failure
patients, the latter group was 3 times more likely to manifest
with a very rapid GFR decline (> 5 mL/min/1.73 m2 per year),
which occurred in 22% [3]. Conclusively, heart failure seems
to be associated with an accelerated aging of the kidneys. The
pace of this process, evaluated by the slope of serial GFR
assessments over mid- to long-term follow-up, might be an
attractive surrogate end-point for clinical trials [30]. Yet, more
data are needed to confirm this, especially in the context of
heart failure.

Urine Biomarkers to Assess Kidney Injury

Urine biomarkers have the potential to be more specific for
kidney injury and/or irreversible structural damage, when
compared with serum Cr or Cr-based GFR estimates. This
premise holds 2 interesting prospects. First, by a more accu-
rate assessment of ongoing injury and existing damage, the
future GFR trajectory might be anticipated better. Secondly, in
the context of dynamic changes in the single-nephron GFR, as
would be expected in acute heart failure (AHF) or during
decongestive treatment with rapidly changing systemic and/
or intra-glomerular hemodynamics, urine biomarkers may
better reflect the impact of an insult on the number of func-
tional nephrons, when compared with GFR estimates. Several
candidate biomarkers have been proposed (Table 1), most of
whom are not readily available in clinical practice, but rather
the topic of research.

Candidate Urine Biomarkers for Kidney Injury

Urinary Albumin One urine biomarker with widespread avail-
ability is urinary albumin. Albuminuria is common in heart
fa i lure and l inked to worse prognosis [31–34] .
Microalbuminuria (30–299 mg/g Cr) is present in approxi-
mately 30% of heart failure patients and associated with a
40–60% increased risk of all-cause mortality [31].
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Macroalbuminuria (≥ 300 mg/g Cr) carries an even higher
relative risk increase of approximately 75% and is found in
roughly 1 in 10 heart failure patients [31]. The absence of
albuminuria is generally interpreted as a sign of preserved
glomerular integrity. However, the link between albuminuria,
glomerular hyper-filtration, and increased intra-glomerular
pressure is mainly established for diabetic kidney disease,
while it remains unclear to what extent findings can be extrap-
olated to the heart failure context.

Urinary Neutrophil Gelatinase-Associated Lipocalin The most
extensively studied biomarker for tubular injury in heart fail-
ure is gelatinase-associated lipocalin (NGAL). NGAL is a 25-
kDa protein secreted by renal tubular cells, leucocytes, and
several other types of epithelial cells in response to ischemic
or toxic injury [35]. Because NGAL is normally reabsorbed
by the proximal renal tubules after glomerular filtration, in-
creased urine levels reflect dysfunctional proximal reabsorp-
tion or increased production in distal nephron segments be-
cause of injury. After multivariate adjustments, elevated uri-
nary NGAL levels were associated with a borderline signifi-
cantly increased risk of 10% for all-cause mortality or heart
failure readmission in the GISSI-HF trial [33].

Kidney Injury Molecule-1 Another urine biomarker for tubular
injury that has been investigated in heart failure is kidney
injury molecule-1 (KIM-1). KIM-1 is a transmembrane gly-
coprotein belonging to the immunoglobulin gene superfamily
[35]. It is expressed on the apical membrane cilia of proximal
tubular cells in case of injury, but is absent in the normal
kidney. In the few studies that have compared urinary
NGAL with urinary KIM-1, the latter showed a stronger as-
sociation with clinical outcome [33, 36, 37].

Other Urine Biomarkers for Tubular Injury Among the many
other potential urine biomarkers to assess tubular injury
(Table 1) are interleukin-18 (IL-18), N-acetyl-β-D-
glucosaminidase (NAG), and liver fatty acid–binding protein
(L-FABP). Currently, they are used almost exclusively in re-
search settings.

