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Abstract Heart failure (HF) is a complex syndrome with
cardiac, renal, neurohormonal and sympathetic nervous sys-
tem’s manifestations, the pathogenesis of which among
others is connected to inflammation. PAF has local and
systemic effects pertaining to HF progression since it causes
a negative inotropic effect, it induces arrhythmias, it induces
apoptosis and it is involved in inflammation and atheroscle-
rosis. In the present review the role of PAF in HF will be
thoroughly presented along with the relevant data on PAF
enzymes and the potential role of PAF metabolic circuit as a
novel pharmacological target.
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acetylhydrolase .Lipoprotein- associatedphospholipaseA2 .
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Introduction

Heart failure (HF) is a complex syndrome, in which
cardiac, renal, neuro-hormonal and sympathetic nervous
system’s manifestations are present [1••]. Despite the
development of state-of-the art pharmacological agents,
the incidence of HF increases at alarming rates [2],
implying that several aspects of its pathophysiology
remain undertreated. Indeed, the activation of the in-
flammatory cascade orchestrated by leukocytes, plate-
lets, endothelial cells, myocardium together with other
sources consists a key player in HF, which may have
been overlooked [3]. Inflammatory markers differentiate
along with the severity and progression of the disease
[3] and may be modulated by HF-targeted drugs [4].

Although the isolation of the primary etiology of HF is
not always easy, the leading cause of HF is atherosclerosis
manifested as coronary artery disease (alone or in combina-
tion with hypertension) [1••]. Other causes include familial
or acquired cardiomyopathy (due to viral infection, alcohol,
heavy metals, chemotherapy, selenium deficiency, amyloid-
osis, etc.), valvular heart disease, pericardial heart disease,
endocardial heart disease and arrhythmia [1••]. Moreover,
hemodynamic disturbances such as those observed in renal
failure or post-operative fluid infusion as well as high-
output states such as anemia and thyrotoxicosis can lead to
heart failure [1••].

Platelet-activating factor (PAF), (1-O-alkyl-2-acetyl-sn-
glycero-3-phosphocholine) [5], is a potent inflammatory
phospholipid mediator implicated in atherosclerosis [6, 7]
and several mechanisms of HF [6, 8]. For example, PAF
causes a negative inotropic effect, it induces arrhythmias, it
induces apoptosis and it is involved in leukocyte recruitment
[6, 8]. Moreover, recent data suggest that PAF metabolic
enzymes may participate in HF development [9, 10•]. With
respect to PAF metabolism (Fig. 1), two biosynthetic
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pathways are responsible for its biosynthesis, namely the
remodeling and the de novo pathway [11]. In the remodeling
pathway a cytoplasmic phospholipase A2 converts the ether
analogs of phosphatidylcholine to lyso-PAF, which is then
acetylated to PAF by the action of at least two isoforms of
acetyl-CoA: lyso-PAF acetyltransferases (lyso-PAF ATs),
namely LPCAT1 and LPCAT2 [12, 13]. Recent data support
that production of PAF by the action of LPCAT2 is activated
under inflammatory conditions while LPCAT1 is calcium
independent and does not participate in inflammatory pro-
cesses [13]. The de novo pathway is considered to be
responsible for the constitutive production of PAF. A key
reaction in this route is the final one, in which PAF is
produced by 1-O-alkyl-2-acetyl-glycerol through the action
of a specific dithiothreitol-insensitive CDP-choline: 1-alkyl-
2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT,
EC 2.7.8.16) [14]. As far as PAF catabolism is concerned,
a PAF-specific acetylhydrolase (PAF-AH, EC 3.1.1.47)
removes the acetyl chain (or short acyl chain) from sn-2
position and converts PAF to lyso-PAF [15]. The plasma
isoform of PAF-AH is known as lipoprotein-associated
phospholipase A2 (Lp-PLA2) due to its attachment to lipo-
proteins and mainly LDL-particles [15].

In the present review, the local and systemic effects of PAF
pertaining to HF will be presented, particularly focusing on
PAF effects on myocardium, its hemodynamic actions and its
implication in atherosclerosis. Moreover, the relevant data on
PAF enzymes will be discussed and the role of PAF circuit as a
novel pharmacological target will be examined.

