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Abstract In the last two decades, morbidity and mortality
of patients with chronic heart failure could be further re-
duced by improved pharmacological and cardiac device
therapies. However, despite these advances, there is a sub-
stantial unmet need for novel therapies, ideally specifically
addressing repair and regeneration of the damaged or lost
myocardium and its vasculature, given the limited endoge-
nous potential for renewal of cardiomyocytes in adults. In
this respect, cardiac cell-based therapies have gained sub-
stantial attention and have entered clinical feasibility and
safety studies a decade ago. Different cell-types have been
used, including bone marrow–derived mononuclear cells,
bone marrow–derived mesenchymal stem cells, mobilized
CD34+ cells, and more recently cardiac-derived c-kit+ stem
cells and cardiosphere-derived cells. Some of these studies
have suggested a potential of cell-based therapies to reduce
cardiac scar size and to improve cardiac function in patients
with ischemic cardiomyopathy. While first clinical trials
examining the impact of cardiac cell–based therapy on
clinical outcome have now been initiated, improved under-
standing of underlying mechanisms of action of cell-based
therapies may lead to strategies for optimization of the
cardiac repair potential of the applied cells. In experimental
studies, direct in vivo reprogramming of cardiac fibroblasts
towards cardiomyocytes, and microRNA-based promotion

of cardiomyocyte proliferation and cardiac repair have re-
cently been reported that may represent novel therapeutic
approaches for cardiac regeneration that would not need
cell-administration but rather directly stimulate endogenous
cardiac regeneration. This review will focus mainly on
recently completed clinical trials (within the last 2 years)
investigating cardiac cell-based therapies and the current
status of experimental studies for cardiac cell-based repair
and regeneration with a potential for later translation into
clinical studies in the future.
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Introduction

Loss of myocardium rapidly after myocardial infarction and
the ongoing death of cardiomyocytes thereafter frequently
terminates in heart failure, as endogenous regeneration path-
ways cannot replace damaged myocardium and vasculature.
Unlike in zebrafish [1, 2], division of differentiated
cardiomyocytes (CM) is a rare event in humans [3].

In the last decade, numerous different human cell
populations, including bone marrow-derived mononuclear
cells and CD34+ cells, have been suggested to enhance cardiac
function and repair in experimental animal models. Several
clinical studies largely examining feasibility and safety have
been performed and have yielded mixed results with respect to
effects on cardiac function. Cell isolation procedures, cell
types, number of transplanted cells, and the functional cardiac
repair capacity of the transplanted cells are likely determinants
of their effects on cardiac function [4–6]. Here, we describe
recent experiences of cardiac cell-based therapies using differ-
ent cell populations (Fig. 1, Table 1).
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Embryonic Stem Cells and Induced Pluripotent Stem
Cells

Embryonic stem cells (ESCs) share the ability to differenti-
ate in all three germ layers (pluripotency) and can be infi-
nitely expanded (clonogenicity and self-renewal) [7].
Therefore, ESCs can be considered as an infinite source to
generate the desired tissue, particularly as numerous studies
have shown differentiation into cardiomyocyte-like cells
and endothelial cells, and improvement of cardiac function
after transplantation in experimental cardiac injury models
[8–10]. However, allogeneic transplantation is required,
which may cause immunologic reactions after transplanta-
tion and, as they are obtained from blastocytes, i.e., an early
embryonic stage, ethical concerns set an additional barrier
for wider clinical applications. Moreover, because of their
ability to expand clonogenically, there is a substantial risk of
teratogenic potential, at least for undifferentiated ESCs.
These aspects limit their current use for potential human
heart regeneration therapies.

Man-made dedifferentiated cells, which share similar
properties with ESCs, are termed induced pluripotent stem
cells (iPSCs). iPSCs have initially been reprogrammed from
differentiated fibroblasts in 2006 [11, 12]. Since then,
reprogramming protocols have been refined, thereby raising
the efficiency and by transfection of recombinant proteins or
RNA molecules, such as microRNAs, circumvented the
initially required transfection procedures with stemness fac-
tors (i.e. transcription factors highly expressed in ESCs) via
retroviruses [13–15]. As they can be directed to differentiate
towards cardiomyocytes, iPSCs represent a potential re-
source of personalized heart tissue replacement and a valu-
able tool to further understand potential pathways towards
cardiac regeneration. Using in vivo imaging, we have re-
cently observed viability, tissue distribution and long-term
engraftment of cellular iPSC-derived grafts in a large animal
model of myocardial infarction [16].