Urine Biomarkers to Predict Renal Trajectories
in Chronic Heart Failure

If urine biomarkers allow a more accurate assessment of on-
going renal injury and irreversible structural damage, they
might help to predict renal trajectories in chronic heart failure
[38]. A head-to-head comparison of the slope of serial GFR
assessments with instantaneous urine biomarker assessment is
currently not available. However, in an analysis from the
GISSI-HF trial, urinary albumin, urinary NGAL, urinary
KIM-1, and urinary NAG were compared to predict worsen-
ing renal function, defined as a ≥ 0.3 mg/dL increase in serum
Cr over a follow-up period of approximately 3 years [39]. All
4 urine biomarkers were associated with incident worsening
renal function, with a relative risk increase of approximately
20% for albuminuria or urinary NGAL versus 40% for urinary
KIM-1 or NAG. After multivariate adjustments, only the as-
sociation with urinary KIM-1 proved to be robust. A smaller
study (n = 138) that defined progression of CKD as a ≥ 25%
drop in estimated GFR with a minimal nominal decrease of
15 mL/min/1.73 m2 found that urinary KIM-1 and NAG, but
not albuminuria or urinary NGAL levels, were significantly
higher in patients with deteriorating renal function [40•].
Finally, another small study in chronic heart failure with re-
duced ejection fraction (n = 85) did demonstrate that patients
with a deterioration of the estimated GFR ≥ 25% over the 16-
month follow-up period had significantly higher urinary
NGAL levels [41].

Conclusively, urinary KIM-1 and to a lesser extent NAG
may offer the best hope to predict renal trajectories in chronic
heart failure. These urine biomarkers offer the advantage of an
instantaneous measurement in comparison with the slope of
GFR evolution over time that requires multiple Cr assess-
ments and a long enough follow-up period to be reliable.
Still, optimal cutoffs for these biomarkers should be deter-
mined from large, representative, real-world populations of
patients with chronic heart failure before their use could be
recommended in clinical practice. Even then, therapeutic im-
plications remain unsure. Renin-angiotensin blockers that
have been demonstrated to slow down the progression of

Table 1 Urine biomarkers in heart failure

Urine biomarker Injury location Prognostic marker Renal trajectory prediction Structural damage marker

Albumin Glomerular +++ +? +/−?
NGAL Proximal/distal tubules + +? +/−?
KIM-1 Proximal tubules ++ +++? +/−?
IL-18 Proximal tubules +? ? −?
NAG Proximal tubules +++ ++? +/−?
L-FABP Proximal tubules ? ? ?

IL-18, interleukin-18; KIM-1, kidney injury molecule-1; L-FABP, liver-type fatty acid–binding protein; NAG, N-acetyl-β-D-glucosaminidase; NGAL,
neutrophil gelatinase-associated lipocalin
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CKD are indicated anyway in chronic heart failure with re-
duced ejection fraction and in many patients with preserved
ejection fraction and arterial hypertension [42–44]. Novel
drugs such as sodium-glucose transporter-2 inhibitors and/or
sacubitril/valsartan may offer additional nephroprotection in
heart failure and might be considered earlier in patients at high
risk for deteriorating renal function [45, 46]. However, the
hypothesis that urine biomarkers identify such population re-
liably should be tested formally in prospective studies.

Urine Biomarkers to Detect Structural Nephron
Damage in Acute Heart Failure

Contrary to the long-term evolution of the GFR in chronic heart
failure, short-term changes in AHF are less consistently associ-
ated with prognosis. Worsening renal function, defined as a ≥
0.3 mg/dL increase of the serum Cr during a hospitalization for
AHF, is associated with a 81% relative risk increase for subse-
quent mortality on a population level [47]. However, transient
elevations in serum Cr are more frequently observed when thor-
ough decongestion is achieved and this is nevertheless associated
with better outcomes [13]. As explained, the highly dynamic
single-nephron GFR in AHF because of changing hemodynam-
ics, volume status, and neurohumoral activation, as well as the
potential effect of hemoconcentration with decongestion, clouds
the relationship between serum Cr and the number of functional
nephrons that is prognostically relevant. Moreover, persistent
(subclinical) congestion that is associated with hemodilution
and a lower serum Cr is an important driver for deteriorating
renal function on the long-term [48, 49].

