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Abstract
Purpose of Review Growing evidence supports the contribution of age in the composition and function of the gut microbi-
ome, with specific findings associated with health in old age and longevity.
Recent Findings Current studies have associated certain microbiota, such as Butyricimonas, Akkermansia, and Odoribacter, 
with healthy aging and the ability to survive into extreme old age. Furthermore, emerging clinical and pre-clinical research 
have shown promising mechanisms for restoring a healthy microbiome in elderly populations through various interventions 
such as fecal microbiota transplant (FMT), dietary interventions, and exercise programs.
Summary Despite several conceptually exciting interventional studies, the field of microbiome research in the elderly 
remains limited. Specifically, large longitudinal studies are needed to better understand causative relationships between the 
microbiome and healthy aging. Additionally, individualized approaches to microbiome interventions based on patients’ co-
morbidities and the underlying functional capacity of their microbiomes are needed to achieve optimal results.
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Introduction

Over the past several decades, scientists have established 
an extensive relationship between the gastrointestinal (GI) 
microbiome and host health. For example, commensal 
microbiota contribute to host immune system development 
and function [1], with disruptions potentially contributing 
to immune-mediated diseases such as systemic lupus ery-
thematosus (SLE) and inflammatory bowel disease (IBD) 
[2, 3]. Microbiome composition and function further influ-
ence the metabolism of nutrients and drugs [4, 5]. Growing 
research also suggests an important role for microbes in the 
gut-brain axis that modulates neuropsychological and sen-
sory disorders, such as autism and irritable bowel syndrome 
(IBS) [6, 7].

Scientists have yet to identify one specific healthy micro-
biome, and it is generally agreed upon that there is no singu-
lar “normal” composition [8]. This is likely due to the vast 

spectrum of factors that influence the gut microbiome, includ-
ing variations in diet [9], genetics [10], and environment [11]. 
As such, changes in the microbiome also occur as part of the 
natural aging process. Microbiome development begins at birth 
as soon as newborns exit the vaginal canal and encounter the 
mother’s vaginal fluids [12], or alternatively through the skin 
and the environment for babies delivered by Cesarean sec-
tion [13]. For breast-fed infants, breastmilk contains several 
prebiotics (e.g., human milk oligosaccharides) which selec-
tively support the growth of beneficial bacteria in the GI tract 
[13]. As children transition to solid foods, they encounter new 
dietary components such as starches and cell wall polysaccha-
rides; their microbiomes must then shift to select for bacteria 
capable of metabolizing these nutrients [14]. While changes 
in infant and early childhood microbiomes have been studied 
extensively, there is less information regarding alterations in 
the gut microbiome of the elderly. Accordingly, there is grow-
ing interest in understanding the effect of aging on the host 
microbiome and whether aging and its associated features, 
such as frailty and declined cognition, can be modulated by 
gut bacteria. According to the United Nations, the number of 
people over the age of 65 worldwide in 2021 was 761 million, 
with that number expected to rise to 1.6 billion by 2050 [15]. A 
greater understanding of this population’s microbiome is thus 
of growing relevance in addressing human health and disease.
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Increasing research suggests that natural, or “healthy”, 
aging leads to specific changes in gut microbiome composi-
tion, such as the loss of certain commensal genera, including 
Prevotella, Faecalibacterium, and Bifidobacterium, and the 
species Eubacterium rectale [16, 17]. These taxa are instead 
replaced at older age by other commensal organisms, such as 
Butyricimonas, Akkermansia, and Odoribacter [12, 16–18]. 
Akkermansia muciniphila, in particular, has been widely 
studied in aging and disease and is known to contribute to 
mucin degradation in the intestines [19]. Some have specu-
lated that Akkermansia levels can indicate health status, with 
an increased relative abundance (above that seen in healthy 
aging) associated with excellent health among centenarians 
and a decreased relative abundance associated with thin-
ning of the gut mucus layer and decreased acylglycerol, [18, 
20] an endocannabinoid that regulates gut permeability and 
decreases intestinal inflammation [18, 20].

Scientists have also identified several pathobionts, or con-
ditionally pathogenic microorganisms, that are increased in 
“unhealthy” aging [17, 18], a process characterized by rapid 
physical and mental decline and associated with disease 
progression and physical frailty. Some of these pathobionts 
include Eggerthella, Actinomyces, and Enterobacteriaceae, 
the presence and quantity of which may help physicians pre-
dict lifespan and disease outcomes [17, 18].

