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Abstract
Purpose of Review While commonly associated with pulmonary manifestations, cystic fibrosis (CF) is a systemic disease 
with wide-ranging effects on the gastrointestinal (GI) tract. This article reviews major recent updates in gastroenterological 
CF care and research.
Recent Findings The high burden of GI symptoms in CF has led to recent studies assessing GI-specific symptom question-
naires and scoring systems. Intestinal dysbiosis potentially contributes to gastrointestinal symptoms in patients with CF and 
an increased risk of gastrointestinal cancers in CF. An increased incidence of colorectal cancer (CRC) has led to CF-specific 
CRC screening and surveillance recommendations. Pharmacologic therapies targeting specific cystic fibrosis transmembrane 
conductance regulator (CFTR) mutations have shown promise in treating GI manifestations of CF.
Summary New research has highlighted the importance of intestinal dysbiosis in CF. Future studies should assess whether CFTR 
modulators affect the gut microbiome and whether altering the gut microbiome will impact GI symptoms and GI cancer risk.

Keywords Cystic fibrosis · Cystic fibrosis transmembrane conductance regulator · Gastrointestinal microbiome · 
Dysbiosis · Drug therapy · CFTR modulator

Introduction

Cystic Fibrosis (CF) is an autosomal recessive disorder 
caused by mutations in the cystic fibrosis transmembrane 
conductance regulator (CFTR), an anion channel expressed 
in epithelial cells. Mutations in CFTR result in impaired 
 Cl− and  HCO3− transport in the lungs, pancreas, gastroin-
testinal tract, and sweat glands [1••]. CFTR mutations can 
be classified by the resultant functional defect (Table 1). 
CF affects approximately 80,000 people worldwide [2]. 

Although known for its pulmonary complications, cystic 
fibrosis is associated with a high burden of gastrointestinal 
(GI) symptoms, and was in fact named for its pancreatic 
manifestations. Patients with CF commonly report abdomi-
nal pain [3] and other GI symptoms [4] which may impact 
quality of life and treatment adherence.

CF is associated with many gastrointestinal manifesta-
tions (Fig. 1). Effects of CFTR dysfunction on the diges-
tive system are evident early and feature prominently. CF 
mouse models display poor growth and potentially lethal 
bowel obstruction [5]. CF may present in infancy with gas-
trointestinal obstruction (meconium ileus), poor digestive 
function due to inability to neutralize gastric acid, and exo-
crine pancreatic insufficiency (EPI) leading to nutritional 
deficiencies and failure to thrive. About 85% of the CF popu-
lation develops EPI during the first year of life [6]. Pancre-
atic sufficient patients are at risk for pancreatitis. Although 
endocrine pancreatic function is relatively preserved early 
in life, the gradual destruction of islet cells in many patients 
with CF leads to a high prevalence of cystic fibrosis-related 

This article is part of the Topical Collection on Small Intestine

 * Linda C. Cummings 
 linda.cummings@case.edu

1 Division of Gastroenterology and Liver Disease, Department 
of Medicine, University Hospitals Cleveland Medical 
Center, 11100 Euclid Avenue Mailstop 5066, Cleveland, 
OH 44106-5066, USA

2 Case Western Reserve University, Cleveland, OH, USA

/ Published online: 27 August 2021

Current Gastroenterology Reports (2021) 23: 17

http://orcid.org/0000-0002-8767-2795
http://crossmark.crossref.org/dialog/?doi=10.1007/s11894-021-00817-2&domain=pdf


1 3

diabetes (CFRD) in adults. Gastroesophageal reflux, con-
stipation, gastroparesis, cholelithiasis, and small intestinal 
bacterial overgrowth are common. Potentially life-threaten-
ing complications include liver disease and distal intestinal 
obstruction syndrome (DIOS), in which inspissated stool in 
the ileocecum leads to bowel obstruction. CF patients have 
an increased risk for gastrointestinal cancers [7] as detailed 
below.

