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Abstract
Introduction Heart failure (HF) is a complex clinical syndrome
with diverse risk factors and etiologies, differing underlying
pathophysiology, and large phenotypic heterogeneity.
Recent Findings Advances in imaging techniques coupled
with clinical trials that targeted only in those with impaired left
ventricular ejection fraction (LVEF) have largely shaped the
current management strategy for HF that focuses predominant-
ly in patients with systolic HF. In contrast, there are no effective
treatments for HF with preserved ejection fraction (HFpEF).
Instead of this “one-size-fits-all” approach to treatment, better
precision to define HF phenotypic classifications may lead to
more efficient and effective HF disease management.
Conclusion Integrating variables—including clinical variables,
HF biomarkers, imaging, genotypes, metabolomics, and proteo-
mics—can identify different pathophysiologies, lead to more
precise phenotypic classification, and warrant investigation in
future clinical trials.
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Introduction

The prevalence of heart failure (HF) continues to increase and
has been associated with high mortality, recurrent hospitaliza-
tion, and high economic burden [1, 2]. Despite advances in
medical treatment, device therapies, and transplantation, the
residual risks of HF remain unacceptably high [1, 2]. Most
successful randomized controlled trials in the HF population
have been conducted based on left ventricular ejection fraction
(LVEF) cutoff points to confirm the presence of HF with re-
duced ejection fraction (HFrEF) [3, 4]. In fact, there have not
been any proven therapies for HF with preserved ejection
fraction (HFpEF) [2].

The syndrome of HF is incompletely understood. The 2013
ACCF/AHA guideline for the management of HF defined HF as
“a complex clinical syndrome that results from any structural or
functional impairment of ventricular filing pressure or ejection of
blood” [2]. Clearly summarized from this document is the notion
that diagnostic tools and treatment approaches for HF often lack
precision, which has limited our advances in both mechanistic
understanding and treatment approaches. Results of most clinical
trials have been reported as an average treatment effect based on
the entire population rather than the specific reduced LVEF pop-
ulation studied. The results of different risk factors and multiple
etiologies, in combination with genetic and environmental fac-
tors, lead to different clinical presentations and diverse underly-
ing pathophysiologies that are too complex to simply use LVEF
cutoff points to define HFpEF or HFrEF. One risk factor, like
reduced LVEF, is insufficient to identify a specific phenotype or
underlying pathophysiology in a given patient [2, 5].
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Successes in the field of oncology identified specific cancer
phenotypes (e.g., type of cancer, gene expression of tumor
cells, and histologic subtype from tissue biopsy) allowing
the disease mechanisms to be reasonably well understood,
therapeutic targets to be identified, and targeted treatments to
be developed, for example, HER2-targeted therapy in HER2-
positive breast cancer. In the field of HF, the role of targeted
therapy remains unclear [6]. Therefore, well-defined HF phe-
notypes are needed to identify specific therapeutic targets and
to better understand each patient’s underlying biology and
pathophysiology instead of the “one-size-fits-all” approach.
This review will provide the current and future clinical poten-
tial of identifying unique clinical phenotypes (including bio-
markers, imaging, genotype, metabolomics, and proteomics)
that can ensure the application of precision medicine in HF.

Circulating Biomarkers

Over the last decade, over 6500 studies have been published in
the field of HF biomarkers. Unfortunately, many of these reports
had scantly described methods and studied heterogeneous HF
phenotypes that have substantially limited our clinical translation
[7]. Moreover, the majority of HF biomarker studies focused on
prognosis prediction and confirmation of a HF diagnosis, a clin-
ically defined entity with relatively subjective interpretation.
Many of the studies utilized all-cause mortality as primary end-
point, which is relatively non-specific to the HF syndrome.

The use of biomarkers in HF research has provided a better
understanding of the pathophysiology of the disease process,
especially in animal models. Clinically however, only the
presence of HFrEF provides the most robust biomarker in
selecting patients with guideline-directed medical therapies.
In contrast, the role of circulating biomarkers in tailoring in-
dividual therapy in the field of HF is lagging from other car-
diovascular conditions. For example, cardiac troponin has
been widely used to define acute coronary syndromes (ACS)
and to gauge the benefit of invasive treatment in patients with
ACS [8]. There is a need to identify candidate biomarkers that
reflect a specific underlying pathophysiology and may have
the potential to guide therapeutics. In this section, we will
focus on the role of biomarkers in the following specific HF
phenotypes: (1) myocardial stress, (2) myocardial injury, (3)
myocardial fibrosis, and (4) cardio-renal dysfunction.