One challenge in conducting and interpreting microbi-
ome studies in the elderly is distinguishing results attrib-
utable solely to age from those due to different states of 
health. Unique subjects by which to study these questions 
are those who are of “extreme” old age, such as centenar-
ians (≥ 100 years old) and supercentenarians (≥ 110 years 
old). Microbiome features of these extremely aged individu-
als presumably confer longevity rather than any deleterious 
aspects of aging. For example, bacterial strains that are often 
decreased in the elderly, such as Christensenella and Bifido-
bacterium, are actually increased in semi-supercentenarians 
(i.e., 105–109 years old) [18], suggesting their beneficial 
effect. Additionally, the highly studied Akkermansia taxon, 
which is abundant in healthy aging, is even more dramati-
cally increased in extreme aging [18].

To further clarify the independent contributions of age 
and health, Wilmanski et al. cross-sectionally evaluated 
gut microbiome compositions by decade of life in 3653 
U.S. adults, aged 18–87 years old. The authors found 
that starting around 40–60 years old, individuals become 
more “unique” in their microbiomes as measured by the 
Bray–Curtis dissimilarity matrix, in which individuals’ 
microbiomes were compared to the one most similar from 
the remaining subjects [21••]. More microbiome dis-
similarity was seen with each passing decade, a finding 
that was consistent regardless of sex, body mass index 
(BMI), and alpha diversity (i.e., within-sample diversity). 
Samples in this analysis were evaluated in two separate 

groups (n = 2539 and n = 1114) as there was a change 
in microbiome vendors and sample processing during 
the study; nevertheless, the finding of greater micro-
biome dissimilarity with increasing age was present in 
each cohort, lending further strength to the results. In 
the same publication, the investigators analyzed a differ-
ent cohort of only men, aged > 78 yo (n = 599 discovery 
cohort and n = 308 validation cohort). Again, microbi-
ome uniqueness, as measured by Bray–Curtis dissimi-
larity, was positively correlated with age. Notably, the 
strength of this correlation increased among healthy 
participants, as determined by medication use, self-per-
ceived health, life-space score (LSC) [22], and walking 
speed. When sub-analyzing the community dwellers of 
this male cohort (i.e., those who did not reside in nurs-
ing homes, assisted living, or were hospitalized in the 
past 12 months; n = 706), investigators identified a cor-
relation between the relative abundance of Bacteroides 
and all-cause mortality, independent of multiple potential 
confounders (e.g., age, BMI, and self-perceived health). 
This association between Bacteroides abundance and 
mortality was even stronger among community dwell-
ing subjects in this cohort 85 + years old, suggesting 
the potential use of decreased Bacteroides as a longev-
ity biomarker [21••]. In contrast, a large 2023 cohort 
study (n = 1575, including 297 centenarians) found a 
relative abundance of Bacteroides in centenarians and 
furthermore identified several other “youth-associated” 
features, such as decreased pathobionts, in centenarians 
[23]. Thus, the role of Bacteroides spp. and their utility 
as a gut microbial predictor of long life requires addi-
tional study. Another growing area of research is explor-
ing the centenarian virome, with early results suggesting 
increased viral diversity and unique genera enrichment 
that distinguish centenarians from other older adults 
(> 60) [24•].

The logical next steps in this line of research will be lon-
gitudinal studies of the microbiome to determine whether 
microbes associated with longevity are present earlier in life 
(suggesting their role in predicting or promoting long life) 
or if their increase occurs only upon old age, suggesting that 
these changes are relevant only in older age or are secondary 
to other factors of extreme age.

Geriatric Health and the Microbiome

Although we know that microbiome compositions shift 
throughout the aging process, the exact mechanisms for this 
are unclear. Below, we explore some common life changes 
and medical conditions among the elderly in which intestinal 
microbiomes are altered (Fig. 1).
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Inflamm‑aging

Studies from as early as the 1960’s have indicated a decrease 
in immune function in aging adults [25]. This process, now 
known as immunosenescence, is associated with a decline 
in immune system function that leads to an accumulation 
of pro-inflammatory cytokines. The increased inflamma-
tory state in elderly populations is now commonly referred 
to as “inflamm-aging” [26]. Pro-inflammatory states place 
patients at higher risk for a variety of conditions such as 
autoimmune and cardiovascular diseases, as well as infec-
tions [27–29].

