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Major advances have been made over the past two 
decades in the pharmacologic treatment of chronic heart 
failure (HF). Angiotensin-converting enzyme inhibitors, 
β-blockers, and aldosterone antagonists have had a sub-
stantial impact on reducing mortality and morbidity in 
patients with HF and low left ventricular ejection frac-
tion. These treatments delayed the progression toward 
advanced intractable HF but did not arrest progressive 
worsening of the disease. Patients on optimal medical 
therapy continued to deteriorate, albeit at a much slower 
pace, ultimately requiring further intervention. This gave 
rise to a host of device-based therapies that emerged in 
recent years to address this unmet need. Device therapies 
such as cardiac resynchronization, the CorCap™ cardiac 
support device (Acorn Cardiovascular, Inc., St. Paul, MN), 
and the OPTIMIZER™ System (Impulse Dynamics USA, 
Inc., Orangeburg, NY) are a few examples. This review 
addresses the progress made to date in the development 
and implementation of cardiac contractility modulation 
(CCM) as a device-based therapy for the treatment of 
patients with advanced HF. Treatment of patients with 
HF using CCM electrical signals is at present an investiga-
tional form of therapy.

Introduction
Despite major advances over the past two decades in 
the pharmacologic treatment of patients with chronic 
heart failure (HF) and low ejection fraction (EF), 
HF remains one of the leading causes of morbidity 
and mortality in Western countries. Pharmacologic  
therapy with angiotensin-converting enzyme inhibitors 

[1], β-adrenergic receptor blockers, [2] and more recently 
aldosterone antagonists [3] has substantially reduced 
mortality and morbidity in patients with HF. Despite 
having slowed down the progression of the disease, 
therapy has not arrested it. As a result, a large number 
of patients with HF who are on optimal medical therapy 
survive with a markedly limited quality of life, mani-
fested by worsening symptoms of HF. Ultimately these 
patients succumb to the disease. The need for further 
therapeutic interventions in this patient population has 
given rise to a host of device-based therapies such cardiac 
resynchronization therapy (CRT) [4], left ventricular 
(LV) containment devices such as the CorCap™ cardiac 
support device (Acorn Cardiovascular, Inc., St. Paul, MN) 
[5], and the OPTIMIZER™ III (Impulse Dynamics USA, 
Inc., Orangeburg, NY) [6, 7•, 8•].

Biventricular pacing, or resynchronization therapy, 
has been shown to improve LV systolic function and 
quality of life in patients with HF [4,9]. The degree of 
improvement in LV function based on EF is approximately 
4% and appears within 6 months of therapy initiation 
[10]. Although electrocardiogram QRS duration is used to 
predict which patients have LV mechanical dyssynchrony 
it has been reported as being less than perfect [11,12]. 
Some studies suggest that restoration of synchroniza-
tion may not be the only mechanism leading to clinical 
improvement [13]. QRS duration remains important in 
the selection of patients for CRT. It is estimated that only 
a quarter of patients with HF have a prolonged QRS dura-
tion and may be eligible for this form of therapy [14,15]. 
Therefore, a device-based therapy needs to be developed 
that can safely improve LV contractile function in patients 
who have a normal activation sequence but advanced 
HF despite optimal medical therapy. One such device is 
the Impulse Dynamics cardiac contractility modulation 
(CCM) system. This review examines some novel think-
ing as to the mechanism of action of this investigational 
form of therapy. It addresses the effects of this form of 
therapy in preclinical studies in animals with experi-
mentally-induced HF as well as early clinical findings in 
patients with advanced HF.
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Mechanism of Action of CCM Therapy
CCM therapy is based on the delivery of electrical signals 
to the LV myocardium during the absolute refractory 
period. These so-called CCM signals contain approxi-
mately 150 times the amount of energy delivered during a 
standard pacemaker impulse. The CCM signals do not ini-
tiate contraction, they do not recruit additional contractile 
elements, and there is no additional action potential as 
would be observed with paired pacing or post-extrasystolic 
potentiation. Therefore, CCM signals are referred 
to as “nonexcitatory.” Initial studies performed in 
isolated superfused normal papillary muscles and 
isolated normal ferret hearts suggested that CCM sig-
nals influence calcium entry into the cardiomyocyte 
and, in doing so, influence contractility [16,17]. Sub-
sequent studies, however, performed in dogs with 
experimentally induced chronic HF indicated that the 
improvement in LV function may be related to altera-
tions in sarcoplasmic reticulum (SR) calcium cycling 
mediated by the delivery of CCM signals [18,19]. HF 
is associated with abnormalities in the expression of 
genes encoding SR calcium handling proteins and post- 
translational modification of their associated proteins. 
Some commonly identified key abnormalities include 
downregulation of genes encoding for the SR ATPase-
dependent calcium pump (SERCA2a) [20–24], changes 
in expression and phosphorylation of phospholamban 
[23–27], and altered regulation of the sodium-calcium 
exchanger (NCX) [20,27,28]. Therefore, treatments aimed 
at improving gene and protein expression of SR calcium 
cycling proteins in HF would be considered therapeutic.