However, iPSCs share the teratogenic potential with ESCs
and recently the immuno-compatibility of undifferentiated
autologous iPSCs has been questioned [17]. Moreover, as
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they are genetically modified and require prolonged cultivation
times, iPSC-derived cells may have a risk for mutations. Hence,
the use of iPSCs is challenging and not yet feasible for clinical
applications. Direct reprogramming of cardiac fibroblasts into
cardiomyocytes in vivo therefore represents a highly interesting
perspective [18•, 19].

Cardiac-Derived Progenitor/Stem Cells

Amongst somatic progenitor cells, cardiac progenitor cells
(CPCs) have been postulated to have the highest capacity to
promote cardiac regeneration. The identification of c-kit+
cells [20] residing in stem cell niches [21] in the murine heart
that can give rise to the main cellular components of the heart,
namely cardiomyocytes, endothelial cells and smooth muscle
cells have rendered the heart an organ with potential regener-
ative capacity. In experimental studies, transplantation of c-
kit+ cells reconstituted the heart and improved cardiac func-
tion [20]. Next to c-kit+ cells, other populations as defined by
surface markers or culture conditions have been suggested as
an endogenous source of heart regeneration. Isl-1+ cells [22]
derive from the second heart field, but can be rarely found in
postnatal development stages (reviewed in [23]). Sca-1+ (stem
cell antigen-1) cells [24] are restricted to murine hearts
(no orthologue in human), but have also been suggested for
heart regeneration [25]. Cardiosphere-derived cells (CDCs)
are cultured from heart biopsies and are so named because
of their ability to form spheroids in cell suspension [26, 27].
CDCs are multicellular clusters containing a mixed cell pop-
ulation, which comprise, next to cardiac progenitor cells with
c-kit and CD105 surface marker expression, other cell types
also, such as mesenchymal stem cells [26, 28]. Experimental
data suggest that heart regeneration of CDCs depends on the
release of paracrine factors, induction of endogenous regen-
erative capacity, and to a lesser extent on the differentiation
into cardiomyocytes and endothelial cells in vivo (which has
also been controversial) [26, 28–30].

All these adult cardiac-derived stem cells are suggested to
have self-renewal capacities and the ability of multilineage
differentiation. Importantly, adult cardiac stem cells have the
potential to reconstitute damaged myocardium and improve
cardiac function after heart injury [20, 25, 28, 29, 31].
Moreover, CPCs can be obtained by endomyocardial biop-
sies and sorted according to their surface markers and/or
expanded in cell culture.

To date, two published clinical phase I trials have
conducted transplantation of cardiac-derived cell products in
patients with ischemic cardiomyopathy. In the randomized
SCIPIO-trial, 1x106 c-kit+ cardiac stem cells were delivered
intracoronary to patients with coronary artery bypass surgery
(CABG) and left ventricular ejection fraction (LVEF) <40%.
The control group received no cell therapy. After 4 months,T
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infarct size as assessed by cMRI decreased (with, however, a
lack of a control group for comparison) and LVEF as assessed
by echocardiography significantly increased in patients re-
ceiving cell therapy. In a subset of patients, cMRI and echo-
cardiography measurements were performed after 12 months,
which showed an even more-reduced scar size and improved
LVEF. Moreover, although a low number of cells were
injected, adverse events were comparable with standard care
treated patients [32••, 33].

Another, recently published trial, the Cardiosphere-Derived
Autologous Stem Cells To Reverse Ventricular Dysfunction
(CADUCEUS) trial [34••], used intracoronary infusion of
cardiosphere-derived cells (CDCs) in patients with ventricular
dysfunction 2–3 months after myocardial infarction.

The CADUCEUS trial [34••] suggested a reduction in scar
mass and an enhanced viable heart mass at 6 and 12 months
after transplantation. However, despite these beneficial effects,
no significant change in LV-function could be observed.