Biomarkers of Myocardial stress

The prototype HF biomarker is the natriuretic peptide (NP) fam-
ily, specifically B-type natriuretic peptide (BNP) and its
prohormone fragment, N-terminal pro-B-type natriuretic peptide
(NT-proBNP). Discovered over 35 years ago and successfully
integrated into clinical practice as HF biomarkers over the past
15 years, NPs are useful in diagnosing and risk stratification for

patients with HF [2]. Several clinical trials have examined the
hypothesis that NP-guided therapy, informed by serial measure-
ments of NPs, supported clinical outcomes in patients with HF.
However, use of this NP-guided therapeutic approach continues
to be debated, since previous clinical trials showed inconsistent
results [9–15] and were limited by significant heterogeneity in
HF phenotypes, poorly defined treatment strategies prescribed to
various NP concentrations targeted [16]. The prospective, multi-
center, randomized controlled trial, guiding evidence-based ther-
apy using biomarkers intensifies treatment in heart failure
(GUIDE-IT,NCT01685840), is ongoing andmight address these
issues [17••]. Regardless, NPs will never be used alone and re-
quires interpretation in the clinical context since other cardiopul-
monary disorders and comorbidities are also associated with el-
evated BNP or NT-proBNP concentrations (e.g., ACS, arrhyth-
mia, pulmonary hypertension, pulmonary embolism, renal dis-
ease, catabolic diseases, or advanced age). Therefore, there is
ample room for novel HF biomarkers to identify specific pheno-
types, unique pathophysiologies, and potential therapeutic
targets.

ST2 is another myocardial stress protein that exists in both
soluble form (sST2) and membrane-bound receptor form
(ST2L) and is closely associated with left ventricular (LV)
strain [18], fibrosis, and remodeling [19]. ST2 gene expres-
sion is triggered in the setting of cardiomyocyte or cardiac
fibroblast stretch [20], although the cardiac origin of ST2
has not been established. The binding of interleukin-33 (IL-
33), the functional ligand of ST2, to ST2L has favorable
antifibrotic, antiapoptotic, and antiremodeling effects [19,
21]. These cardioprotective effects are blocked by high levels
of sST2 because sST2 also binds IL-33, making it unavailable
to bind to the ST2 receptor form [19]. In chronic HF outpa-
tients, sST2 has potent prognostic value, both independently
and as an additive to NT-proBNP and clinical risk scores [22].
In a head-to-head comparison of ST2 with galectin-3 (Gal-3),
ST2 was shown to be better than Gal-3 in risk stratification
and prognosis in patients with chronic HF [23]. Meanwhile in
HFpEF, sST2 was more accurate than NPs in identifying the
severity of diastolic dysfunction [24]. Because of this predic-
tive power, the role for using serial levels of sST2 to guide
therapy has been suggested for both acute and chronic HF [25,
26]. Meanwhile, sST2 levels in chronic HF patients fell after
treatment with higher-dose beta-blockers, and that elevated
sST2 concentrations (>35 ng/mL) can identify patients who
may particularly benefit from higher doses of beta-blockers
[27]. However, in the Valsartan HF trial (Val-Heft), treatment
with valsartan reduced the rate of increase in sST2 concentra-
tion compared with placebo, and they observed that an in-
crease in sST2 was independently associated with patient out-
comes [28]. In another study, treatment with a mineralocorti-
coid receptor antagonist (MRA) had a greater benefit among
acute HF patients who had high sST2 concentrations [29].
There is even promise in the acute HF setting, in which
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sST2 levels (at a higher cutoff value) was an independent
predictor of prognosis regardless of LVEF and was a stronger
predictor of prognosis than NT-proBNP [30, 31]. Hence, the
role of detecting activation of the IL-33/ST2 system merits
further study for additional sources of targeted therapies.