Results of recent studies conducted in normal dogs, 
dogs with untreated coronary microembolization–induced 
HF, and dogs with HF treated for 4 hours with CCM signals 
delivered to the LV anterior wall support the concept that 
CCM therapy normalizes SR calcium cycling proteins. For 
example, LV anterior wall tissue obtained from normal 
dogs compared with LV anterior wall tissue of dogs with 
untreated HF showed a significant reduction in phosphory-
lated phospholamban. In contrast, dogs that were treated 
for 4 hours of continuous therapy with CCM signals in 
the LV anterior wall had normalization of phosphorylated 

phospholamban (Table 1) [18,20]. This improvement in 
phospholamban phosphorylation was associated with 
increased expression of SERCA2a (Table 1) [20]. In addition 
to the improvements in SR function, CCM therapy also nor-
malized mRNA expression of the NCX, its phosphorylation, 
and its transcription factor GATA4 (Table 1) [29,30]. These 
short-term findings, when coupled with identical long-term 
observations of LV tissue obtained from dogs treated for 3 
months with CCM signals (unpublished observations), 
support the belief that normalization of SR calcium cycling 
and possibly of the NCX are key mechanisms that underlie 
the improvement in LV contractile function observed with 
short and long-term CCM therapy.

Effects of CCM Therapy in Dogs with HF
Dogs with microembolization-induced HF treated for 6 
hours with continuous CCM electrical signals, through leads 
implanted on the epicardial surface of the LV during the 
absolute refractory period, had a significant improvement in 
LV ejection fraction (LVEF). In this short-term study, LVEF 
increased from 31 ± 1% at baseline to 44 ± 2% 6 hours after 
initiation of therapy (P < 0.001) [7•]. The improvement in 
LVEF was associated with a significant increase in stroke vol-
ume and a significant decrease in LV end-diastolic pressure 
[7•]. In this study, continuous delivery of CCM signals had 
no effect on QTc interval and was not associated with any 
chronotropic and/or proarrhythmic effects.

In a second study conducted in  six dogs with intra-
coronary microembolization-induced HF, CCM electrical 
signals were delivered using a lead implanted in the distal 
anterior coronary vein. The CCM lead was advanced into 
the vein via the coronary sinus in a manner similar to 
that used with CRT [8•]. In this study, CCM signals were 
delivered continuously for 6 hours daily for a duration of  
3 months (a daily duty cycle of 6 hours on and 18 hours 
off.) The results were compared with those of six HF control 
dogs in which no therapy was implemented for the same 
follow-up duration period of 3 months. In control dogs, 
LVEF decreased from 28 ± 1% to 23 ± 1% (P < 0.001). In 
contrast, in dogs treated with CCM, LVEF increased from 31 
± 1% to 34 ± 2% P < 0.04). The improvement in EF in CCM- 
treated dogs was associated with a significant decrease in LV 

Table 1. mRNA expression of SERCA2a, NCX, and GATA4 and expression of phosphorylated 
phospholamban in LV myocardium of normal dogs, dogs with untreated HF, and dogs with HF 
treated short-term with CCM electrical signals

Normal Untreated HF HF + CCM

Phosphorylated phospholamban, du 2.83 ± 0.20 1.97 ± 0.10* 4.19 ± 0.45†

mRNA expression of SERCA2a, du    920 ± 28      110 ± 4*     617 ± 11†

mRNA expression of NCX, du     30 ± 2      98 ± 14*     48 ± 4†

mRNA expression of GATA4, du     103 ± 31      204 ± 19*     160 ± 26†

CCM—cardiac contractility modulation; du—densitometric units; HF—heart failure; LV—left ventricular; NCX—sodium-calcium exchanger; 
SERCA2a—sarcoplasmic reticulum ATPase-dependent calcium pump. 
*P < 0.05 vs normal.
†P < 0.05 vs untreated HF.  
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end-diastolic pressure and a significant increase in stroke 
volume. As with the short-term study, CCM therapy had 
no effects on QTc duration and was not associated with any 
chronotropic effects or proarrhythmic effects [8•].