PAF and Myocardium

Inflammation of myocardium and myocardial necrosis
caused by prolonged ischemia and hypoxia can lead to HF
despite the existing compensating remodeling mechanisms
(e.g., ventricular remodeling and neurohormonal stimula-
tion). Moreover, contractile dysfunction and myocardial
electrical instability constitute a central feature of HF [1••].

Metabolism of PAF in Myocardium

The exact cellular source of PAF in myocardium remains
unknown. Many cell types may be responsible for PAF
production under physiological or pathological conditions,
i.e., endothelial cells, platelets, monocytes and other cells
types including myocardial cells [16]. Myocardial cells pro-
duce PAF in vitro and in vivo under appropriate stimuli [6].
For example, immunological agents in guinea pig heart [17],
ischemia in baboon and rabbit heart [18, 19] and injury in rat
myocytes [20] can lead to PAF production. Confirming its
role as an autacoid, PAF in turn exerts direct effects on
myocardium, which are presented below.

PAF and Heart Contraction

PAF can influence heart contractility as a result of its hemody-
namic effects (see below) or by directly acting on cardiac cells.
PAF has been found to reduce heart’s contractility in several
models, such as guinea pig [21], dog [22] and rabbit hearts [23].
PAF infusion in isolated perfused guinea pig heart induces
changes in cardiac cell structure such as myocardium oedema,
decrease of matrix density, rapture of mitochondria crest and
decreases of mitochondrial enzyme activities [24]. By this way,
PAF impairs the generation of ATP through oxidative metabo-
lism in themyocardium. The aforementioned changes are absent
if treatment of myocardial tissue with the PAF antagonist BN
52021 precedes [24].Moreover, trace elements such as zincmay
reduce PAF’s negative inotropic effect in low doses (1.5 μΜ)
propably through modulation of PAF-receptor interactions [25].

Moreover, cell cultures demonstrate a direct effect of PAF on
calcium [26] and potassium channels [27], which participate in
myocardial contraction. Other hypotheses support the implica-
tion of leukotrienes [22], phosphatidyl inositol and PKC [28] as
mediators of PAF-induced impairement of myocardial contrac-
tion. Indeed, genetically modified rats which do not express
phosphoinositide 3-kinase-γ (PI3K-γ) are “resistant” to the
negative inotropic effects of PAF [29]. Moreover, PAF induces
the production of atrial natriuretic peptide [30]. Several data
also suggest that PAF’s actions in myocardium may be indi-
rectly exerted through the production of reactive oxygen spe-
cies by the recruited neutrophils [31]. Indeed, PAF inhibitors
lead to reduction in PMNs inmodels of ischemia in rabbits [32].

Electrophysiological Effects of PAF in Heart

PAF can lead to changes in electrocardiograph in rats [33],
guinea pigs [34] and rabbits [35]. PAF induces alterations in
the transmembrane potential, i.e., increased duration of the
action potential, early afterdepolarizations, transient arrest
of repolarization [36] and abnormal automacity [37].

Other studies suggest that PAF induces anomalies in
Purkinje cells function [38] and mice ventricular cells [37].
PAF seems to activate its specific receptors in the ventricle
and induces arrhythmias [35], which are reduced in the
presence of its inhibitors such as BN 52021, WEB 2086
[39, 40], kadsurenone [35] and Ginkgo biloba extract [41].
PAF induced arrhythmias are believed to be connected to the
closing of potassium channels [37]. An additional route
through which PAF may exert the above actions is the
production of eicosanoids, since thromboxane Α2 inhibitors
also reduce PAF effects [42].

Hemodynamic Effects of PAF

The first indication of PAF’s hemodynamic effects co-
incide with the identification of a polar lipid with
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antihypertensive properties isolated from rat kidney (anti-
hypertensive polar renomedullary lipid, APRL), which
has proven to be PAF [43]. Intravenous or oral intake of
PAF (or APRL) leads to a dose-dependent reduction in
blood pressure in various animal species, which reaches
a maximum within 30–60 seconds [6]. At concentrations
1–10 nmol/L PAF reduces coronary flow exerting a
negative inotropic effect [44••]. In parallel hypertensive
rats have increased Lp-PLA2 activity [45] while in a
model of renal clip hypertension PAF acts as a mediator
of blood pressure fall after unclipping [46].