The purpose of this review is to highlight topics of current 
importance in the gastroenterological realm of CF. While 
not exhaustive, the following topics encompass important 
recent scholarship or emerging therapies. We will discuss 
the assessment of GI-specific symptom questionnaires 
and scoring systems in CF, followed by the potential role 
of intestinal dysbiosis in GI manifestations of CF. Recent 
screening recommendations address the increased risk of 
colon cancer in CF, which likely results in part from intesti-
nal dysbiosis. We will conclude with a discussion of CFTR 
modulators and their potential role in altering GI symptoms 
or complications in CF. Figure 1 depicts the themes covered 
in this literature review and their potential interdependence.

Patient‑Reported CF Gastrointestinal Symptom 
Evaluations

Although often considered primarily a pulmonary disease, 
CF is associated with a higher burden of GI complica-
tions compared to the general population [8]. While the GI 
manifestations of CF may begin in infancy with the classic 
presentation of meconium ileus, the development of newer 
therapies has enabled survival of CF patients well into adult-
hood—among people with CF born in the United States 

between 2013 and 2017, half are predicted to live to 44 years 
old or more [9]. Despite this, the overall burden of CF on 
GI-specific symptoms and overall quality of life (QOL) is 
not well understood. A major focus of recent scholarship has 
been the development of patient-centered systems to quan-
titatively and qualitatively assess CF-related GI manifesta-
tions that have increasingly become chronic diseases of CF.

In one of the first efforts to validate a patient-reported 
abdominal-specific symptom assessment, Tabori et  al. 
recruited 131 pediatric and adult patients to complete the 
JenAbdomen-CF Score 1.0, a questionnaire addressing GI 
symptoms from the preceding three months. Symptoms were 
grouped into four domains: abdominal pain, non-pain symp-
toms (e.g. nausea), subjective evaluation of feces’ frequency, 
form, and color, and disorders of eating and appetite [4]. The 
most commonly reported symptoms were lack of appetite, 
loss of taste, abdominal pain, flatulence, and distention. The 
authors also identified 7 conditions which were associated 
with significantly increased abdominal symptoms: history 
of rectal prolapse, distal intestinal obstruction syndrome, 
history of laparotomy, meconium ileus, pancreatic insuffi-
ciency, or small bowel resection, and intermittent coloniza-
tion with P. aeruginosa.

Hayee et al. recruited 107 consecutive (i.e. non-selected) 
patients attending CF specialist appointments to complete 
pre-existing symptom surveys—the GI Symptom Rating 
Scale (GSRS); Irritable Bowel Syndrome Symptom Sever-
ity Score (IBS-SSS) and Cystic Fibrosis Questionnaire-
Revised (CFQ-R)—in order to assess the burden of chronic 
or functional bowel symptoms in CF [10••]. This cohort was 
comprised of adult patients (mean age 27.8 years), 88% of 
whom were pancreatic insufficient. Excluding symptoms of 

Table 1  Classification of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations based on functional defect

Successful production of functional Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein at the luminal epithelial surface 
involves multiple steps including transcription of the CFTR gene into mRNA in the nucleus, translation of mRNA into CFTR protein and folding 
of CFTR protein in the endoplasmic reticulum, post-translational modification and packaging into transport vesicles in the Golgi apparatus, and 
trafficking to the apical membrane of the cell surface. Mutations can occur affecting any of these steps

Mutation Class I II III IV V VI

Defect in CFTR 
Protein

Functional 
CFTR is not 
created

CFTR is misfolded 
& destroyed so 
it does not reach 
cell surface

CFTR reaches 
cell surface, but 
channel is less 
likely to be open 
due to defective 
regulation

CFTR reaches cell 
surface, but chlo-
ride conductance 
is defective

CFTR reaches cell 
surface, but quan-
tity produced is 
insufficient

CFTR reaches cell 
surface, but is 
less stable

Example mutations G542X F508del G551D R117H A455E Q1412X
R553X R560T V520F R117C 3849 + 10kbC → T 4326delTC
W1282X N1303K S549R R334W 2789 + 5G → A 4279insA

Expected exocrine 
pancreatic status

Insufficient Insufficient Insufficient Sufficient Sufficient Insufficient

Targeted drug 
therapy currently 
available

None CFTR Corrector CFTR Potentiator CFTR Potentiator CFTR Corrector,
CFTR Potentiator

None
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pancreatic insufficiency, 65% reported significant GI symp-
toms. Lower GI tract symptoms (bloating, borbyrygmi, flatu-
lence, and abdominal pain) were most common [10••].

