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Abstract
Purpose of Review This review summarizes recent developments highlighting the clinical utility of diastolic stress testing along
the heart failure continuum.
Recent Findings Invasive hemodynamic assessment of cardiac filling pressures during physiological stress is the gold-standard
technique for unmasking diastolic dysfunction. Non-invasive surrogate techniques, such as Doppler ultrasound, have shown
excellent agreement with invasive approaches and are now recommended by the American Society of Echocardiography and the
European Association of Cardiovascular Imaging. While cycle exercise is often advocated, recent evidence supports the use of
isometric handgrip as a viable alternative stressor.
Summary Diastolic stress testing is a powerful tool to enhance detection of diastolic dysfunction, is able to differentiate between
cardiac and non-cardiac pathology, and should be incorporated into routine clinical assessment.

Keywords Diastolic stress testing . Heart failure . Exertional dyspnea . Isometric handgrip . Cycle exercise

Introduction

Normal left ventricular (LV) diastole requires the coordination
of several physiological processes which allow the heart to fill
sufficiently under low filling pressures. As systole ends, LV
elastic recoil and active relaxation gives rise to an abrupt de-
cline in LV pressure until the mitral valve opens, and blood
flows along a pressure gradient toward the apex. Upon pres-
sure equilibration between the left atrium and the LV (i.e.,
diastasis), the final component of ventricular filling occurs
when the atrium contracts and systole resumes. Impairment
of any one of these processes can result in a rise in LV filling

pressure that is transmitted to the left atrium and pulmonary
veins, and can be associated with pulmonary edema and dys-
pnea [1]. Progression along the American College of
Cardiology/American Heart Association (ACC/AHA) heart
failure continuum from stage A (presence of cardiovascular
risk factors with no structural adaptations) to stage C (struc-
tural adaptation and symptoms of heart failure) is associated
with graded levels of diastolic dysfunction.

Conventional resting measures of diastolic function, partic-
ularly Doppler derived mitral inflow and annular tissue veloc-
ities, are both prognostic and predictive of events in overt
heart disease (e.g., stage C) [2–4]. However, when disease is
less advanced (e.g., stage A) and/or when the diagnosis re-
mains equivocal, diastolic stress testing may be indicated to
differentiate cardiac vs. non-cardiac pathology. Indeed, over
the past decade, assessment of diastolic function during phys-
iological stress, termed “diastolic stress testing,” has emerged
as a powerful tool to enhance detection of diastolic dysfunc-
tion as the etiological feature of exertional dyspnea [5]. As a
result, diastolic stress testing is now recommended by both the
American Society of Echocardiography and the European
Association of Cardiovascular Imaging [2, 3, 6].

This article reviews the evolution of diastolic stress testing,
current practices, and procedures, and discusses the potential
for diastolic stress testing across the heart failure continuum.
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Pathophysiology of Diastolic Dysfunction

Diastole is a complex process governed by multiple factors
that regulate active LV pressure decay and passive LV diastol-
ic stiffness (Fig. 1). Determinants of active LV pressure decay
include oxygen delivery and intracellular calcium handling.
Indeed, diastole is a highly energy-dependent process, requir-
ing sufficient delivery of oxygen for the generation of adeno-
sine triphosphate (ATP). Unlike systole, which only requires
ATP for the removal of troponin-C from actin, diastole re-
quires ATP for the (1) reuptake of calcium into the sarcoplas-
mic reticulum via the sarco-endoplasmic reticulum calcium
ATP-ase (SERCA), (2) dissociation of actin and myosin, and
(3) uncoupling of calcium from troponin-C [7]. In addition to
these direct consequences, oxygen deprivation also contrib-
utes to diastolic dysfunction by shifting substrate utilization

away from fatty acid metabolism toward glucose metabolism
[8–10].

Impaired intracellular calcium handling has also been im-
plicated as a primary mechanism driving diastolic dysfunc-
tion. For example, excess calcium entry through L-type calci-
um channels, over activity of calcium-release-activated calci-
um channels (such as Orai-1), impaired sodium-calcium ex-
changer pumps, calcium reuptake and leaky ryanodine recep-
tors have each been implicated in a variety of conditions as-
sociated with diastolic dysfunction, including heart failure
with preserved ejection fraction (HFpEF) [11–15]. These det-
rimental molecular processes ultimately impair actin-myosin
cross-bridge cycling and lead to a stiff ventricle.