Within the GI tract, the maintenance of functioning epi-
thelial and mucus barriers is essential for protection against 
infection and disease [30]. Increased intestinal permeabil-
ity can lead to translocation of microbes into host circula-
tion, exacerbating a pro-inflammatory state [30]. A study in 
wildtype C57BL/6 mice showed that age-associated disrup-
tion of the small intestine mucosal barrier led to increased 
interaction between gut microbiota and the host immune 
system, as determined by fluorescent in situ hybridization 
using the bacterial probe EUB338-Alexa Fluor 488, as well 
as enlargement of solitary intestinal lymphoid tissue (SILT), 
which are hypertrophied upon interaction with gut microbes 
[31, 32]. Barrier defects were also associated with relative 
decreases in Akkermansia [31].

Experiments in germ-free mouse models by Thevaranjan 
et al. suggest that it is the changing microbiome itself in 
aging populations that leads to a pro-inflammatory state, 
with germ-free mice living much longer than their conven-
tional counterparts [33]. Furthermore, young, germ-free 
mice gavaged with the microbiome of older mice developed 

greater intestinal permeability and circulating TNF than 
mice gavaged with microbiomes of other young mice [33]. 
However, additional research, especially from longitudinal 
studies in humans, will be necessary to confirm a causal rela-
tionship between the gut microbiome and inflamm-aging.

Diet and Environment

Elderly individuals requiring greater assistance with activi-
ties of daily living (ADLs) may transition from commu-
nity living to long-term care facilities. This relocation has 
been shown to produce microbiome shifts due to presumed 
changes in environmental, dietary, and medical factors 
[34]. For instance, in general adult population studies, the 
microbes residing on household surfaces correlate with gut 
microbiome composition, which bears consideration in the 
transition to long-term care environments. Furthermore, 
both aging and exposure to healthcare facilities, such as 
long-term care facilities, are associated with an increased 
risk for Clostridioides difficile infection (CDI), a major 
cause of healthcare-associated, inflammatory diarrhea [35].

Regardless of age, there is strong evidence to suggest 
that specific diets can cause unique alterations in the micro-
biome [36, 37], as well as corresponding serum and fecal 
metabolites [38]. A well-controlled study by Tanes et al. 
followed 30 subjects who were randomized to vegan (high 
fiber), omnivore (intermediate fiber) and formula-based (no 
fiber) diets [39]. After 6 days, the subjects were given a “gut 
purge” using a combination of oral antibiotics and polyethyl-
ene glycol. Researchers found that the microbiome of vegan 
subjects recovered more rapidly after the “purge” compared 
to the other groups, regaining greater diversity in a shorter 

Fig. 1  Lifestyle changes and medical conditions associated with alterations in the intestinal microbiome of the elderly
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time span [39]. Subjects adhering to the formula-based diet, 
on the other hand, had the most prolonged recovery phase. 
In another cross-sectional study, the gut microbiomes of 
previously uncontacted Yanomami Amerindians, who live 
in the High Orinoco state of Venezuela and eat a largely 
plant-based, high-fiber diet, were compared to microbi-
omes of individuals residing in the United States and semi-
transculturated populations, such as Guahibo Amerindians 
and Malawians. The Yanomami were noted to have a mark-
edly higher gut microbiome diversity compared to those in 
the United States, with the semi-transculturated populations 
having an intermediate level of diversity. It is noted, how-
ever, that other social and medical factors, rather than diet 
alone, could also have contributed to this increased diversity 
[40].

Nevertheless, a component of age-related changes in 
the microbiome appears definitively related to diet and 
eating, particularly as the elderly are at increased risk for 
poor dentition or chewing difficulties, decreased appetite, 
and lack of social support in obtaining nutritious foods 
[41]. For example, one of the most dramatic diet changes 
that has been shown to cause microbiome alterations is the 
move from independent, community living to assisted liv-
ing within a long-term care facility. This transition often 
leads to a change from a high-fiber, low-fat diet to a low-
fiber, high-fat diet, which has been associated with a shift 
to a lower diversity microbiome in long-term care residents 
compared to community dwelling counterparts [34]. Of 
note, the disparity between these long-term care residents 
and community dwellers correlated with the amount of time 
spent in long-term care. During digestion, fiber is metabo-
lized into short chain fatty acids (SCFAs), which provide 
many benefits to the GI tract by serving as an energy source 
for protective microbiota, assisting with anti-inflammatory 
responses, and maintaining gut barrier integrity [42]. Thus, 
SCFA deficiencies caused by dietary changes when moving 
to long term care facility can indirectly contribute to intes-
tinal dysfunction.