Urine biomarkers have therefore been studied extensively
in AHF, as they may be more sensitive to kidney injury and
irreversible structural damage when compared with serum Cr.
However, many of those studies have taken short-term chang-
es in Cr or Cr-based GFR estimates as an end-point, which
seems not entirely appropriate. One interesting observation is
that tubular injury biomarkers such as NGAL are only slightly
elevated in AHF, not to the extent observed in tubular necrosis
with nephrotoxic medications [10, 50]. The lack of immediate,
significant tubular injury in most cases of AHF may explain
why urinary NGAL, KIM-1, and IL-18 are poor predictors of
long-term renal impairment after 6 months [11]. In the Acute
Kidney Injury NGAL Evaluation of Symptomatic Heart
Failure Study (AKINESIS), peak or admission urine NGAL
was not better than serum Cr levels to predict the need for
renal replacement therapy, which was infrequent in 18/927
patients (1.9%), again suggesting that structural nephron dam-
age is actually a rare event in AHF. This is notwithstanding
that repetitive or long-standing events of acute kidney injury
may accelerate nephron loss and progression of CKD. Indeed,
in the infrequent cases where tubular injury biomarkers are
markedly elevated in AHF, there seems to be a better relation-
ship with progressive renal deterioration and clinical

outcomes independently from the underlying GFR [51].
Notably in this respect, both urinary NGAL and KIM-1 were
associated with true worsening renal function, defined as a ≥
0.3 mg/dL increase in serum Cr in AHF patients without suc-
cessful decongestion [52].

Conclusively, there is insufficient evidence to recommend
the use of urine biomarkers to improve detection of acute
kidney injury and irreversible renal damage during episodes
of AHF. The main reason for this is that the latter is an un-
common event. Furthermore, persistent congestion is likely
more harmful to the kidneys on the long-term than aggressive
decongestive therapies on the short-term. This is further sup-
ported by an observation from the Cardiorenal Rescue Study
in Acute Decompensated Heart Failure (CARRESS-HF) that
in cases with evolving worsening renal function, intensive
volume removal resulted in a rise of urinary NGAL, KIM-1,
and NAG indicating tubular injury, but superior decongestion
and renal functional recovery after 60 days [53•]. This consti-
tutes the best current evidence that at least part of the injury
detected by urine biomarkers, especially at slightly to moder-
ately elevated levels, is in fact reversible and probably not
associated with a loss of functional nephrons.

Urine Electrolytes to Assess Diuretic Response
and Guide Decongestive Treatment

Extracellular volume is governed by sodium homeostasis [5].
Renal sodium avidity is a hallmark feature of the heart failure
syndrome, already early in its development [16]. The resulting
positive sodium balance eventually leads to volume overload,
which is the most common reason for hospital admission with
AHF [54]. Typically, in such cases, diuretics are used to get rid of
any excessive fluid accumulation and subsequently prevent
recurrence.

Avery consistent observation frommultiple studies is that any
residual congestion after treatment for AHF—whether evaluated
clinically, through biomarkers, or with invasive hemodynamic
measurements—portends worse prognosis [55–57].
Nevertheless, a substantial number of patients admitted with
AHF leave the hospital with inadequate decongestion [58].
Remarkably, there is no consensus on how to define optimal
decongestion. Intriguingly, in the Renal Optimization Strategies
Evaluation in Acute Heart Failure (ROSE-AHF) trial, total sodi-
um excretion was strongly associated with 6-month mortality,
while traditional fluid-based metrics (i.e., urine output, net fluid
balance, and weight change) were not [20••]. This is already a
strong argument to reappraise the role of urine electrolyte assess-
ment in heart failure and test prospectively whether natriuresis is
a valid parameter to guide decongestive treatment.Moreover, it is
now clearly established that urine electrolyte assessment helps to
accurately predict response to diuretic treatment [59•, 60, 61••].
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Urine Electrolyte Assessment in Heart Failure

Sodium Versus Chloride Most studies on urine electrolyte as-
sessment in heart failure have looked only at sodium and
natriuresis, although chloride and chloruresis are potentially
at least equally important. Renal autoregulation through
tubulo-glomerular feedback is mediated by chloride rather
than sodium [62]. Additionally, only sodium ingested under
the form of sodium chloride but not sodium bicarbonate is
osmotically active in the extracellular compartment [63].
However, because of the paucity of data regarding urine chlo-
ride assessment in heart failure, further focus will be on sodi-
um. Three different metrics may be used to assess natriuresis
and should be clearly specified to avoid confusion (Table 2).

Total Natriuresis Total natriuresis, or the total amount of sodi-
um excreted through the urine, equals sodium intake during
the steady state. A sodium intake that is higher than the ex-
creted amount results in an increased extracellular volume.
Conversely, a lower intake than excretion contracts the extra-
cellular compartment, which is generally the aim in AHF.
Assessing total natriuresis requires a timed urine collection
because both urine sodium concentration and the amount of
urine production are needed for its calculation. After diuretic
administration, total natriuresis reflects the reduction in extra-
cellular volume that will eventually be achieved.

