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Abstract
Purpose of Review To discuss the impact of deleterious changes in skeletal muscle morphology and function on exercise
intolerance in patients with heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction
(HFpEF), as well as the utility of exercise training and the potential of novel treatment strategies to preserve or improve skeletal
muscle morphology and function.
Recent Findings Both HFrEF and HFpEF patients exhibit a reduction in percent of type I (oxidative) muscle fibers and oxidative
enzymes coupled with abnormal mitochondrial respiration. These skeletal muscle abnormalities contribute to impaired oxidative
metabolism with an earlier shift towards glycolytic metabolism during exercise that is strongly associated with exercise intoler-
ance. In both HFrEF and HFpEF patients, peripheral “non-cardiac” factors are important determinants of the improvement in
exercise tolerance following aerobic exercise training. Adjunctive strategies that include nutritional supplementation with amino
acids and/or anabolic drugs to stimulate anabolic molecular pathways in skeletal muscle show great promise for improving
exercise tolerance and treating heart failure-associated sarcopenia, but these efforts remain early in their evolution, with no
immediate clinical applications.
Summary There is consistent evidence that heart failure is associated with multiple skeletal muscle abnormalities which impair
oxygen uptake and utilization and contribute greatly to exercise intolerance. Exercise training induces favorable adaptations in
skeletal muscle morphology and function that contribute to improvements in exercise tolerance in patients with HFrEF. The
contribution of skeletal muscle adaptations to improved exercise tolerance following exercise training in HFpEF remains
unknown and warrants further investigation.

Keywords Cardiorespiratory fitness . Exercise training . Oxidative metabolism . Mitochondrial function . Magnetic resonance
spectroscopy . Amino acids

Abbreviations
a-vO2diff Arterial-venous oxygen content difference
CO Cardiac output
HF Heart failure

HFpEF Heart failure with preserved ejection fraction
HFrEF Heart failure with reduced ejection fraction
NYHA New York Heart Association
PCr Phosphocreatine
VO2peak Cardiorespiratory fitness

Introduction

Heart failure (HF) is a major healthcare problem associated
with high morbidity and mortality [1]. Approximately 50% of
HF patients have reduced ejection fraction (HFrEF) while the
remainder of patients have preserved ejection fraction
(HFpEF) [2•]. While both HFrEF and HFpEF increase with
age, incidence of HFpEF is particularly prominent, doubling
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in incidence with each decade after age 65 [3]. The cardinal
symptom in clinically stable HFrEF and HFpEF patients is
reduced exercise tolerance [4, 5, 6••, 7, 8]. Heart failure pa-
tients’ peak cardiorespiratory fitness (VO2peak) is ~ 65% of
age-matched healthy controls [2•, 6••, 7, 9••, 10]. Moreover,
declines in cardiorespiratory fitness in older HF patients are
compounded by comorbidity, sarcopenia, malnutrition, and
other aging sequela that exacerbate declines in cardiorespira-
tory fitness as well as strength and balance, and progressively
jeopardize quality of life and functional independence [2•, 11].

The reduced VO2peak is secondary to impaired cardiac and
pulmonary performance, as well as peripheral vascular, and
skeletal muscle abnormalities that result in reduced convective
and diffusive O2 transport coupled with decreased O2 utiliza-
tion by exercising muscle [2•, 6••, 12, 13]. A number of inva-
sive hemodynamic studies have shown that both HFrEF and
HFpEF have reduced maximal cardiac output (CO) secondary
to a lower heart rate and stroke volume response [7, 9••, 10,
14]. However, non-cardiopulmonary peripheral factors also
contribute to the lower VO2peak [6••, 7, 9••, 10, 15, 16••].

The aim of this brief review is to discuss the impact that
abnormal skeletal muscle morphology and function play in
limiting exercise tolerance in HF patients, and the role of both
exercise training and novel treatment strategies to improve
skeletal muscle morphology and function.

Role of Skeletal Muscle Abnormalities in HFrEF

It has been long known that HFrEF patients have multiple
histological and metabolic skeletal muscle abnormalities in-
cluding skeletal muscle atrophy [17–21], decreased oxidative
(type I) fibers and enzymes [22–26], mitochondrial volume
density [22], and capillary-fiber ratio [23, 26] (Table 1).
Prior studies demonstrate that skeletal muscle atrophy and
reduced lower extremity muscle mass contribute to decreased
VO2peak and muscle strength in HFrEF [18, 20, 21, 27, 28].
Moreover, a reduction in the percent of type I fibers and oxi-
dative enzymes coupled with abnormal mitochondrial respira-
tion contributes to impaired oxidative metabolism with an
earlier shift towards glycolytic metabolism resulting in de-
creased aerobic endurance (Table 1).