This study suggests that many symptoms reported by CF 
patients are reminiscent of those seen in IBS. In fact, more 
CF patients had symptoms that met the Rome IV criteria 
for IBS than would be expected in the general population 
[10••]. Of the 2 scales used in the study, a group of patients 
reported significant symptoms in GSRS but not the SSS, 
suggesting that the GSRS may be more sensitive for this 
population [10••]. Due to similarities between CF-related GI 
symptoms and IBS, it has been posited that some therapies 
that have proven successful in IBS (e.g. linaclotide for the 
treatment of IBS-C) may be effective in CF [11].

A multicenter European consortium led by Boon and 
colleagues integrated a pre-existing GI symptom scale, 
the Pediatric Quality of Life Inventory, Gastrointestinal 
Symptoms Scales and Module (PedsQL GI), into a mobile 

application in order to validate the PedsQL GI in CF [12••]. 
The PedsQL GI had previously been validated in other pedi-
atric populations (inflammatory bowel disease, gastroesoph-
ageal reflux disease, and functional GI disorders), but not in 
CF [13, 14]. Based on administration of the PedsQL GI in 
248 pancreatic insufficient patients with CF age 24 months 
to 18 years, investigators found that the PedsQL GI was a 
valid, applicable instrument to assess GI related quality of 
life (QOL) in children with CF.

A UK-based group evaluated 276 responses to an online 
survey focused on the impact of gastrointestinal symptoms 
in cystic fibrosis [15•]. Distributed through online platforms 
including the Cystic Fibrosis Foundation, the United King-
dom CF Trust, and Twitter, the survey received anonymous 
responses from CF patients (n = 90), close family/friends 
(n = 79), and CF healthcare providers (n = 107). Health-
care providers reported that the most common symptoms 
described by CF patients or their caregivers were reduced 

Fig. 1  Potential impact of Cystic Fibrosis Transmembrane Conduct-
ance Regulator (CFTR) modulators on gastrointestinal manifesta-
tions of cystic fibrosis (CF). The boxed panel on the left highlights 
gastrointestinal complications of cystic fibrosis, grouped primarily by 
organ. The inset graphic in the lower right represents alterations in 

the fecal microbiome (dysbiosis). Inhibitory arrows (dashed because 
they are predominantly theoretical at this time) represent potential 
effects of CFTR modulators on gastrointestinal symptoms, dysbiosis, 
and other gastrointestinal complications of CF. GI, Gastrointestinal
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appetite, bloating and constipation, while lay respondents 
most commonly reported stomach cramps/pain, bloating and 
a ‘combination of symptoms.’ Although 94% of healthcare 
providers felt that pharmacologic therapy helped to relieve 
GI symptoms, only 58% of lay respondents agreed [15•].

The aforementioned studies illustrate the power of mobile 
and web-based applications in performing CF symptom 
assessments, and may facilitate further research using digi-
tal platforms to assess CF symptoms. In addition, the Cystic 
Fibrosis Foundation-sponsored GALAXY study, currently 
underway, is a multicenter study which utilizes pre-existing 
patient-reported outcome measures—PAC-SYM, PAGI-
SYM, PAC-QOL, and the Bristol Stool scale—with three 
additional symptom-specific questions [16•]. The GALAXY 
study aims to assess gastrointestinal symptoms in patients 
with CF and to develop an objective endpoint for future 
studies.