Urine Sodium Concentration Urine sodium concentration,
which may be evaluated on a spot urine sample as well as a
timed collection, is not so much an indicator of sodium intake
or extracellular volume, but rather a reflection of renal tubular
sodium handling. A low urine sodium concentration (<
50 mmol/L) indicates intensive tubular sodium reabsorption,
which requires a structurally intact nephron and an activated
renin-angiotensin-aldosterone system [64]. Interestingly, it
was recently shown that heart failure patients with a lower
urine sodium concentration on a morning spot sample before
administration of any diuretics had a higher risk of hospital
admission for AHF [65••]. Moreover, with serial measure-
ments, there was a clear temporal relationship between a drop
in urine sodium concentration (generally < 50 mmol/L) and
subsequent decompensation. This strongly suggests that in-
creased renal sodium avidity was the cause of a positive sodi-
um balance, resulting in extracellular volume expansion and
decompensation. Based on the results of this small

observational study (n = 80) that requires further confirma-
tion, a urine sodium concentration > 70 mmol/L (outside the
window of diuretic administration) indicates acceptable natri-
uresis without risk of impending decompensation.

Fractional Sodium Excretion Fractional sodium excretion
(FENa) on a spot urine sample is theoretically the most accu-
rate reflection of renal tubular sodium handling. However, its
reliance on 4 measurements (urine sodium and serum Cr con-
centration as well as serum sodium and urine Cr concentra-
tion), each with inherent measurement error, makes it a much
less precise parameter compared with the urine sodium con-
centration alone. As the inflated measurement error offsets
any gains in accuracy, the added value of this more complex
metric of natriuresis is questionable in clinical practice [15].

Urine Sodium Concentration to Assess Diuretic
Response

As natriuresis is the primary goal of diuretic therapy, urine
sodium assessment offers a unique insight into the diuretic
response. In an experiment with 52 AHF patients, presenting
with clear volume overload, a urine spot sample was obtained
under continuous furosemide infusion for > 3 h to allow a
steady state [15]. Both the urine sodium concentration and
FENa showed a linear correlation with 24-h urine output and
net fluid balance. Patients with a urine sodium concentration
< 50 mmol/L had a very poor diuretic response, precluding
any meaningful decongestion. In another experiment, it was
demonstrated that early total sodium excretion in AHF,
assessed within 1–2 h after diuretic administration, did accu-
rately predict total natriuresis after 6 h [59•]. The authors were
able to validate a formula that estimates total natriuresis after
diuretic therapy based on the estimated GFR, serum and urine
Cr levels, and the urine sodium concentration on a spot urine
sample taken within 1–2 h after diuretic administration.

Diuretic Response as Natriuresis Predicts Prognosis
in Acute Heart Failure

An accurate assessment of diuretic response is gaining in-
creased attention because of its important association with
prognosis in AHF, irrespectively of the underlying GFR [17,
19]. Different metrics that have been used are typically
expressed as an effect (i.e., urine output, net fluid balance,

Table 2 Metrics of natriuresis

Metric Unit 24-h collection Urine spot sample

Total natriuresis mmol (mEq) X

Urine sodium concentration mmol/L (mEq/L) X X

Fractional sodium excretion ([Na]U × [Cr]P) / ([Na]P × [Cr]U) X
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weight loss, or natriuresis) per dose of loop diuretics admin-
istered [19]. Among these metrics, natriuresis seems to have
the most robust association with clinical outcome [20••, 66].
Both higher total natriuresis and a higher urine sodium con-
centration under diuretic treatment are associated with a lower
risk for all-cause mortality or heart failure readmissions [15,
18•, 20••, 67•, 68•]. The exact mechanistic underpinning of
this robust association is less obvious than at first sight. A

logical assumption might be that patients who present with
poor diuretic response have a lower chance of achieving ap-
propriate decongestion [18•, 69]. Yet, even with similar con-
gestion signs at discharge, patients with good diuretic re-
sponse still have favorable clinical outcomes [17, 70].
Alternatively, diuretic response might be interpreted as the
result of a renal stress test, indicating the functional reserve
of the kidneys to excrete sodium and water (in analogy to the