Co‑morbidities

An area of growing interest is the study of the gut-brain 
axis via microbes that may influence cognitive function 
(Table 1). The topic is of particular relevance as mild cog-
nitive impairment (MCI) is highly prevalent in the elderly, 
affecting approximately 10% of those aged 70–74 yo and 
25% of those 80–84 yo [43]. Furthermore, patients with MCI 
are far more likely to progress to dementia [43]. Pharmaco-
logic treatments to date can only slow the progression of 
MCI, but not reverse it [44]. While there is still disagreement 
on whether microbiome alterations influence cognitive func-
tion and vice versa [45, 46], ongoing long-term projects such 
as MOTION (Microbiome Of the ageing gut and its effect on 

human gut health and cogniTION), which studies cognitive 
and microbiome changes of healthy aging [47], provide hope 
that these interactions will soon be clarified.

A 2019 study of shotgun metagenomic sequences, com-
paring 57 nursing home residents with dementia, including 
Alzheimer’s disease (AD), with 51 elderly individuals with-
out AD or other forms of dementia, revealed higher levels of 
pro-inflammatory gut bacteria in those with dementia [61]. 
The authors also noted a decrease in butyrate-synthesizing 
bacterial species, such as those in the genera Butyrivibrio 
and Eubacteria, in the AD group when compared to both 
subjects without dementia and subjects with other demen-
tias besides AD [61]. A subsequent systematic review and 
metanalysis similarly found decreased alpha diversity in 
the gut microbiomes of AD patients compared to healthy 
controls, but not between those with mild cognitive impair-
ment (MCI) and healthy controls. Differences in microbi-
ome compositions between AD, MCI, and healthy samples 
(i.e., beta diversity) were not consistently altered [62]. One 
challenge in studying the gut microbiome as it relates to 
dementia is the lack of clear, objective, and non-invasive 
tests to conclusively determine diagnosis and disease stage, 
thus further complicating the interpretation of study results. 
While beyond the scope of the gut microbiome, we note 
with interest that post-mortem studies of AD brain tissue 
have identified the presence of microbes within the brain, 
suggesting the presence of a brain microbiome associated 
with neurodegenerative disease [63].

Furthermore, a large genome wide association study 
identified several microbiome genera associated with high 
risk alleles of the apolipoprotein E ε4 (APOE ε4) gene, a 
well-established risk factor for AD [64•]. Some of the most 
significant findings of this study included a strong correla-
tion between the pro-inflammatory genus Collinsella and 
APOE risk alleles, as well as a proposed protective role for 
the genus Eubacterium fissicatena [64•].

Parkinson’s disease (PD) is another neurological disor-
der that is more common in the elderly and for which there 
is growing interest in the gut microbiome as a biomarker 
or therapy. A 2020 meta-analysis of 16S sequencing data 
from Japan, the United States, Finland, Russia, and Germany 
found that patients with PD have relatively decreased Rose-
buria and Faecalibacterium – both important producers of 
the SCFA butyrate [65]. A 2022 shotgun sequencing study 
of 490 PD and 234 healthy controls confirmed these find-
ings and also identified several other genera that are altered 
in PD patients, such as an increase in pathogenic species of 
Prevotella [66•]. Interestingly, multiple studies have noted 
an increase in the Akkermansia genus [65] among those with 
PD. This is surprising considering Akkermansia is generally 
associated with healthy aging and is particularly abundant 
in supercentenarians [18]. Some scientists have speculated 
that Akkermansia is an important component of healthy 
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aging, but that increased abundance puts patients at risk for 
neurocognitive disease [67]. We further hypothesize that 
changes in Akkermansia abundance may be secondary to 
the development of constipation, a common gastrointestinal 
complication of PD and a condition that has independently 
been associated with increased Akkermansia in multiple 
other studies [68]. As the link between PD and Akkermansia 
is an inconsistent finding [66•], further research is needed 
to determine the precise role of this genus in PD and in 
aging more broadly. In a PD mouse model that overexpresses 
α-synuclein aggregates, a common finding in the brains of 
PD patients, mice colonized with the gut microbiome of 6 
human PD patients had increased physical motor impair-
ments and constipation compared to mice colonized with 
healthy donor microbiota [69]. Building on these early 
findings of altered microbiota in PD, a pilot randomized 
control trial found that stool from healthy donors, given as 
lyophilized pills twice a week for 12 weeks, could improve 
constipation and gut motility as well as transiently improve 
objective motor skills among patients with mild to moderate 
PD [70•]. While significant translational and clinical data 
development are still needed, these initial findings maintain 
the promise that gut microbiome modulation may improve 
gastrointestinal and/or neurological symptoms of PD and 
provide deeper insight into disease pathophysiology.