Biomarkers of Myocardial Injury

The principle biomarkers of myocardial injury are two cardiac-
specific troponins (cTn), cardiac troponin I, and cardiac tropo-
nin T (cTnI and cTnT, respectively). Cardiac troponins are
widely used primarily for the diagnosis and management of
ACS. Elevated cTn concentrations have also been shown to
predict an adverse prognosis in both acute and chronic HF
[2], but the mechanism controlling the release of cTn in HF
remains unclear, and the release is generally considered to be
secondary to myocardial injury (e.g., ischemia, necrosis, or ap-
optosis) [5]. The prevalence of elevated cTn in patients with HF
was non-specific, with differences based on the sample popu-
lation, clinical setting, and troponin assay used. For example,
using a standard cTn assay, abnormally elevated cTn has been
detected in about one-quarter of HF patients and was associated
with a poorer prognosis [5]. While using a high-sensitivity as-
say (hs-cTn), abnormally elevated hs-cTn has been detected in
virtually all patients with acute HF [32] and in a majority of
patients of chronic HF [33]. Elevated cTn (using either a stan-
dard or high-sensitivity assay) is independently associated with
an adverse prognosis in patients with HF. Importantly, acute HF
may be precipitated by ACS; therefore, cTn measurements are
recommended in all patients with acute HF to detect ACS and
inform treatment [2]. However, specific therapies have not yet
been identified to reduce the development or rise of cTn in HF
patients, even though cTn can be more sensitive than standard
imaging techniques to detect cardiotoxicity.

Biomarkers of Myocardial Fibrosis

Traditional research-based markers of myocardial fibrosis
have been plagued with assay variability and lack of specific-
ity. Galectin-3 (Gal-3) is a glycoprotein secreted by activated
macrophages. Previous studies have shown that Gal-3 is asso-
ciated with cell adhesion, inflammation, myocardial hypertro-
phy, fibroblast proliferation, and tissue fibrosis, all of which
play an integral role in myocardial remodeling [33, 34]. Direct
Gal-3 infusion results in myocardial fibrosis in HF [35],
whereas genetic disruption and pharmacological inhibition
of Gal-3 prevents myocardial fibrosis, remodeling, and subse-
quent HF development [36]. High Gal-3 levels (both systemic
and myocardial) has been associated with cardiac remodeling
and a poorer prognosis in patients with HF, with a stronger
predictive value in HFpEF patients when compared with
HFrEF patients [37–39]. Gal-3 was also associated with
aldosterone-induced myocardial fibrosis in experimental

models [40], but MRA treatment failed to show a benefit
when studied in chronic HFrEF patients [41]. Currently, the
ability for Gal-3 to risk stratifies HF patients’ rests on the
diminishing propensity to recover with increasing levels.
Specifically, patients with low plasma Gal-3 levels showed a
benefit when treated with rosuvastatin [42] or valsartan [43]
for HFrEF, while increasing galectin-3 was associated with
worse outcome, independent of treatment, or NT-proBNP
[38, 44]. Renal insufficiency is likely a major and often
overlooked confounder for these observations, and it may still
suffer from lack of specificity [45, 46].

Biomarkers of Cardio-Renal Dysfunction

Renal dysfunction (RD) is commonly associated with a poor
prognosis in all phenotypes of HF [47]. Blood urea nitrogen
(BUN) and creatinine levels are widely used as renal function
markers, but they can vary non-specifically according to sex,
age, race, illness, and muscle mass. Moreover, RD in HF
patients with cardiorenal syndrome (CRS) is complex and
multifactorial. Therefore, there is a need to identify candidate
renal biomarkers for the early diagnosis, prognosis, and ther-
apeutic target discovery in CRS.

Cystatin C (CysC) is a cysteine protease inhibitor that is
ubiquitously produced at a constant rate, freely filtered, and
neither secreted from nor reabsorbed into the bloodstream.
CysC has been suggested as a newer more accurate way to
calculate the estimated glomerular filtration rate (eGFR) than
creatinine-based measures [48]. Moreover, an elevated CysC
concentration was associated with poor prognosis in both
acute and chronic HF [49]. Unfortunately, the ability of
CysC to differentiate between specific mechanisms or pheno-
types of CRS, or to serve as a therapeutic target in HF, has
been less well established [49]. Furthermore, direct head-to-
head comparison across various RD biomarkers in the acute
HF setting suggested that BUN remained the strongest prog-
nosticator [50].