The pilot data of these two clinical trials indicate that
intracoronary delivery of heart-derived cell products is fea-
sible and safe and may improve cardiac function in patients
with ischemic cardiomyopathy. Although these trials, using
either selected c-kit+ cells or CDCs (a mixed cell population),
are not directly comparable because of different patient pop-
ulation and study designs, both suggest a reduction in scar
size, which renders cardiac stem/progenitor cells to an inter-
esting candidate for cell-based therapies. However as only a
few patients were enrolled in the treatment arm (17 patients in
the CADUCEUS trial and 16 patients in the SCIPIO trial), and
control groups received only standard care, safety and efficacy
has to be proven in a randomized-blinded, placebo-controlled
study design.

Moreover, the finding that CDCs lack MHC II antigens,
and therefore cause only a mild immune reaction after
transplantation in the rat infarcted heart [35], initiated the
ongoing randomized, double-blind, placebo-controlled
ALLSTAR (NCT01458405) trial in patients with myocardi-
al infarction and left ventricular dysfunction. With alloge-
neic cell transplantation, biopsies of patients would be
needless; cells could be injected to a specific time point
and circumvent the suggested impairment of adult progen-
itor cells [36, 37].

Bone-Marrow Derived Stem Cells

Mechanisms of Effects of Bone-Marrow Derived Cells on
Cardiac Function Initially, bone-marrow mononuclear cell
(BM-MNC)-transplantation was thought to yield its effects
on cardiac function by transdifferentiation into cardiomyocytes
and endothelial cells [38]. Later, this concept has been chal-
lenged [39, 40]. Experimental studies have indicated that direct
transdifferentiation of BM-MNCs into cardiomyocytes or

endothelial cells is (if it ever occurs) a very rare event
[39, 40], and could not explain the observed effects on
cardiac function. Early studies may therefore have observed
cell fusions, rather than true transdifferentiation of BM-
MNCs into cardiomyocytes [40]. It is more conceivable
that BM-MNCs enhance cardiac repair by paracrine effects
[41•, 42]. Release of growth factors from transplanted BM-
MNCs are suggested to promote migration of endothelial
cells and CPCs, and can exert cytoprotective effects on
resident cardiomyocytes [43, 44]. Particularly, BM-MNCs
support cardiac angiogenesis and neovascularization in the
infarcted heart [45]. However, a recent study has also
suggested that bone marrow–derived c-kit+ cells promote
augmentation of cardiomyocyte progenitor activity, which
may lead to cardiomyocyte formation [46].

Recently Published (Within Last 2 Years) Clinical Studies of
Cardiac Cell-Based Therapies Using BM-MNCs in Patients
with Myocardial Infarction and Ischemic Cardiomyopathy As
BM-MNCs are an easily accessible cell source (via bone
marrow aspiration), initial clinical studies have used trans-
plantation of this heterogeneous cell population [47–50,
51••]. Clinical trials so far showed an excellent safety profile
and feasibility. The effects observed in recent clinical stud-
ies on LV-function were more modest as expected [52–55],
however, a meta-analysis of 1765 participants has suggested
a significant improvement of LV-EF, both in short (3.26 %)
and long term (3.91 %) follow-up [56].

In this regard, clinical trials were initiated by the Cardio-
vascular Cell Therapy Research Network (CCTRN) in pa-
tients with significant LV-dysfunction caused by ischemic
cardiomyopathy and patients with ST-elevation myocardial
infarction (STEMI) [57, 58•]. In the FOCUS-CCTRN trial,
patients with ischemic cardiomyopathy were enrolled to re-
ceive BM-MNCs by transendocardial administration [57]. In
this phase II randomized trial, at 6 months, LV end-systolic
volume (as assessed by echocardiography) did not significant-
ly differ between BM-MNCs administration and placebo
group. However, exploratory analysis indicated a significant
increase in LVEF (2.7 %) and stroke volume in the treatment
group. Although this was the largest recent clinical trial
conducted in patients with severe LV-dysfunction (LV-EF:
32.4 %) caused by ischemic cardiomyopathy, the sample size
may have been too small.