Weiss et al. [16••], using 31P skeletal muscle spectroscopy,
examined skeletal muscle energetics (PCr depletion and inor-
ganic phosphate accumulation rates) at rest and during graded
(plantar flexion) exercise test in healthy subjects as well as
those with HFrEF and HFpEF. A novel finding was that both
NYHA class II and III HF patients had significantly faster
rates of exercise-induced PCr depletion compared with
healthy individuals and NYHA class I HFrEF patients.
Finally, the rate of PCr decline during plantar flexion exercise
was correlated (r2 = 0.83) with overall exercise time indicating
that a rapid exercise-induced depletion of PCr in symptomatic

HFrEF and HFpEF patients is closely related to exercise
intolerance.

Role of Skeletal Muscle Abnormalities in HFpEF

Emerging evidence demonstrates that peripheral “non-cardio-
pulmonary” factors are important determinants of reduced
VO2peak in HFpEF [6••, 9••], mirroring many of the concepts
previously only associated with HFrEF. Haykowsky et al.
[6••] reported that the strongest independent predictor of
VO2peak was the change in a-vO2diff from rest to peak exer-
cise in elderly HFpEF patients. The mechanisms responsible
for this impaired ability to augment a-vO2diff during peak
exercise were not studied; however, it was hypothesized that
it may relate to intrinsic skeletal muscle abnormalities that
underlie reduced skeletal muscle oxygen delivery and/or im-
paired oxygen utilization.

Given that the majority of oxygen consumed during exer-
cise occurs in the exercising muscle [2•, 10, 42], a decline in
metabolically active tissue may limit exercise tolerance. Using
dual-energy X-ray absorptiometry and maximal exercise test-
ing, Haykowsky et al. [30] measured lean body mass and
VO2peak in older HFpEF patients and age-matched healthy
controls. Older HFpEF patients had significantly reduced per-
cent total and leg lean mass, and decreased peak VO2 indexed
to lean bodymass versus healthy controls [30] (Table 1). Also,
the change in VO2peak with increasing percent leg lean mass
was blunted in HFpEF compared to healthy controls [30].

These investigators also reported significantly increased
intermuscular adipose tissue and ratio of intermuscular adi-
pose to skeletal muscle area in HFpEF patients [43, 44]
(Table 1). Both intermuscular adipose area and intermuscular
adipose to skeletal muscle area were independent predictors of
VO2peak in HFpEF [43], suggesting it is not only the loss of
lean body mass, but the quality of muscle that determines
VO2peak. Notably, skeletal muscle atrophy and increased
intermuscular adipose tissue detected in HFpEF is similar to
skeletal muscle changes that occur as part of aging physiology
[45]. This raises important considerations regarding the over-
lap of HFpEF and aging physiology.

Additional histological and metabolic skeletal muscle ab-
normalities [31••, 33••, 35] (Table 1) have also been demon-
strated in HFpEF patients. Kitzman et al. [31••] showed a shift
in skeletal muscle fiber type distribution towards a higher
percentage of glycolytic (type II) fibers, with a subsequent
reduction in percent type I (oxidative) fibers, type I/type II
fiber ratio, and capillary-to-fiber ratio compared to age-
matched healthy controls. Molina et al. [33••] extended those
findings by demonstrating that skeletal muscle oxidative ca-
pacity, mitochondrial content, and mitochondrial fusion were
abnormal in older patients with HFpEF, and that they were
associated with reduced VO2peak and 6-min walk distance.
Cumulatively, these findings suggest that a fiber type shift
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from oxidative to glycolytic fibers coupled with abnormal
mitochondrial function also contributes to impaired oxidative
metabolism during exercise in HFpEF. Consistently, prior
studies assessing skeletal muscle metabolism during small
muscle mass exercise with 31P magnetic resonance spectros-
copy showed a marked reduction in leg muscle oxidative me-
tabolism in HFpEF patients compared to healthy individuals
[16••, 35] (Table 1). Overall, impaired mitochondrial oxida-
tive metabolism appears to be an important contributor to
reduced exercise tolerance in HFpEF.