The underlying mechanism of hypotensive effects of
PAF has not been fully elucidated. Potential mechanisms
through which the hypotensive effect of PAF is exerted
are the following: (i) it reduces venous blood return, (ii)
it produces a right ventricular overload as the result of
an increase in pulmonary vascular resistance, (iii) it has
a direct negative inotropic effect, and (iv) it affects
heart’s conductive system [6]. In line with the observa-
tions in animal species is the fact that increased right
atrial pressure has been connected to increased PAF
levels in patients undergoing coronary angioplasty [47].
PAF’s hemodynamic effects may be exerted through
PAF receptors, since selective PAF inhibitors such as
Ginkgo biloba extract and ΒΝ 52021 extenuate the
reduction of blood flow [48, 49].

Moreover, PAF may exert vasoconstriction effects by pro-
ducing cyclo- and lipoxygenase metabolites, or by activating
platelets and mononuclear cells. The vasoconstriction

properties of PAF depend on its concentration range, the
integrity of the endothelium and the animal model [44••].

PAF and Atherosclerosis

Atherosclerosis is a slow process orchestrated by oxidative
stress, thrombosis and inflammation [50]. Chronic athero-
sclerotic burden in coronary and peripheral arteries leads to
cardiovascular disease which is the most common cause of
HF, as mentioned above [1••].

A crucial role of PAF in atherosclerosis has been pro-
posed [7], since it constitutes an important mediator of
inflammation [51] and is implicated in several stages of
the disease. More particularly, it induces oxidative stress
[52, 53], it participates in LDL oxidation [54] and it is
produced during LDL oxidation upon Lp-PLA2 inactivation
[55]. According to recent data oxidized LDL also interacts
with PAF receptor in macrophages to increase oxidized LDL
uptake [56] and stimulate chemokine release [57]. More-
over, PAF contributes to the adhesion of leukocytes [58] and
their chemotactic entrance in endothelium, since it increases
endothelial permeability [59].The PAF mediated activation
of leukocytes also results in the secretion of chemokines and
growth factors such as MCP-1 [60] and vascular endothelial
growth factor (VEGF), respectively [61]. In parallel, PAF
causes platelet aggregation [62] and stimulates the release of
the stored cytokines and growth factors from platelets [63].
Moreover, it contributes to protease release from leukocytes,

Fig. 1 The metabolic circuit of PAF
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such as elastase, which disrupts vessel’s extracellular matrix
[64] and may be a risk factor for plaque rupture.

It is thus obvious that PAF acts on various cells which
participate in the atherosclerotic process such as platelets,
endothelial cells, neutrophils and monocytes [7]. The secre-
tion of PAF from some inflammatory cells, like monocytes
and neutrophils can in turn result in the amplification of the
inflammatory response [65]. The implication of PAF in
atherosclerosis is also underlined by the observations that
PAF inhibitors such as BN 52021 inhibit cholesterol depo-
sition in arteries of animals fed an atherogenic diet [66]. A
detailed review of PAF’s contribution in atherosclerosis is
provided by Demopoulos et al. [7].

PAF and Ischemia

Ischemia, which may be a result of the atherosclerotic pro-
cess, can also exert its effects on myocardium through PAF.
Several data suggest that PAF can play a role in cardiac
myocyte death resulting from ischemia/ reperfusion injury
by inducing apoptosis [8], which in turn can lead to cardiac
dysfunction and HF [67]. Indeed, in concentrations of 0.2 to
20 μM PAF can cause apoptosis in cultured cardiac myo-
cytes through a Ca2+-dependent mechanism. More particu-
larly, PAF results in p38 MAPK phosphorylation, which in
turn leads to cytochrome c/caspase-3 signaling activation
and apoptosis [8].

However, in ischemia/ reperfusion states, PAF can also
play a protective role as it is involved in ischemic precondi-
tioning. Ischemic preconditioning refers to the fact that the
myocardium adapts to brief periods of sublethal ischemia
and is protected in case of a potential lethal ischemic injury
[68]. Treatment with low concentrations of PAF, in the range
of pM, before ischemia does not affect cardiac performance
but exerts a protective effect, since it reduces infarct’s ex-
tension and improves heart’s recovery during reperfusion.
Indeed, PAF activates kinases (such as PKC1, PKB/Akt,
GSK-3b and ERK1/2), produces NO and affects calcium
channels, all of which are implicated in the mechanisms of
ischemic preconditioning [44••]. Supportive evidence of the
PAF’s protective role also involves the observation that
post-ischemic performance is reduced in case of targeted
deletion of the PAF receptor or if PAF receptor antagonists
are used [69].