Several early-stage studies have also been conducted on 
the relationship between the gut microbiome and sarcope-
nia, the progressive deterioration of muscle mass that occurs 
with aging and that leads to physical frailty. While these 
studies have yielded conflicting results about which bacterial 
species are increased or decreased in the condition, study 
findings have consistently demonstrated no change in over-
all microbial diversity between frail and non-frail elderly 
individuals [71, 72]. Pre-clinical experiments have also sug-
gested a role for gut bacteria in skeletal health, although 
details of how these effects are mediated have been unclear 
[73, 74]. In correlating human subject research, a relatively 
large 16S study (i.e., 60 individuals with osteoporosis and 
60 age- and gender-matched controls with normal bone 
mineral density) found a relative abundance of Actinomy-
ces, Clostridium XIVa, Eggerthella, and Lactobacillus and 
a relative decrease in Veillonella in those with osteoporosis. 
There were, however, no changes in overall microbiome 
alpha diversity between groups [75].

Interventions to Delay or Reverse Aging

While a more thorough understanding is required of the 
microbial changes that can be isolated to age specifically, 
studies have already begun evaluating how to restore a 
healthy microbiome in aging populations to promote health 
and longevity.Ta
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FMT

Fecal microbiota transplant (FMT) is a therapy that has been 
growingly incorporated into the treatment of recurrent CDI 
[76] and has furthermore been studied for inflammatory 
bowel disease [77] and post-antibiotic dysbiosis [78]. Dur-
ing FMT, stool from a healthy donor is transplanted into a 
recipient via colonoscopy, naso- or oro-enteric tubes, enema, 
or capsule, with the goal of transferring the corresponding 
intestinal microbes, as well as their contained functions and 
metabolic products. This has led some to speculate whether 
the microbiome from a young, healthy donor can be trans-
planted into an elderly individual to reverse some of the 
effects of unhealthy aging (Table 2).

A study by Parker et. al demonstrated that transfer 
of an “aged” microbiome from elderly mice to younger 
mice caused several age-associated phenotypes including 
advanced central nervous system deterioration and vision 
deficits [79•]. Importantly, in a set of correlating experi-
ments, age-related changes improved in elderly mice after 
microbiome transplantation with stool of younger mice 
[79•]. This work provides strong pre-clinical evidence that 
microbiome profiles between young and aged mice are not 
only different, but that the associated physiological effects 
of these microbiomes are transferrable. These and similar 
findings have been reproduced by other investigators [59], 
including D’Amato et al., who demonstrated that transferring 
the microbiome of elderly mice to young ones can lead to 
cognitive deficits [80].

Progeria is a particularly unique disease by which to study 
microbiome and senescence, as affected individuals carry 
a mutation in the gene encoding lamin A which leads to 
rapid aging. Despite a normal appearance at birth, affected 
individuals typically develop fatal complications of their dis-
ease, predominantly cardiovascular disease, in their teens 
or early adulthood [89]. Using a mouse model of progeria, 
Bárcena et al. showed that certain bacterial strains enriched 
in human centenarians such as Akkermansia muciniphila can 
be transplanted to increase mouse lifespan and to reverse 
intestinal mucosal thinning [81]. Although these findings 
are still in the preclinical phase, they hold exciting promise 
for the use of FMT from young donors, or its therapeutic 
components, to reverse certain aspects of unhealthy aging.