Exercise Interventions Improve Exercise Tolerance
and Skeletal Muscle Function in HFrEF

Aerobic exercise training has been shown to increase VO2peak

by 2.6–5.4 ml/kg/min [46, 47] compared to usual care in pa-
tients with HFrEF. Whereas many cardiovascular experts as-
sumed this was determined by cardiac performance, in fact
much of this performance improvement is mediated by favor-
able adaptations in skeletal muscle morphology and function
[42, 48–52] (Table 2). Hambrecht et al. [48–50] found that
6 months of aerobic exercise training (walking and cycling)
significantly increased skeletal muscle mitochondrial and cy-
tochrome c oxidase volume density, percentage of type I
(oxidative) fibers, and number of capillaries that supply each
of these fibers in HFrEF. Cytochrome c oxidase volume den-
sity also increased, and was associated with improvedVO2peak

[50].
Improvements in skeletal muscle oxidative capacity, capil-

lary density, and mitochondrial volume density have also been
demonstrated after small muscle mass exercise training in pa-
tients with HFrEF [42, 51, 59] (Table 2). Esposito et al. [42]
showed that 8 weeks of unilateral knee extension exercise
significantly increased vastus lateralis muscle fiber cross-
sectional area, percent type I fibers, muscle capillarity, and

mitochondrial volume density. The improvement in skeletal
muscle morphology with training correlated with the increase
in VO2peak assessed during maximal cycle exercise [42].
Overall, these studies highlight the ability of aerobic exercise
training to induce rapid adaptations in skeletal muscle mor-
phology and function in patients with HFrEF, and to improve
exercise tolerance and VO2peak.

Improvements in exercise tolerance and VO2peak have also
been observed following resistance training performed alone
[53, 67–69] or combined with aerobic exercise training [68,
70] in HFrEF. Despite the paucity of studies investigating the
peripheral adaptations associated with resistance exercise
[53], it appears that increases in oxidative muscle fiber
cross-sectional area and oxidative enzyme capacity are likely
contributors. Pu et al. [53] demonstrated that 10 weeks of
high-intensity progressive resistance exercise training in older
women with HFrEF increased skeletal muscle type I fiber area
and citrate synthase activity, and were predictive of improve-
ments in functional capacity (assessed by 6-min walk
distance).

Exercise Interventions Improve Exercise Tolerance
and Skeletal Muscle Function in HFpEF

Similar to HFrEF, aerobic exercise training has been shown to
increase VO2peak by 2.1–3.0 ml/kg/min [71–74, 75•] com-
pared to usual care in patients with HFpEF [58••, 62,
76–79]. However, in contrast to HFrEF, this form of training
is not associated with increased peak exercise cardiac output
[62, 63••]. Specifically, Haykowsky et al. [63••] demonstrated
that 84% of the improvement in VO2peak following 16 weeks
of aerobic exercise training was attributed to increases in peak
exercise a-vO2diff (Table 2). Similarly, Fu et al. [62] recently
reported that 12 weeks of high-intensity interval exercise
training significantly increased VO2peak, with the

Table 1 Summary of skeletal muscle abnormalities that contribute to exercise intolerance in patients with heart failure with reduced or preserved
ejection fraction

Variable HFrEF vs control HFpEF vs control

Morphology

Percent lean body mass ↓ [17–20, 27, 28] ↔ [29] ↓ [30]

% type I fibers ↓ [22–24, 26] ↓ [31••]

% type II fibers ↑ [22–24, 26] ↑ [31••]

Capillary density ↓ [22, 23, 25, 26, 32] ↔ [24] ↓ [31••]

Mitochondrial volume density ↓ [22–26] ↓ [33••]

Mitochondrial enzyme density ↓ [22] ↓ [33••]

Function

Peak exercise a-vO2diff ↔ [7, 8, 9••, 10] ↑ [34] ↓ [6••, 9••, 35] ↔ [14, 36]

Sub-maximal exercise oxidative metabolism ↓ [15, 16••, 21, 37–41] ↓ [16••, 35]

↑ increase,↓ decrease, ↔ stays the same, a-vO2diff arterial-venous oxygen content difference, HFpEF heart failure with preserved ejection fraction,
HFrEF heart failure with reduced ejection fraction
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improvements in VO2peak driven by increases in estimated
peak exercise a-vO2diff and leg muscle oxygenation, with
little or no change in peak exercise cardiac output. The mech-
anisms responsible for these exercise-mediated peripheral ad-
aptations that underlie improvements in peak exercise a-
vO2diff seem likely to relate to improved peripheral muscle
perfusion and/or enhanced mitochondrial function.