PAF’s Metabolic Circuit and HF

Limited evidence exists for the role of PAF’s metabolic
enzymes in HF and cardiovascular diseases with the excep-
tion of Lp-PLA2. In a study of patients with newly diag-
nosed HF, we identified a possible relation of the
remodeling and the de novo biosynthetic enzymes of PAF

in leukocytes, since lyso-PAF-AT and PAF-CPT were cor-
related [9]. Moreover, both enzymes were related to inflam-
matory biomarkers [9], which are increased in HF [3]. More
particularly, lyso-PAF-ATwas positively related to CRP and
IL-6 [9], which is in line with the fact that inflammatory
stimuli are activators of this enzyme [70]. PAF-CPT was
correlated to CRP and IL-6, suggesting that it may be
implicated to pathophysiological processes involving in-
flammation [9], despite the proposed role for its contribution
to basal PAF levels production [14]. Interestingly, PAF-CPT
was also positively correlated with immunologic markers,
i.e., CD40L and sCD14, while PAF-AH correlated to
TNF-α [9]. Therefore, it seems that PAF’s biosynthetic
enzymes were depressed in HF patients and it was hypothe-
sized that medical treatment affected PAF metabolic profile
[10•]. Moreover, PAF levels seem to be low in patients with
myocardial infarction at admission [71] and the expression
of its receptor is upregulated [72].

Since PAF participates in atherogenesis, it can be as-
sumed that its catabolic enzyme Lp-PLA2 may inhibit its
atherogenic actions. Indeed, hyper-expression of Lp-PLA2
gene reduces atheromatous plaque [73]. However, Lp-PLA2
can also act as a pro-inflammatory molecule as it contributes
to lyso-PC generation, which in turn leads to macrophage
growth, non-esterified fatty acids and endothelial dysfunc-
tion [15]. Epidemiological studies have shown that Lp-
PLA2 is a risk factor for cardiovascular disease. It is not
certain, however, if Lp-PLA2 acts etiologically in cardio-
vascular disease or if it is increased as a response to in-
creased PAF levels. It is noteworthy that several studies
measure only the mass of the enzyme, which is not always
indicative of its activity. Although the correlation coefficient
between Lp-PLA2 mass and activity is 0.51 (0.47-0.56)
[74••], almost 40 % of subjects in the highest quartile of
the enzyme mass are in the lowest quartile of enzymatic
activity [75]. The recently developed Lp-PLA2 inhibitors
have shown some promising protective evidence [76–79]
but their exact role remains to be determined [80]. As far as
HF is concerned, Lp-PLA2 has been characterized as a
prognostic biomarker for HF development [81, 82], is
higher in HF patients than healthy controls [10•] and is
associated with mortality in HF patients [83]. Moreover, it
is higher in HF patients with preserved ejection fraction than
in HF with reduced ejection fraction [84] and is not corre-
lated with New York Heart Association (NYHA) status [85].

PAF as a Novel Target for HF Therapy

It is obvious from the aforementioned data that PAF is a
crucial mediator of almost all pathophysiological mecha-
nisms that lead to heart failure. Therefore, either its receptor
or the enzymes of its metabolism seem to be attractive
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targets for the treatment of HF. Moreover, several lines of
evidence suggest that drugs designed to reduce inflammato-
ry burden in HF, and mainly anti-TNF-a therapy have not
always beneficial effects [86]. This observation underlines
the necessity of drugs targeting to other molecules in order
to further refine the therapy of HF patients.

Many HF drugs such as verapamil [87] and digoxin [88]
reduce the PAF induced cardiac and circulatory alterations.
In addition, the protective effects of the Mediterranean diet
on HF patients [89] may be in part explained by the pres-
ence of PAF antagonists in foods. In fact, extracts of several
traditional Mediterranean foods which are inversely related
to atherosclerosis, such as olive oil, olive mill wastes, wine,
fish, honey, milk and yogurt, as well as garlic and onion,
contain PAF antagonists [90, 91]. Polar extract of olive oil,
which acts as a PAF inhibitor, led to reduction of atheroma-
tous plaque after 45 days in rabbits [92]. In patients with
type 2 diabetes consumption of Mediterranean meals with
high in vitro PAF inhibitory activity led to reduced platelet
aggregation after PAF stimuli [93].