Clinical data (and some later experimental observations)
had suggested that timing of BM-MNC delivery after acute
myocardial infarction may have an impact on its effects on
cardiac function [51••, 59]. The TIME-trial [58•] focused on
different time points of intracoronary BM-MNC delivery at
day 3 and day 7 in patients with ST-elevation infarction treated
with percutaneous primary intervention. However, no benefit
on cMRI detected LV-performance could be observed 6
months after infusion of BM-MNCs in either group [58•].
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Moreover, as assessed in the LateTIME [60•] and SWISS-
AMI [61•] trial, BM-MNC administration 2 to 3 weeks after
acute myocardial infarction did not significantly affect LV-
function. However, although the SWISS-AMI trial was not
optimized to evaluate this endpoint, subgroup analysis indi-
cates a beneficial effect on LV-function after 4 months when
revascularization therapy was performed less than 4.5 hours
after symptom onset [61•]. In addition, these trials may not be
geared to detect smaller changes in LV function.

Potential Impact of Cell Isolation Procedures and Impaired
Functional Capacity of Adult Bone-Marrow Derived
Cells Whereas all clinical trials have supported the safety
of delivery of BM-MNCs, the lack of a significant beneficial
effect after BM-MNC delivery on LV-function in some of
these studies raises the question of whether this patient-
derived cell population will be efficient enough for long-
term improvement of cardiac function. Importantly, howev-
er, the mode of bone marrow–derived cell preparation may
play a critical role that likely has been underestimated.

For example, certain agents, such as buffer and medium
composition during cell isolation, have been shown to cru-
cially alter cellular function. Heparin has been observed
recently to exert detrimental effects on the functionality of
BM-MNCs by interacting with the CXCR4/SDF-1 axis [62,
63]. The CCTRN–trials have been performed using an au-
tomated cell-sorting system for the isolation of BM-MNCs
[64, 65]. However, whether these cells are efficient in an
experimental myocardial infarction model in vivo has not
been reported. Therefore, as isolation procedure steps may
have a crucial influence on cell functionality, the functional
properties of these cells after automatic separation may be a
determinant for the in vivo effects.

In addition, our group could show that the cardiac repair
capacity of angiogenic early outgrowth cells [EOCs, also
known as circulating angiogenic cells (CACs)] is impaired
in patients with chronic heart failure caused by ischemic
cardiomyopathy as compared to healthy subjects in an ex-
perimental myocardial infarction model [36]. Together with
other studies, which show an impairment of migration and
angiogenic capacity of adult bone marrow–derived mono-
nuclear cells [66, 67], this might contribute to the limited
capacity of BM-MNCs in clinical trials to effectively impact
on cardiac function. In this respect, a phase I trial was
recently published using allogeneic bone marrow–derived
cells [68] from healthy donors as an off-the-shelf product,
which may circumvent impairment of autologous cell func-
tion in patients with cardiovascular disease.

Bone-Marrow-Derived and Mobilized CD34+ Cells for
Cell-Based Cardiac Therapy Instead of unselected BM-
MNCs, distinct cell populations with cardiac repair capacity
can be isolated from the bone marrow. CD 34+ cells

represent a rare subpopulation of BM-MNCs with an exper-
imentally high potential of promoting angiogenesis and
neovascularization in ischemic tissues [69]. In the ACT-
34CMI trial, intramyocardial administration of low- or
high-dose CD34+ cells was performed in patients with
ischemic cardiomyopathy and refractory angina pectoris.
Of interest, in the low-dose CD34+ cell group, a reduction
in angina pectoris frequency and improvement in exercise
tolerance was observed at 6 and 12 months after treatment
[70•]. This study also delineates an example for trials, which
not only takes functional endpoints into consideration, but
focuses more on clinical endpoints in patients with chronic
heart failure, and also questions whether higher numbers of
intramyocardially applied cells are indeed more efficient.

In conclusion, it is noteworthy that no adverse events
occurred in trials using BM-MNCs. In addition, a reduction
of major adverse cardiovascular events was observed in the
REPAIR-AMI trial, which maintained for 2 years after acute
myocardial infarction [71]. This finding is underlined by a
recently published meta-analysis [72•]. In this respect, large
scaled phase 3 trials are on the way to identify the effects of
BM-MNCs on clinical outcome and mortality in patients with
acute myocardial infarction or ischemic cardiomyopathy
(BAMI, NCT01569178; REPEAT, NCT01693042).

Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are a subpopulation of bone-
marrow mononuclear cells and can be cultured by repeated
passaging on plastic surfaces [73]. Typically, MSCs are able to
differentiate in cartilage, bone, or adipose tissue [73], but
differentiation into cardiomyocyte-like cells has also been
suggested [74], which has rendered them attractive for cardiac
regeneration therapies. In addition, MSCs release growth fac-
tors, indicating a therapeutically important paracrine function
and direct cell-cell interactions, which may additionally acti-
vate endogenous repair mechanisms [75–79]. Moreover, at
least initially, MSCs prevent anti–donor T-cell responses and
create an immunosuppressive milieu, thereby generating an
immune-privileged state [80]. In this regard, experimental
studies have demonstrated an improved LV-function after
allogeneic transplantation of MSCs [81].

Both autologous and allogeneic MSC- administration
was tested in clinical trials.

Chen et al [82]. recruited 69 patients after acute myocardial
infarction (AMI) for a placebo-controlled trial using
intracoronary delivery of autologous MSCs. Three months
after administration, an improved LV-function and decreased
left ventricular volumes were detected. In addition, a decrease
in perfusion defect could be observed, indicating reverse
remodeling and cardiac regeneration after autologous MSC
administration. As an ‘off-the-shelf’ product, MSCs from
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healthy volunteers were also transplanted allogeneically in
patients with AMI [83]. Importantly, in this placebo-
controlled trial using intravenous injection, safety outcomes
did not differ in the treatment arm and furthermore, a decrease
in ventricular arrhythmias was observed [83]. Notably, LVEF,
as assessed with echocardiography, increased significantly in
patients treated with allogeneic MSCs [83].

In the recently published POSEIDON trial [84••], based
on pilot data [85], a head-to-head comparison between au-
tologous and allogeneic transplantation of MSCs in a dose-
escalating manner in patients with LV-dysfunction caused
by ischemic cardiomyopathy was performed. Cell-based
treatment associated adverse events were low, though a
placebo-treated group was missing, and adverse events did
not differ between autologous and allogeneic cell transplan-
tation. Thirteen month after transplantation of MSCs, re-
verse remodeling (as assessed by LV sphericity index)
could be observed, along with a reduction of myocardial
infarction size. However, a significant change in LV-EF was
not observed. Interestingly, it appeared that low doses of
MSCs resulted in the greatest reductions in LV volumes.

New insights using an intramyocardial delivery approach in
patients with ischemic cardiomyopathy are under way: TAC-
HFT (NCT00768066), PROMETHEUS (NCT00587990), and
pilot data from the TAC-HFT study (a placebo-controlled trial)
suggest potential beneficial effects of MSCs in this patient
population [85].

Priming/Preconditioning of Stem Cells

As it was reported that adult progenitor/stem cells are im-
paired in their functional cardiac repair capacity [36, 37, 66],
next to advances in allogeneic cell transplantation described
above, strategies to enhance functional capacity of autolo-
gous progenitor/stem cells emerge as promising applica-
tions. Preconditioning of progenitor cells by ischemic,
pharmacological, or genetic manipulation to render them
resistant to the hostile environment in ischemic tissues
may enhance their functional properties that is currently
intensely investigated [86, 87].

eNOS-Overexpression in EOCs Recruitment of angiogenic
EOCs (also known as CACs) and dysfunction of endothelial
cells is critically dependent on endothelial nitric oxide
synthase (eNOS) [88–90]. In addition, eNOS-expression
crucially alters cardiac repair capacity of bone marrow-
derived progenitor cells in an experimental model of ische-
mic injury [91]. Based on these results, a randomized trial
(ENACT-AMI (NTC00936819)) is currently under way to
assess potential improvement after transplantation of EOCs
transfected with human eNOS in patients with acute myo-
cardial infarction [92].