Novel Therapies to Target Skeletal Muscle
Abnormalities in HF

As the key role of skeletal muscle in exercise tolerance has
been recognized, multiple initiatives have been underway to
improve skeletal muscle performance. Supplementing nutri-
tion has demonstrated benefit as it responds to the hypercata-
bolic and malnourished state of typical HF patients [80].
Paradoxically, it has also been demonstrated that caloric re-
striction is also beneficial [81]. In the latter, benefits are me-
diated by healthful molecular signaling that stimulates clinical
benefits [82]. In addition to dietary manipulations, a multitude
of pharmacological-based research efforts are underway in
which novel therapies are being studied to promote skeletal
muscle growth in adults with sarcopenia, and which can pre-
sumably be applied to those with HF.

Nutrition

Several HFrEF studies have substantiated the premise of ami-
no acid supplementation to improve exercise tolerance [83•,
84•, 85]. In a randomized controlled trial by Aquilani et al.
[83•], the benefits of an oral nutritional mixture of amino acids
(4 g twice daily) versus a placebo were compared in 95 stable
elderly HFrEF patients (NYHA Class II–III). VO2peak im-
proved in the nutrition supplemented group. More recently,
Lombardi et al. [84•] demonstrated that supplementing
HFrEF patients (NYHA Class II–III) with one specific amino
acid (L-carnosine) every day (500 mg dosage) for 6 months
significantly improved exercise tolerance and functional ca-
pacity. These findings suggest that amino acid supplementa-
tionmay improve exercise tolerance in patients with HFrEF as
a result of correcting an amino acid deficiency either within
cardiac or skeletal muscle. While it seems probable that sim-
ilar nutritional supplementation would benefit patients with
HFpEF as much as those with HFrEF, studies in this popula-
tion have not yet been completed.

In contrast to nutritional supplements, nutritionally bal-
anced caloric restriction has been demonstrated to trigger vital
subcellular benefits in older adults through a very different
mechanism of action [86]. Key molecular signaling pathways
(e.g., mTor and AMPkinase) are suppressed or stimulated,
with downstream clinical benefits [86]. In older, obese indi-
viduals without HF, caloric restriction has been shown to

improve LV mass and diastolic function, exercise capacity,
body composition, and skeletal muscle function [87–90].

Kitzman et al. [58••] studied similar principles in older,
obese HFpEF patients, comparing the effects of 20 weeks of
caloric restriction or aerobic exercise training alone, or in
combination, on VO2peak and quality of life. Aerobic exercise
training (+ 1.2 ml/kg/min) and caloric restriction (+1.3 ml/kg/
min) both yielded similar improvements in VO2peak and func-
tional capacity, while a combination of both (aerobic exercise
+ caloric restriction) caused an additive effect on VO2peak (+
2.5 ml/kg/min). Both aerobic exercise training and caloric
restriction reduced body weight and fat mass, while caloric
restriction improved muscle leg muscle quality, and reduced
abdominal and thigh subcutaneous fat. In addition, the change
in VO2peak was positively correlated with both the change in
percent lean mass and the change in thigh muscle to
intermuscular fat ratio. These findings demonstrate that calo-
ric restriction alone or combined with aerobic exercise yield
favorable improvements in body composition (including im-
proved muscle quality).

Nonetheless, the long-term efficacy of caloric restriction
for improving clinical outcomes in HF patients entails many
aspects of clinical complexity that are inherently problematic.
Older adults who are prone to developing HF are also suscep-
tible to sarcopenia and frailty. Benefits of caloric restriction
must be counterbalanced by the risks it may impose as it
undercuts vital nutrition in patients who are relatively more
enfeebled. Furthermore, observational studies report an obesi-
ty paradox in this patient population [91, 92], with overweight
and obese HFpEF patients having better survival outcomes
than those who are normal or underweight according to body
mass index.