Diuretic administration 
in a heart failure patient*

with volume overload
*Voided empty before diuretic administration

URINE SODIUM 
CONCENTRATION

TOTAL NATRIURESIS

Spot sample 1-2 h after diuretic administration

QUANTITATIVE 
DECONGESTION 

(Extracellular volume 
removed)

QUALITATIVE 
DECONGESTION 
(Diuretic response)

<50 mmol/L: inacceptable
Dose escalation
Combination treatment
Ultrafiltration

50-70 mmol/L: borderline
Consider intensifying
decongestive treatment 

70-100 mmol/L: acceptable

Consider serial 
measurements during 

decongestion

High urine sodium
(>85 mmol/L) indicates 
persistent congestion

Fig. 1 Potential use of urine
electrolyte assessment in acute
heart failure
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maximal aerobic capacity being reflective of the cardiac re-
serve during exercise). Finally, poor diuretic response might
indicate as well that volume overload is not present and sodi-
um levels are possibly depleted [60, 71]. In the latter scenario,
diuretic therapy is unlikely to target the underlying pathophys-
iological culprit of AHF and may be harmful instead.

Clinical Implications of Urine Electrolyte Assessment
in Heart Failure

Urine electrolyte assessment in heart failure might have im-
portant implications for clinical practice (Fig. 1). In a recently
published position statement from the Heart Failure
Association study group on cardio-renal dysfunction, the im-
portance of a systematic and early evaluation of diuretic re-
sponse is highlighted [61••]. Both urine output 6 h after di-
uretic administration and urine sodium concentration on a spot
sample after 2 h are proposed to achieve this goal. The con-
sensus between experts was that a urine sodium concentration
> 50 mmol/L and preferably > 70 mmol/L should be achieved
to consider diuretic therapy effective. Urine sodium concen-
tration < 50–70 mmol/L would indicate the need for loop di-
uretic dose escalation or consideration of combinational di-
uretic therapy or in selected cases ultrafiltration. It should be
emphasized though that this recommendation is based on lim-
ited evidence, mostly from observational, non-randomized
studies. Notably, the 50–70 mmol/L cutoff for an acceptable
diuretic response is probably a conservative estimate in pa-
tients with clear signs of volume overload, most of whom
achieve a urine sodium concentration > 100 mmol/L with ad-
equately dosed diuretic therapy.

When serial assessments of natriuresis are performed dur-
ing successful decongestive treatment for AHF, it is clear that
sodium excretion diminishes, even when urine output is still
preserved [60]. Low urine sodium or chloride concentration in
this specific context may predict whether repeating a diuretic
dose would still be effective. A high urine sodium (>
85 mmol/L) or chloride (> 50 mmol/L) in this respect would
indicate a continued response to the diuretic regimen and the
likely presence of congestion, even when not clinically obvi-
ous [72•]. In such way, urine electrolyte assessment might be a
promising approach to aid clinical decisions as when to make
the switch from intravenous to oral diuretic administration or
plan discharge from the hospital. However, more
mechanistical studies are needed to confirm or refute these
hypotheses.

Conclusions

Heart failure is associated with an accelerated aging of the
kidneys and a GFR decrease > 1 mL/min/1.73 m2 per year.
Total GFR assessment through serum Cr or Cr-based GFR

estimates incompletely captures the irreversible loss of func-
tional nephrons over time, as the individual filtration rate of
the remaining nephrons may be compensatory increased. In
addition, rapidly changing volume status, hemodynamics, and
neurohumoral activation in AHF or during decongestive ther-
apies may temporarily impact on the GFR without causing
structural nephron damage. Urine biomarkers have the poten-
tial to be more specific for ongoing kidney injury and irrevers-
ible structural damage when compared with serum Cr assess-
ment. Although there might be a role for urine biomarkers to
predict renal trajectories in chronic heart failure, especially for
urinary KIM-1 and NAG at moderately elevated levels, this
has limited therapeutic implications. In addition, urine bio-
marker assessments in AHF have yielded overall disappoint-
ing results. In contrast, urine electrolyte (mainly sodium) as-
sessment has gathered increased attention lately. Evaluating
natriuresis is an accurate method to assess diuretic efficacy
and is a powerful predictor of prognosis in AHF. According
to expert consensus, a urine sodium concentration < 50–
70 mmol/L on a spot urine sample obtained 2 h after diuretic
administration should be considered diuretic resistance and
trigger intensification of decongestive treatments when vol-
ume overload is still present.
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