Growth-Factor Treatment as a Strategy to Facilitate and
Enhance Repair Capacity of Progenitor/Stem Cells Retention
and engraftment of transplanted progenitor/stem cells is still
an important issue, which is not resolved yet, as only few
cells injected reside in the designated location [93]. Instead,
they are flushed away or die because of a hostile milieu in
the ischemic heart region. Therefore, in order to equip
injected cells with a friendlier milieu, Takehara et al. [94]
transplanted CDCs with a hydrogel controlling the release
of bFGF (basic fibroblast growth factor), a compound that is
known to facilitate differentiation, proliferation, and surviv-
al. CDCs injected with hydrogels releasing bFGF showed a
superior engraftment and facilitate effects of CDCs in
pigs with heart failure caused by myocardial infarction
[94]. These results led to the initiation of the ongoing
ALCADIA-trial (NCT00981006) in CABG-patients. An-
other strategy is to pretreat progenitor/stem cells to en-
hance their efficacy after transplantation. In this regard,
Behfar et al. pretreated human MSCs with a growth-
factor cocktail [95]. Thereby, differentiation of human
MSCs towards a cardiopoietic lineage commitment has
been achieved, leading to an improved cardiac function
and structural benefits in infarcted murine hearts after
cell transplantation [95]. These cardiopoietic MSCs were
subsequently used in a clinical trial with patients with
ischemic cardiomyopathy. Transplantation of cardiopoietic
MSCs was safe and at 6 months, an increase of LVEF
could be observed as compared to the control group with
standard care [96].

microRNA-Based Pre-treatment to Optimize Cell-Based
Cardiovascular Repair Capacity Key regulators, which
are already therapeutically used in patients with hepatitis C
in a clinical trial (NCT01200420), but have not been trans-
lated yet in clinical applications for cell-based cardiac ther-
apies, are microRNAs. These small RNAs [97], which
regulate gene expression at the post-transcriptional level
mostly by degradation of mRNAs, have a highly attrac-
tive potential to regenerate damaged myocardium in
experimental studies after viral delivery [98]. Interest-
ingly, dysregulation of microRNAs has been observed in
bone marrow-derived cells from patients with cardiovas-
cular diseases [36, 66, 99]. Overexpression of the
proangiogenic microRNA-126 [36] or blocking of
microRNA-21 or microRNA-34a [66, 100] may enhance
functional capacity of impaired adult circulating or bone-
marrow derived mononuclear cells. Moreover, several
microRNAs have been transfected into progenitor cells and
improved their biological functions [101].

These applications may potentiate and/or restore the
functional capacities of applied progenitor/stem cells. Thus,
preconditioning and priming of cells used for cell-based
therapies may have not only an important impact on their
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own functional ability to improve cardiac function, but also
to enhance the activation of endogenous repair mechanisms
by paracrine signaling.

Conclusions and Future Directions

A decade ago, the first in-man administration of BM-MNCs
was performed in a patient with myocardial infarction [93].
Since then, thousands of patients have been enrolled in
clinical trials examining cardiac cell-based therapies. Safety
and feasibility of bone marrow–derived cells have so far
been excellent, and beneficial effects on cardiac function,
reverse remodeling, and scar size have been observed in
some studies. The main focus is still to unravel the ideal
approach to regenerate the heart in different cardiovascular
disease conditions.

However, reconstitution of the myocardium and suffi-
cient neovascularization after cardiac injury may require
more than a single injection and/or a combination of
progenitor/stem cells. In this regard, recently, synergistic
effects of simultaneously injected MSCs and c-kit+ cells
on cardiac function have been observed after myocardial
infarction in a swine model [102] and a clinical trial with
repeated injections of BM-MNCs is planned (REPEAT
(NCT01693042)).

iPSCs have a clear potential for cardiac regeneration, but
substantial safety and practical hurdles are an important
limitation. Direct reprogramming of cardiac fibroblasts into
cardiomyocytes, thereby skipping the induction of pluripo-
tent stem cells with the associated risks, represents a highly
interesting direction of research [18•, 19]. Recently, system-
ic application of a microRNA-cocktail [19] or 3 cardiac
transcription factors (Gata4, Mef2c and Tbx5 (GMT))
[18•] in a murine model of myocardial infarction has been
reported to directly reprogram cardiac fibroblasts into
cardiomyocyte-like cells in vivo, leading to an improved
cardiac function [18•].

Recently published clinical trials with cardiac-derived
stem cells and the non-inferiority of allogeneic versus
autologous MSCs-transplantation represent interesting av-
enues worth to pursue in the future. Furthermore, phase
III clinical trials are under way to examine the effects of
BM-MNCs administration on all-cause mortality in pa-
tients with ischemic LV-dysfunction (BAMI, REPEAT).
In addition, ex vivo preconditioning to enhance the car-
diac repair potential of autologous cells for cardiac cell-
based therapies may improve their efficacy, in particular
in heart failure patients.
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