Novel Pharmacological Approaches

Pharmacological approaches to skeletal muscle growth remain
an active area of research. Initiatives primarily target age-
related sarcopenia, but with a common presumption that older
HF patients may benefit disproportionately due to the additive
effects of aging and disease on skeletal muscle atrophy and
weakening. Pharmacotherapies targeting myostatin inhibition
remain a particularly compelling consideration [93].
Myostatin is a highly conserved member of the transforming
growth factor-beta superfamily that signals through the activin
receptor type IIB (ActRIIB). Myostatin stimulates catabolic
processes, and inhibits transcription of genes that underlie
proliferation of skeletal muscle precursor cells. Thus, myostat-
in inhibition may moderate or reverse skeletal muscle loss and
functional decline. Nonetheless, trials of myostatin inhibitors
have revealed many side effects that heretofore have dimin-
ished enthusiasm for clinical application (e.g., aseptic menin-
gitis, diarrhea, confusion, fatigue, involuntary muscle contrac-
tions) [93]. Nonetheless, ongoing studies with the anti-ActRII
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antibody “Bimagrumab” (BYM338) remain an eagerly antic-
ipated focus of investigation [94].

Related research is focused on integrated regulatory mech-
anisms that determine muscle metabolism and growth. In part,
this also relates to myostatin pathways, as myostatin also in-
hibits anabolic pathways in skeletal muscle in response to pro-
growth signals (e.g., insulin and insulin-like growth factor-1).
Moreover, in addition to myostatin inhibition, supplementa-
tion of anabolic agents (e.g., testosterone) has been an active
area of investigation. While persistent concerns regarding sec-
ondary risks of testosterone (e.g., fluid retention, gynecomas-
tia, prostate tumors, and adverse lipid profiles) have dimin-
ished enthusiasm for clinical applications, there is still strong
interest in its therapeutic potential. In contrast to early studies
that utilized high-dose testosterone, those using more physio-
logical testosterone doses achieve greater safety and benefit
[95]. Furthermore, as compared to oral formulations, transder-
mal or intramuscular administration is safer and better tolerat-
ed [96]. Furthermore, interest in selective androgen-receptor
modulators (SARMs) like enobosarm has advanced as an al-
ternative means of treating muscle and bone disorders, with
relatively fewer side effects than testosterone [97].

Conclusions

Heart failure is associated with multiple skeletal muscle abnor-
malities (reduced lean mass, oxidative fiber percentage, capillar-
ity, oxidative enzyme capacity, and mitochondrial volume),
which impair oxygen uptake and utilization and contribute
greatly to exercise intolerance. Large and small muscle mass
exercise training induces favorable adaptations in skeletal mus-
cle morphology and function (increased oxidative fiber percent-
age, capillarity, oxidative enzyme capacity, and mitochondrial

volume) in patients with HFrEF. Further, these adaptations are
associated with increased exercise tolerance. In patients with
HFpEF, improvements in exercise tolerance following aerobic
exercise training are primarily mediated through peripheral
“non-cardiac” factors with little to no change in cardiac output.
The contribution of skeletal muscle adaptations to improved
exercise tolerance in HFpEF remains unknown and warrants
further investigation. Furthermore, adjunctive strategies, both
to supplement nutrition with amino acids, and to stimulate ana-
bolic molecular pathways in skeletal muscle with caloric restric-
tion are beneficial, with synergy observed when combined with
exercise training. Parallel investigations are exploring the utility
of pharmacological strategies to similarly stimulate healthful
molecular signaling and anabolic cell metabolism for older pa-
tients who have both sarcopenia andHF, but these efforts remain
early in their evolution, and no immediate clinical applications.
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Table 2 Summary of exercise training-mediated skeletal muscle adaptations that contribute to improved exercise tolerance in patients with heart failure
with reduced or preserved ejection fraction

Variable HFrEF HFpEF

Morphology

Lean body mass ↔ [53–57] ↔ [58••]

% type I fibers ↑ [42, 49, 53] ↔ [51, 59] Not studied.

% type II fibers ↓ [42, 49] ↔ [51, 59] Not studied.

Capillary density ↑ [42, 48, 51] Not studied.

Mitochondrial volume density ↑ [42, 49, 50] Not studied.

Mitochondrial enzyme density ↑ [42, 49–53, 59] Not studied.

Function

Peak exercise a-vO2diff ↑ [42, 50, 60, 61] ↔ [62] ↑ [62, 63••]

Sub-maximal exercise oxidative metabolism ↑ [56, 64–66] Not studied.

↑ increase,↓ decrease, ↔ stays the same, a-vO2diff arterial-venous oxygen content difference, HFpEF heart failure with preserved ejection fraction,
HFrEF heart failure with reduced ejection fraction
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