In addition to the contributions from active LV pressure
decay, diastolic dysfunction is also associated with increased
passive LV stiffness. Expansion of the extracellular matrix

Fig. 1 Key pathological mechanisms involved in the development of
diastolic dysfunction and the role of diastolic stress testing in
exacerbating each mechanistic pathway. Clockwise from top-left:
functional myocardial ischemia caused by an increased myocardial
oxygen (O2) demand can lead to insufficient production of myocardial
adenosine triphosphate (ATP); impaired calcium (Ca2+) handling due to
elevated intracellular Ca2+ concentrations can lead to prolonged and
delayed myocardial relaxation; pericardial constraint can be exacerbated

by increases in preload and lead to an increased right ventricular pressure,
causing a leftward shift of the interventricular septum, and ultimately
leading to increased left ventricular end-diastolic pressures (LVEDP);
increased diffuse fibrosis and impaired titin function can be exacerbated
by increases in preload and lead to a shift in the end-diastolic pressure
volume relationship upwards and to the left. SERCA2a sarco/
endoplasmic reticulum Ca2+ ATP-ase; RyR ryanodine receptor; NCX
sodium-Ca2+ exchanger
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(increased myocardial fibrosis), left ventricular hypertrophy,
and dysregulation of structural proteins like titin can each
reduce passive ventricular compliance both independently
and in concert [16–20]. Moreover, factors external to the myo-
cardium can also negatively affect passive LV stiffness. For
example, pericardial fat deposition, in combination with peri-
cardial constraint, has recently been implicated as a major
source of diastolic dysfunction [21–23]. Under this paradigm,
with the LV constrained by the pericardium, right ventricular
filling causes a leftward septal shift and an elevation in LV
end-diastolic pressure [23].

While in extreme cases, each of the above mechanisms can
independently contribute to overt diastolic dysfunction, less
extreme cases often fail to present under resting conditions.
Diastolic stress testing is therefore necessary to exacerbate
these underlying mechanisms and unmask diastolic dysfunc-
tion (Fig. 1). For example, increasing myocardial oxygen de-
mand can disrupt myocardial energetics and the processes
governing calcium handling [24–26, 27••, 28•]. Increasing
cardiac afterload floods the myocardium with calcium to sup-
port increased force production, but places greater stress on
the processes governing intracellular calcium homeostasis.
Finally, increasing cardiac preload (e.g., saline infusion, leg
lifts, dynamic exercise) can exacerbate LV passive stiffness,
augment LV/RV interaction, and adversely increase cardiac
filling pressures [23].

Diastolic Stress Testing Along the Heart
Failure Continuum

The term “diastolic stress testing” was first coined by Ha and
colleagues [29], describing an abnormal rise in left ventricular
filling pressures during exercise. However, in practice, “dia-
stolic stress testing” has been utilized for several decades [30,
31]. For example, more than 60 years ago, Lewis and col-
leagues demonstrated an abnormal rise in pulmonary capillary
wedge pressure (PCWP) in response to recumbent cycle ex-
ercise in some, but not all, patients with cardiovascular disease
despite normal PCWP at rest [30]. More recently, Levine and
coworkers have used acute volume loading/unloading to char-
acterize LV compliance in health and disease [24, 31–38].
Today, diastolic stress testing is recognized as the most robust
method for discriminating between cardiac and non-cardiac
involvement in exercise-induced dyspnea [39–42]. Some of
the most compelling and influential examples of this have
recently come from Borlaug and colleagues at the Mayo
Clinic in Rochester, MN, using invasive assessment of left
ventricular filling pressures during submaximal cycle exercise
to differentiate patients with HFpEF from those without car-
diac involvement [5, 10, 25, 39–41, 43–62, 63••]. Importantly,
while the majority of these studies have focused on direct,
gold-standard, invasive measures of LV filling pressure,

Borlaug and colleagues have also shown strong agreement
between PCWP and its non-invasive, Doppler-derived surro-
gate (early mitral inflow velocity to early annual tissue veloc-
ity ratio, E/e’) [63••]. Indeed, this helps further validate the
non-invasive work of Ha and colleagues, who have consis-
tently used E/e’ during cycle exercise to differentiate cardiac
from non-cardiac pathology [29, 64]. Specifically, in 2005,
this group was able to identify individuals who had seemingly
normal resting diastolic function (i.e., normal E/e’), but upon
exercise, shared an exaggerated E/e’ response (i.e., abnormal
rise in cardiac filling pressure) [29]. Across each of these
studies, the common threshold defining an abnormal rise in
cardiac filling pressure was a change in E/e’ > 1.5.