Neutrophil gelatinase-associated lipocalin (NGAL) is a
small protein found in neutrophil granules. Both urine and
plasma NGAL levels are increased in response to tubular kid-
ney injury and predict adverse prognosis in patients with HF,
but the differences between urinary and plasma NGAL levels
are what may help identify specific CRS phenotypes [49]. In
acute decompensated heart failure (ADHF), the majority of
patients demonstrated urine NGAL levels lower than acute
kidney injury levels [51], while serum NGAL was strongly
associated with eGFR and predicted RD development [52].
Clearly, serum and urine NGAL represents different physio-
logic aspects of renal dysfunction [53].

N-acetyl-β-D-glucosaminidase (NAG) is a lysosomal en-
zyme originating in proximal tubular cells and is indicative of
proximal tubular damage when detected in the urine. Urine
NAG predicted worsening renal function and mortality in
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patients with chronic HF [49, 54]. However, the ability to use
NAG to identify a specific CRS phenotype has been limited
since NAG is also increased in diabetes and hypertension [49].

Kidney injury molecule-1 (KIM-1) is a glycoprotein
expressed in the proximal renal tubule in kidney injury but
not expressed in the normal kidney. KIM-1 levels were in-
versely associated with LVEF and directly associated with
worsening HF symptoms (defined by NYHA class) among
chronic HF patients without RD [55, 56]. Furthermore, plas-
ma KIM-1 is associated with poor prognosis and worsening
renal function in the acute HF setting, yet its prognostic value
diminished following covariate adjustments [57]. Further
study may determine whether the changes of KIM-1 with
treatment can mirror improved renal function and prognosis
in patients with HF.

The candidate biomarkers discussed above may each, with
further research, help classify specific patients into distinct
subgroups of HF phenotypes. Then, as each of these sub-
groups may respond differently to treatment, the candidate
biomarkers may also aid in the development of tailored ther-
apies. Ahmad et al. recently described three commonly used
biomarker study designs, each with their own advantages and
disadvantages: biomarker-stratified, enrichment, and bio-
marker strategy [8]. Importantly, each method can be com-
bined or altered according to the research question. For exam-
ple, although Gal-3 and ST2 have been approved by the Food
and Drug Administration to predict prognosis in HF, the ap-
propriate role of these two biomarkers is still limited because
of the small numbers of studies to date. So, a future study
could use the enrichment design to test the hypothesis that,
in HFpEF patients, Gal-3/ST2 could have a potential role in
distinct patient subgroups that might benefit from a specific
treatment (e.g., MRA/anti-Gal3).

Multimarker Biomarker Strategies

Recently, there has been an interest in “multiple biomarker
strategies” since each biomarker reflects a different patho-
physiologic pathway, and the application of a single biomark-
er is insufficient to evaluate patients with HF. Therefore, mul-
tiple biomarker strategies provide the opportunity to evaluate
multiple pathophysiologic pathways in patients with HF, such
as myocardial stretch, myocardial fibrosis, myocardial injury,
and cardiorenal. Combining different biomarkers that reflect
different pathophysiologic insights integrate various aspects
of the disease and provide a specific HF phenotype. In a study
of chronic HFrEF patients, Ky et al.[58] used multiple bio-
marker panels, consisting of biomarkers that represented dif-
ferent pathophysiology pathways, to generate a multimarker
score and found it significantly improved prediction of ad-
verse events and appropriate reclassification of patients.
Community-based populations showed that a multimarker
score consisting of ST2, hs-cTn, GDF-15, high-sensitivity

C-reactive protein (hsCRP), and BNP provided incremental
value in predicting onset of HF [59]. Recently, Sanders-van
et al.[60], demonstrated that 15 biomarkers that reflect distinct
pathophysiological pathways—such as NT-proBNP, hs-cTn,
hemoglobin (a marker of hematopoiesis), ST2, hsCRP, and
CysC—were expressed differently between HFrEF and
HFpEF. These studies provide keys to the differing patho-
physiological pathways in HFrEF and HFpEF. Therefore, bio-
marker data may help to identify subgroups of patients that
respond to a specific drug and using multiple biomarkers to
improve pathophysiological insight could lead to personalized
HF therapy. Although these strategies are important to risk
stratification, further studies are needed to determine the ap-
propriate combinations of biomarkers that will allow for the
classification of specific HF phenotypes as molecular “finger-
prints” of the disease and the corresponding therapeutic
implications.