Recent data supports that newly diagnosed HF patients
under drug treatment also have an affected profile of PAF
biosynthetic enzymes and especially lyso-PAF-AT[10•]. In-
deed, aldosterone antagonists, angiotensin-converting en-
zyme inhibitors, antiarrhythmic agents, statins and
diuretics used in HF possess anti-inflammatory effects [94]
although there are some studies not showing such effects
[95]. Statins decrease Lp-PLA2 and PAF-CPT activities and
have a neutral effect on lyso-PAF-AT activity in healthy
volunteers [96]. Other possible interactions between PAF
and cardiovascular drugs include nitrates and calcium chan-
nel blockers, which reduce PAF production in endothelial
cells [97], and human umbilical vein endothelial cells [98],
angiotensin-converting enzyme inhibitors which partly in-
hibit PAF effects and may lead to reduced PAF synthesis
[99] and salicylates, which inhibit lyso-PAF-AT [100].
Thus, the existing medical treatment for HF may affect
PAF biosynthetic enzymes. Whether the design of novel
pharmaceutical products targeting on PAF enzymes would
have beneficial effects on HF progression is not known.

It is therefore obvious that drugs commonly used for the
treatment of HF affect PAF metabolism or its actions.
Whether this is a direct effect of the drugs on PAF’s enzy-
matic machinery/signal transduction pathway, or a seconda-
ry effect resulting from the anti-inflammatory properties of
the HF treatment, is currently not known. However, in order
to establish the pathogenetic role of PAF in HF, and there-
fore the necessity for its pharmacological modulation novel,
well-designed, clinical trials should be conducted, wherein a
putative reduction of PAF levels could be linked with an
improvement of the HF clinical phenotype.

Another dilemma that arises from studies conducted so far is
whether a candidate drug aiming on PAF metabolism/actions

should be a PAF receptor antagonist or a modulator of PAF
metabolism (inhibitor of its biosynthetic enzymes, activator of
its degradation enzymes or an indirect modulator of its metab-
olism). With the current knowledge, the design of a molecule
aiming on the PAFR/signal transduction axis is easier given that
both PAF receptors and most of the components of their signal
transduction pathways have already been characterized in the
molecular level. On the other hand, such drugs may also inhibit
PAF’s physiological, homeostatic roles as well as its protective
roles as in the case of preconditioning.

Alternatively, the designing of drugs aiming on the modula-
tion of PAF metabolism may confer better specificity especially
if they target enzymes of PAF metabolism that are upregulated
under conditions that favor HF progression. As previously men-
tioned, the group of T. Shimizu characterized two lyso-PAF
acetylating activities (LPCAT1 and 2) from which only one
isoform was activated by inflammatory stimuli [12, 13]. The
designing of specific inhibitors for this isoform would prevent
the synthesis of PAF only under pathological conditions. How-
ever, the molecular details of the enzymatic pathways and the
regulatory mechanisms of PAF metabolism are still obscure and
only after their clarification the scientific community would be
able to identify the best potential drug targets.

Finally, another aspect which deserves attention is the
recent development of Lp-PLA2 inhibitor, namely darapladib.
More particularly, darapladib reduces Lp-PLA2 activity, IL-6
and CRP in cardiovascular patients [76], prevents necrotic
core expansion in atherosclerotic plaques [77] and decreases
atherosclerotic plaque formation in ApoE-deficient [78] and
LDL-R deficient mice [79]. However, the usefulness of this
inhibitor in cardiovascular patients remains to be verified from
ongoing clinical trials [80], while no evidence exists on the
role of darapladib in HF patients.

Conclusions

In conclusion, PAF is a key player in HF progression since it
causes a negative inotropic effect, it induces arrhythmias, it
induces apoptosis and it is involved in inflammation and
atherosclerosis. Recent data support that PAF metabolic
enzymes may participate in atherosclerosis and HF develop-
ment. However, the use of PAF and/ or its enzymes as phar-
macological targets should be critically viewed and cautiously
designed in the light of evidence that low PAF concentrations
may have a cardioprotective role in ischemic preconditioning.
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