Diet and Probiotics

As discussed previously, elderly populations often have vari-
ations in diet as they age, which contribute to microbiome 
changes. One of the most studied dietary changes associ-
ated with aging is reduced fiber intake; however clinical 
trials supplementing fiber have yielded conflicting results 
regarding shifts in microbiota composition and inflammatory 
status [90, 91], with some researchers hypothesizing that 

the efficacy of dietary interventions and supplements may 
depend on the host’s initial microbiome profile. For example, 
in a double-blind, crossover trial of 21 healthy volunteers 
over 60 years old who were given supplemental wheat bran-
derived arabinoxylan-oligosaccharide found that resulting 
microbiome compositions varied based on subjects’ initial 
Prevotella abundance [92]. Although limited, these find-
ings suggest that an individualized approach is required to 
manipulate the microbiome, with screening of patients’ ini-
tial microbiomes necessary to tailor the intervention needed 
for the desired outcome.

In addition to specific supplements, certain diets have 
been associated with gut health. The Mediterranean diet, 
consisting of plant-based foods, whole grains, and healthy 
fats, has been shown to prevent cardiovascular disease in 
all age ranges [93], with the effects of this diet potentially 
mediated by the gut microbiome. For example, a 2020 study 
by Ghosh et al. found that adherence to the Mediterranean 
diet for at least one year corresponded to a relative increase 
in intestinal F. prausnitzii, R. hominis, E. rectale, E. eli-
gens, E. xylanophilum, B. thetaiotaomicron, P. copri and A. 
hadrus [48••]. Adherence to the diet furthermore corre-
lated with improved cognitive function, as measured by the 
BabCock Memory Score and Constructional Praxis, as well 
as decreased systemic inflammatory markers such as high-
sensitivity C reactive protein (hsCRP) and interleukin 17 
(IL-17) levels. Mouse studies have also demonstrated that 
a Western diet, which is high in fat and sodium, leads to an 
increased “predicted age” of the gut microbiome based on 
a Bayesian model trained on male C57BL/6 J mice whose 
microbiomes were characterized from week 9 to week 112 of 
life. These microbiome disturbances reversed once the mice 
returned to a standard diet [94]. Interventional diet studies 
evaluating both the gut microbiota and clinical outcomes in 
elderly, human cohorts are therefore of particular interest 
given these individuals’ susceptibility to cognitive decline 
and unhealthy aging.

Probiotic interventions have been specifically studied in 
the aged. Unfortunately, similar to studies in the general pop-
ulation, the generation of clinically actionable data has been 
dampened by the great heterogeneity of studied products and 
outcomes as well as the multitude of underpowered studies 
[95]. While no singular or combination of probiotic organ-
isms have been identified to definitively improve or reverse 
signs of aging [96], a growing number of studies are evalu-
ating specific microbial strains and their impact on objec-
tive physiological effects. For example, in a double blind, 
placebo controlled study, L. reuteri ATCC PTA 6475 sup-
plementation in elderly women with low bone mineral den-
sity improved tibia total volumetric BMD (vBMD) [97, 98]. 
Furthermore, in the Senescence Accelerated Mouse-Prone 8 
(SAMP8) mouse model, probiotic Lactobacillus casei Shi-
rota administration reduced age-related muscle deterioration 
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and mitochondrial dysfunction [99]. In humans, some small, 
but double-blinded randomized controlled trials have iden-
tified specific probiotics that appear to improve cognitive 
function in elderly adults, especially probiotics that include 
Bifidobacterium and Lactobacillus spp. [49, 50]. Thus, as a 
more rigorous understanding between microbiome manipu-
lation and objective health measures develops, probiotic 
therapies may entail customized cocktails of microorganisms 
to target specific deficiencies or conditions in a personalized 
approach to care.