Genotype

It has been increasingly recognized that subtypes of HF and
cardiomyopathies may have a genetic basis, which is largely
overlooked in the development of pharmacologic and device
therapies for HF. The genetic contribution to cardiac structure
and function is complex, which can lead to variable clinical
phenotypes [61]. For example, hypertrophic cardiomyopathy
(HCM), the most common inherited cardiomyopathy, is the
result of one or more of 400+ disease-causing variants in 9
sarcomeric protein-encoding genes. Therefore, there is the po-
tential for substantial phenotypic heterogeneity [61]. Recently,
research strategies have focused on scanning the entire ge-
nome to search for “candidate genes” that are associated with
specific diseases [5] or responses to specific HF therapeutics
[62]. As HF is a complex syndrome, new sequencing tech-
niques have the potential to identify patterns of genetic vari-
ants that may have an effect on HF development. While these
findings can potentially yield mechanistic insights that can
further guide therapeutic targets [63–67], discoveries in this
area have yet to expand toward treatment decisions.

Micro-RNAs (miRNAs) are small endogenous non-coding
RNAs that control gene expression by binding to targeted
mRNAs. Recently, miRNAs have been detected in various
body fluids, including the bloodstream, and may have poten-
tial as novel biomarkers. They have been associated with dis-
ordered cardiac structure and function and may have the po-
tential to identify specific HF phenotypes and specific thera-
peutic targets [68]. Several studies have shown the potential of
miRNAs as biomarkers in cardiovascular diseases. Cardiac-
enriched miRNAs (e.g., miRNA-1, miRNA-208a/b, and
miRNA-499) were significantly increased in plasma early af-
ter myocardial infarction (MI) or transcoronary ablation of
septal hypertrophy [69], mimicking the kinetics of a
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conventional myocardial injury biomarker like cTnT. These
miRNAs are likely released from damaged cardiac myocytes
into the bloodstream [69, 70]. Tijsen et al. showed that circu-
lating miR423-5p are useful biomarkers for distinguishing HF
in dyspnea patients [71].Moreover, specific miRNAs have the
potential to differentiate between HFrEF and HFpEF [72].
Matsumoto et al. found that p53-responsive miRNAs predict-
ed subsequent HF in post-MI patients [73]. The absence of
miRNA-22 in genetically altered mice was associated with
reduced activity of SERCA2 in their myocytes, LV dilatation,
and an impaired response to cardiac overload, all of which
enhanced propensity to HF development [74]. Conversely,
genetic deletion of miRNA-208a prevents pathological cardi-
ac remodeling [75]. Therefore, the specific treatment-induced
changes in the activity of mRNAs could have potentially ther-
apeutic targets in HF.

Metabolomics

Metabolomics is the systematic study of circulating metabo-
lites in order to understand the cellular processes that lead to
their production. It has the potential to provide insights into
the underlying molecular mechanisms of cardiovascular dis-
ease in general, and HF specifically [76]. As discussed previ-
ously, traditional HF biomarkers, even BNP and NT-proBNP,
did not provide additional therapeutic target possibilities.
Therefore, determining specific groups of circulating metabo-
lites, labeling them as metabolic profiles, and using those pro-
files as biomarkers may lead to better prognostication and
tailored treatments in specific subgroups of patients. In fact,
several human clinical studies of metabolomics in HF have
identified unique circulating metabolic profiles that differ be-
tween patients with HF and healthy subjects, as well as be-
tween different HF stages and HF phenotypes [77]. Recently,
Cheng et al.[78] identified a panel of metabolites, including
histidine, phenylalanine, spermidine, and phosphatidylcholine
C34:4, which differentiated stage C HF patients from healthy
control subjects with a diagnostic value similar to that of BNP.
The values of this panel were significantly improved at 6 and
12 months in those patients who recovered from acute HF. In
addition, they found that a separate panel of metabolites,
consisting of the dimethylarginine/arginine ratio,
butyrylcarnitine, spermidine, and total essential amino acid
amount, provided significant prognostic value in patients with
stages B and C HF. The prognostic value of this second me-
tabolite panel was actually greater than that of BNP in the
stage B and C HF patients.