In a third series of experiments conducted in dogs 
with intracoronary microembolization-induced HF, the 
effects of short-term CCM therapy on myocardial oxygen 
consumption (MVO2) was examined. In this series of exper-
iments hemodynamic parameters and myocardial oxygen 
consumption were measured in an open chest, anesthe-
tized state, with epicardial electrodes used to administer 
CCM signals continuously for 2 hours [31]. Heart rate and 
peak LV pressure did not change significantly with CCM 
therapy. Two hours of CCM therapy significantly decreased 
LV end-diastolic pressure and significantly increased LVEF 
from 34 ± 1% to 42 ± 2% (P < 0.001) [31]. A particularly 
important observation in this study was the improve-
ment in LV systolic function accompanied by unchanged 
total LV coronary blood flow and unchanged MVO2. In a 
recently completed study in dogs with HF, long-term (3 
months) therapy with CCM electrical signals was delivered 
from leads positioned on the right interventricular septum 
with an implantable signal generator (Impulse Dynamics 
OPTIMIZER II™), a device similar to a pacemaker-internal 
cardiac defibrillator. In this study, CCM signal delivery 
resulted in a significant improvement in LVEF, a significant 
increase in stroke volume, a decrease in MVO2, and an 
increase in LV mechanical efficiency [32]. 

Effects of CCM Therapy in Patients with HF
In safety and feasibility studies conducted in patients, CCM 
signals are delivered to the myocardium by an implanted 
device that looks like a pacemaker and connects to the 
heart via standard commercially available pacing leads. 
The device, called the OPTIMIZER™ System [33•], does not 
have pacing or antitachycardia therapy capabilities but is 
designed to work in concert with pacemakers and internal 
defibrillators. The originally investigated systems had a fixed 
battery which, because of the high energy delivered with 
each CCM pulse, had longevity of 6 to 8 months. Recently, 
a system with a rechargeable battery has been introduced  
(OPTIMIZER-III). With this new system, a patient recharges 
the battery at home once a week via a transcutaneous energy 
transfer charging unit. 

The first safety and efficacy results with chronic CCM 
signal applications were obtained in patients with NYHA 
Class III symptoms and QRS duration ≤ 120 ms [34•]. The 
study was an unblinded, uncontrolled, treatment only fea-
sibility study designed mainly to test the functionality of 
the OPTIMIZER™ System. In this study, the OPTIMIZER™ 
System was implanted in 23 patients who were predomi-
nantly male (92%) with an average age of 62 ± 9 years and 
were split between idiopathic and ischemic cardiomyopathy 
(41% and 59%, respectively). Baseline EF was 22 ± 7% and 
the average Minnesota Living with Heart Failure Question-

naire score averaged 43 ± 22%. Patients were well medicated 
with diuretics (88%), β-blockers (88%), and angiotensin-
converting enzyme inhibitors (100%.) The study showed 
operation of the device as intended. There was no change in 
intrinsic ambient ectopy observed between baseline and 8 
weeks of treatment and no overt safety concerns. Improve-
ments were reported in patient symptoms (assessed by 
NYHA class), quality of life (assessed by Minnesota Living 
with Heart Failure Questionnaire), and LVEF [34•]. 

Two multicenter, randomized controlled studies of 
CCM are currently underway. One study is in Europe and 
the other is in the United States, with the latter being per-
formed under an investigational device exemption from 
the US Food and Drug Administration to definitively test 
the safety and efficacy of CCM as a treatment for HF. The 
safety evaluations include examination of mortality, hos-
pitalizations, proarrhythmic effects, signs of progressive 
HF, and overall incidence and severity of adverse events.

Conclusions
Preclinical studies conducted to date in dogs with experi-
mentally induced HF indicate that CCM therapy, whether 
short term or long term, is associated with improved SR 
calcium cycling and improved LV contractile function. The 
improvement in LV function occurs in the absence of an 
increase in MVO2 a desirable feature for any therapy aimed 
at improving cardiac contractility in the setting of HF. The 
absence of an increase in MVO2 in the face of an increase in 
cardiac contraction strongly argues in favor of a mechanism 
of action of CCM therapy that is independent of calcium 
entry into the cell. Preliminary studies in patients with HF 
are encouraging. Evidence available at this time suggests that 
CCM therapy appears to be safe and devoid of chronotropic 
and proarrhythmic effects. The efficacy trends favor improve-
ment in LV function as well as in quality of life. The overall 
safety and efficacy of this form of treatment are being tested 
in randomized controlled clinical trials. If these studies 
show CCM treatment in HF patients to be safe and effective, 
a new, easily deployable treatment will be made available to 
patients with otherwise untreatable HF symptoms. 
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