Exercise

Multiple studies have reported an alteration in the gut 
microbiome following the implementation of an exercise 
program [100], with early results suggesting that this is true 
in elderly populations as well [101–103]. A 2020 study by 
Zhu et al. utilized fecal specimens from the American Gut 
Project, which also included patient-reported information 
on BMI and exercise habits [102]. The study included sam-
ples from 1,589 adults (aged 18–60 years) with a healthy 
BMI (18.5 ≤ BMI ≤ 25) and 897 elderly patients (aged > 60), 
who were further stratified by BMI into normal weight 
(n = 462), overweight (BMI > 25, n = 413) and underweight 
(BMI < 18.5, n = 22), as well as by exercise frequency. Inves-
tigators found that as the reported frequency of exercise 
increased in elderly patients, the microbiome of the elderly 
patients more closely resembled that of the healthy BMI 
adults based on the relative abundance of specific taxa and 
common pathways. For example, the relative abundance of 
Actinobacteria in exercising elderly adults increased com-
pared to non-exercising elderly adults and approached the 
levels seen in healthy BMI adults. Furthermore, the rela-
tive abundance of Cyanobacteria, decreased in exercising 
elderly patients, again approaching levels seen in healthy 
BMI adults. (Of note, however, Cyanobacteria produce 
toxins such as β-N-Methylamino-l-alanine (BMAA) have 
been implicated in neurodegenerative diseases such as AD 
and ALS [104, 105].) In a smaller study by Erlandson et al., 
15 sedentary elderly patients (aged 50–75) were recruited 
for a supervised 24 week, thrice-weekly cardiovascular and 
resistance exercise program. Stool samples were collected 
before and after the intervention for 16S sequencing [103]. 
Researchers observed an increased relative abundance of 
Bifidobacterium after 24 weeks of the exercise program, as 
well as increased butyrate levels. Considering the speculated 
role of Bifidobacterium in extreme aging and improved cog-
nitive function, these findings suggest that the health benefits 
related to exercise may also be mediated through the gut 
microbiome.

Despite these results, there is significant interpersonal 
variation in the reported microbiome changes that occur with 
exercise [106]. Additionally, many of the current studies do Fo
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not have a control arm, lack rigor, and/or have small sample 
sizes. Future studies are needed to identify if there is in fact a 
relationship between exercise and healthy aging microbiota, 
as well as the type of physical activity that can influence gut 
microbiomes.

Conclusions

Microbiome research in the elderly is an exciting, rapidly 
growing field; however, a major gap in the literature is the 
lack of longitudinal data by which to distinguish between 
causative and correlative relationships given the many con-
comitant changes that occur with age, including altered 
dentition, diet, sleep, and lifestyle patterns. A challenge 
in interpreting currently available data is the difference in 
sequencing methodologies utilized. For instance, 16S study 
results can differ depending on the portion of the variable 
region within the 16S gene that is being sequenced [107], as 
well as due to variation in 16S copy number between bacte-
rial species [107, 108]. Comparing 16S data across studies 
is also challenging as the results provide only the relative 
abundances of taxa in a group [109]; thus, abundances of 
one group may appear to change but only because of changes 
in the abundance of other taxa [110]. Furthermore, as taxon-
omy does not necessarily inform microbial function [111], it 
is likely that a future shift in focus to metagenomic function 
may better clarify the mechanisms by which gut microbes 
influence their host.

Additional challenges specific to clinical microbiome 
studies in the elderly and the extremely elderly include dif-
ficulties with mobility, the tendency for increased medical 
co-morbidities, as well as difficulties determining capacity 
for decision-making, and finding a proxy for subjects who 
may not be able to provide their own consent to participate 
in research.

Nonetheless, early findings suggest that there is the poten-
tial to reverse microbiome aging with interventions such as 
FMT, exercise, and dietary modifications. Several large, lon-
gitudinal cohort studies are now underway that aim to char-
acterize microbiome changes throughout aging, including 
the MOTION study and a new branch of the Wisconsin Lon-
gitudinal study (WLS) [47, 112]. As mentioned previously, 
the MOTION study is a longitudinal, prospective cohort 
study of 360 healthy individuals over the age of 60, that is 
specifically interested in the relationship between cognitive 
function and gut microbiome in elderly populations [47]. 
The WLS, a longitudinal study of one-third of the Wiscon-
sin high-school graduates in 1957, recently incorporated a 
microbiota branch to the project through the collection of 
429 stool specimens (74% response rate), which will analyze 
the gut microbiome as it relates to environmental conditions 
and disease development [112].

As the field of medicine becomes more individualized 
with the growth of genetics, epigenetics, and other bio-
markers, we must also consider the importance of a unique 
microbiome profile in diagnosis and treatment. A common 
theme throughout much of the research is the significance of 
individualized care, with treatments based on the initial host 
microbiome composition. Although many of these studies 
are still in the early stages and require additional evidence 
to confirm a true causative relationship between illness and 
dysbiosis, elucidation of a unique microbiome disease pro-
file opens the door to new avenues of treatment for these 
diseases.
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