Another strategy is to utilize targeted metabolomics to
identify novel pathways relevant to cardio-renal disease pro-
gression. For example, our group has identified an obligatory
role for gut microbes in trimethylamine N-oxide (TMAO)
generation measured by mass spectrometry. Elevated TMAO

was associated with more advanced LV diastolic dysfunction
and portended poor long-term prognosis in a large cohort of
patients with a history of chronic HF independent of
cardiorenal indices [79, 80]. To date, evidence supports that
HF is associated with metabolic dysfunction [81], yet the clin-
ical utility of metabolomics in HF remains unclear because of
differences in study design and statistical methodology and a
diverse array of molecular profiles reflecting the heterogeneity
of HF phenotypes. Therefore, further studies of metabolomics
in HF could have the clinical utility of characterizing unique
metabolic phenotypes in HF leading to the identification of
specific patient subgroups that may respond better to certain
treatment strategies. In addition, the combination of metabo-
lomics with other “omic” biomarkers may offer a robust phe-
notypic classification system in HF.

Proteomics

Proteomics is the study of the large-scale expression, function,
and interaction of all proteins present in the cell [82].
Proteomics analyses have developed from basic protein sepa-
ration by two-dimensional electrophoresis to mass spectrom-
etry (MS)-based approaches [82]. Proteomics differs from ge-
nomics since proteomics has dynamic variability that can re-
veal the details of functioning within the cell, but genomics is
relatively constant. Therefore, proteomic technologies offer
potential tools for examining alterations in protein expression
in cardiovascular disease and HF that may provide insights
into underlying cellular mechanisms. In HF, the proteomics
approach may help discover novel biomarkers for diagnosis,
prevention, and the identification of specific therapeutic tar-
gets. Because of the diverse complexity and highly dynamic
range of protein expression, current research in proteomics
remains insufficient for a comprehensive understanding of
the cellular mechanisms underlying HF and, therefore, the
ability to target therapeutics in HF syndrome [83]. There is a
clear need for technologic advancements and further well-
designed studies robust in proteomic analyses to identify spe-
cific proteins unique to specific HF phenotypes.

Advances in Multidimensional Analytical
Approaches

Phenotypic heterogeneity is a major problem in contemporary
HF patient populations with both HFpEF and HFrEF [84, 85].
Contemporary clinical trials in HF focus on specific popula-
tions selected by inclusion/exclusion criteria that do not take
into account the heterogeneity of HF phenotypes, which can
lead to a mixed phenotypic population and unproductive re-
sults. The increasing use of “omics” studies may have the
potential to identify unique molecular signatures and targeted
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treatment approaches and responses in HF. Therefore, the
combination of omics biomarkers with other variables and
the use of phenotype-based cluster analysis may allow for
the characterization of more robust clinical phenotypes on
the basis of underlying molecular biology. This will allow us
to match more specific treatments with more specific patient
subgroups, improving efficacy and cutting costs to patients
and hospitals.

The advent of sophisticated phenotyping tools (e.g., cluster
analysis) can improve phenotypic characterization in complex
and heterogeneous syndromes such as HF. This analysis uses
a combination of phenotypic variables to define subgroups
based on differences (or similarities) in individually measured
characteristics and clusters them, with strong associations be-
tween members of the same cluster and weak associations
between members of different clusters. Cluster analysis using
a big data-driven strategy has the potential to identify complex
phenotypes and address the heterogeneity of the HF popula-
tion. A recent study in HFrEF patients identified four patient
clusters using a combination of 45 clinical variables including
demographics, comorbidities, cardiac variables, cardiopulmo-
nary exercise testing (CPET), and biomarkers. Each of these
four clusters had differing prognoses as well as different re-
sponses to exercise training [85]. Similarly, a prospective
study of 379 patients with HFpEF used 67 continuous pheno-
typic variables comprising demographics, and clinical, labo-
ratory, electrocardiographic, and comprehensive echocardio-
graphic findings identified 3 phenotypic classifications an un-
biased phenotype mapping algorithm (“phenomapping”) [84].

Retrospective analysis of existing datasets from completed
HF clinical trials that used phenotype-based cluster analysis

may provide insights into the underlying pathophysiology of
HF and address phenotypic heterogeneity issues [86]. Unlike
the above mentioned cluster analysis that used continuous
variables, studies looking at dichotomous variables from large
HFpEF trials identified six subgroups that differed significant-
ly in profiles of key characteristics and event-free survival.
Interestingly, only those characterized by a high prevalence
of obesity, hyperlipidemia, diabetes mellitus, anemia, and re-
nal insufficiency, had a nominally improved outcome with
irbesartan (hazard ratio 0.72, P=0.046).