Cycle echocardiography is susceptible to several limita-
tions, however, including respiratory and movement artifacts
that are exaggerated in clinical populations at risk for diastolic
dysfunction (obese, elderly, etc.). Moreover, while Borlaug
and colleagues have convincingly demonstrated that only a
mild-level of exercise is needed to elicit an abnormal diastolic
response (~ 20–40 W), this approach hinges upon the ability
of patients to perform dynamic leg exercise. In an effort to
overcome these limitations, our group has advocated replacing
cycle exercise with isometric handgrip [27••, 28•]. Indeed,
isometric handgrip causes a robust, and highly reproducible
pressor-mediated increase in heart rate and blood pressure
[65], without causing dramatic increases in respiration or chest
wall movement. Importantly, isometric handgrip also elicits
marked increases in invasively measured LV filling pressures
[42, 66, 67, 68•]. In our hands, isometric handgrip echocardi-
ography is capable of differentiating normal from abnormal
diastolic function (defined as a rise in E/e’ > 1.5) [28•], with
comparable hemodynamic changes to conventional cycle ex-
ercise [27••].

While isometric handgrip produces a similar hemodynamic
challenge compared to low-level cycle exercise [27••], these
two stressors likely exacerbate diastolic dysfunction through
somewhat different mechanisms. Independent of increased
myocardial oxygen demand, the primary mechanism driving
diastolic dysfunction during cycle exercise is likely related to
the demand for increased cardiac output and reduced LV relax-
ation time. In this scenario, a stiff ventricle combined with
increased venous return leads to an increase in LV filling pres-
sure. In contrast, isometric handgrip uniquely increases LV
afterload secondary to a neurally mediated exercise pressor
reflex [69–73]. To support the ejection of blood during systole,
this increase in afterload is met by a concomitant increase in
intracellular calcium, which must either be sequestrated back
in to the sarcoplasmic reticulum or extruded from the myocyte
during ventricular relaxation [74–76]. Dysregulation of this
processes will lead to prolonged actin-myosin cross-bridge
formation and impaired active relaxation [77, 78] and thus
increased LV stiffness and elevated LV filling pressure [24].
The potential for varying mechanistic pathways ought to be
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considered when designing diastolic stress tests and warrants
future investigation.

Regardless of the mechanism driving diastolic dysfunction
during physiological stress, or the method by which diastolic
dysfunction is measured, there is increasing body of literature
supporting the use of diastolic stress testing across the heart
failure continuum (Table 1). Indeed, diastolic stress testing can
successfully unmask diastolic dysfunction in asymptomatic
patients with hypertension with no structural remodeling
(i.e., stage A, [10, 79, 80]), asymptomatic patients with mild
aortic stenosis (i.e., stage B, [81, 82]), and compensated
HFpEF patients (i.e., stage C, [10, 39, 42, 49, 50, 63••, 68•,
83–88]. While cycle exercise has been the predominant meth-
od of diastolic stress testing [10, 39, 86], isometric handgrip
echocardiography has been shown to be a robust alternative
[27••, 28•, 42, 68•], with comparable end-results [27••].

The Future of Diastolic Stress Testing

The demonstration of clinical benefit for early diagnosis and
management of diastolic dysfunction advocates for the wide-
spread clinical adoption of diastolic stress testing. Indeed, car-
diac stress testing (particularly recumbent cycle exercise) is
already integrated and practiced in echocardiography labora-
tories worldwide. Inclusion of simple Doppler-derived esti-
mates of LV filling pressures can be easily added to standard
of care measures, providing relevant diagnostic and prognos-
tic information [2–4, 63••]. That non-invasive diastolic stress
testing can also be done by simply performing handgrip exer-
cise [27••, 28•] holds even greater promise for widespread
clinical adoption. In an ideal world, every echocardiography
machine would come equipped with a stress ball or handgrip
dynamometer so that diastolic stress testing may be included
as part of every routine cardiac scan. While diastolic stress
testing has strong prognostic and diagnostic utility in patients
with unexplained dyspnea and/or heart failure symptoms, it
remains unclear what the predictive capacity is for asymptom-
atic patients (e.g., ACC/AHA stage A). Longitudinal studies
are therefore needed to define the predictive value of diastolic
stress testing across the heart failure continuum.

Conclusions

Diastolic stress testing provides diagnostic and prognostic val-
ue in those at risk for heart failure and those with symptoms of
unexplained dyspnea. The ability of non-invasive diastolic
stress testing to successfully discriminate between cardiac
and non-cardiac limitation to exercise and unmask diastolic
dysfunction in both clinical and sub-clinical patients high-
lights its potential application in the cardiology clinic. That
non-invasive diastolic stress testing, either with cycle

echocardiography or isometric handgrip echocardiography,
is both simple and relatively low cost, holds great promise.
Future work is needed using this approach to better under-
stand specific pathophysiological mechanisms and the predic-
tive capacity of these novel diastolic stress tests.
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