All three of the abovementioned studies used the machine
learning algorithm to define clusters of patients based on phe-
notypic variables (phenotype-based cluster analysis), to clas-
sify a heterogeneous HF population into more homogeneous
clusters. They were also able to identify subgroups that sig-
nificantly differed in characteristics and prognoses (Table 1).
However, there are several limitations in this approach, espe-
cially the fact that these three studies did not include omics,
such as genomics biomarkers, as phenotypic variables in the
cluster analysis. Since it is unclear whether patients stay with-
in their assigned cluster over time, the clinical applicability of
cluster analysis to identify subgroups that will be responsive
to specific treatments remains unclear.

Future Outlook

Future advances in therapeutic management of HF will rely
heavily on departing from the trajectory of drug and device
development over the past four decades: (1) the need to dis-
cover (and visualize) novel therapeutic targets that are

Fig. 1 Future outlook to identify patients with heart failure from phenotype-based cluster analysis or specific targeting function to targeted therapy
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currently overlooked; (2) the need to improve precision in
diagnostic and prognostic criteria to identify patients that
may benefit from prioritizing specific therapeutic options, es-
pecially at early stages of the disease; and (3) to tackle heart
failure before it develops.

Identify Novel and Specific Therapeutic Targets

Specific targeting of genetic or biomarker functions using
specific inhibitors (e.g., direct Gal-3 inhibitors or anti-
mRNAs) may be another useful approach to identify indi-
vidual HF patients who may respond better to targeted
treatment. This “proof-of-concept” should be incorporated
into prospective studies, such as cluster-based or genotype-
based RCTs, to identify individuals or specific subgroups
of HF patients who may respond to targeted treatment.
Like oncologic therapeutics, future clinical trials should
account for the heterogeneity of HF when considering
study design and should consider subgroup analysis to
identify a specific HF phenotype that may respond to a
particular treatment. It is important to recognize that few
if any genetic polymorphisms have been clinically indicat-
ed to benefit from identifying targeted treatment.
Nevertheless, this does not preclude the potential benefit
of targeting specific genotypes for drug efficacy or to tailor
drugs based on their pharmacokinetic profiling.

Improving Diagnostic Precision by Better Identify
Phenotypic Variables

The underlying comorbidities and phenotypic heterogeneity
in HFpEF are likely much greater than in HFrEF [2, 87],
which may be a key reason for a lack of positive result in
many large clinical trials. Improved phenotypic classification
of the HF syndrome using a combination of variables, such as
demographics, comorbidities, biomarkers, comprehensive im-
aging modalities, and omics approaches (genomics, proteo-
mics, and metabolomics), is likely to aid in identifying more
homogeneous HFpEF phenotype and the matching of appro-
priate targeted treatment. In fact, such analyses may also re-
veal that subsets of HFpEF may have absolutely no cardiac
relevance at all.

Preventing Heart Failure by Targeting At-Risk
Population

There have been major efforts to raise awareness among at-
risk patients to prevent HF, including a reclassification of
staging to denote a concept of disease progression with ante-
cedent at-risk profiles [2]. Increasing attention has been fo-
cused on modifiable risk factors and the development of risk
scores to help predict the incidence of HF and provide time to
implement prevention strategies [2]. There is an unmet need to

predict risk at an earlier time point, and HF risk has yet to be
determined by genomic sequencing. There is also a major
logistic and knowledge gaps in instituting more timely inter-
vention of promising approaches. For example, the use of
CMR (both T1 mapping and LGE) to identify intrinsic myo-
cardial damage and arrhythmogenesis [88, 89]. There is also
evidence to support that targeting rise in NP with therapeutic
adjustments is associated with better outcomes and lower rates
of detecting cardiac dysfunction over time [90].

Conclusions

There is an immediate need to refine the clinical use of current
treatment options in order to significantly reduce iatrogenic
adverse consequences (i.e., not to assume that current ap-
proaches are already optimal). In the future, the identification
of robust phenotypic variables, in combination with advanced
analytic approaches using computer algorithms, will likely
assign HF patients to a unique cluster phenotype—a sort of
“cluster fingerprint”—that may respond better to targeted
treatment (Fig. 1). In the meantime, important building blocks
for such precision medicine needed to be established, with a
departure from the current conceptual framework.
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