The Microbiome in CF

The successful development of Next Generation Sequencing 
technologies (NGS) has enabled assessment of the relation-
ship between the intestinal microbiome and systemic disease 
[17]. Knowledge in this arena is rapidly expanding, and it is 
now widely accepted that the microbiome influences many 
diseases, including CF, in which mucous accumulation 
within the GI tract results in abnormal microbial coloniza-
tion [18].

Multiple recent studies have shown that by infancy, the gut 
microbiome is altered in CF compared to healthy controls, 
both in terms of microbial diversity and overall composition 
[19, 20, 21••, 22, 23, 24]. A functioning pancreas does not 
seem to affect this dysbiosis [22, 25]. Interestingly, both the 
lung and gut microbiomes play a crucial role in the expression 
of CF, and one may influence the other. Madan et al. and Hoen 
et al. have shown a relationship between the development of 
the gut and lung microbiomes [26, 27]. Intestinal microbial 
dysbiosis may be further exacerbated by antibiotic therapy 
commonly used to treat pulmonary infections in CF [28].

The clinical impact of intestinal dysbiosis in CF is 
unclear, but a recent body of evidence suggests that it may 
play a role in disease. Antosca et al. showed a lower predom-
inance of Bacteroides spp in CF, a species which they pos-
tulate is associated with healthy immune modulation [19]. 
Burke et al. showed a high prevalence of virulent strains 
of C. difficile in the fecal analysis of asymptomatic adult 
patients with CF, suggesting that they may play a role in 
nosocomial transmission of the disease [29]. Small intestinal 
bacterial overgrowth (SIBO) is thought to affect 30–40% of 
individuals with CF and is associated with abdominal pain, 
bloating, flatulence weight loss, and nutrient malabsorption 
including vitamin B12, iron, bile acids, vitamin D, and folate 
that consequently can cause anemia [30]. Progressive fecal 

dysbiosis from birth has been associated with growth fail-
ure [31]. Multiple studies have demonstrated higher levels 
of fecal calprotectin in CF, a marker of gut inflammation 
derived from neutrophils, suggesting an inflammatory com-
ponent of CF enteropathy [32–34] that may be influenced by 
the microbiome. Using 16S rRNA sequencing, Enaud et al. 
showed similarities between the CF microbiome and Crohn’s 
disease [35]. Finally, Flass et al. demonstrated that compared 
to CF subjects without liver disease, CF subjects with cir-
rhosis are more likely to have intestinal mucosal lesions, a 
relative scarcity of Bacteroides, and a relative abundance of 
Clostridium[36].

Probiotics have been used to target CF dysbiosis with var-
ying degrees of success. Systematic reviews have evaluated 
the clinical use of probiotics in children and adults with CF 
[37–40•], including a 2020 Cochrane review. The Cochrane 
review found that probiotics reduced fecal calprotectin, but 
did not improve overall lung function, growth measures, 
hospitalizations, or quality of life measures. Adverse events 
were rare. Results were limited by lack of uniformity of pro-
biotic composition and dosage [40•].

Colorectal Cancer Screening Recommendations

Another consequence of increased longevity in CF has 
been the revelation that CF patients are at higher risk of GI 
malignancy than age-matched counterparts. Demonstrated 
by multiple longitudinal studies [7, 41–43], CF patients have 
an increased risk of digestive tract cancer, particularly fol-
lowing solid organ transplantation. CF patients appear to 
have a 5–tenfold increased risk of colon cancer compared 
with the general population, and advanced adenomas present 
more frequently and at a younger age [7, 44••]. Mechanisms 
proposed for this increased risk include the identification 
of CFTR as a tumor suppressor gene [45]. In addition, 
increased intestinal cell turnover as reflected in elevated 
fecal M2-pyruvate kinase in children with CF has been pos-
tulated as a mechanism [46]. Finally, Dayama et al. [47] 
evaluated colonic mucosal gene expression and the mucosal 
microbiome in patients with CF and healthy controls. They 
reported downregulation of 15-hydroxyprostaglandin dehy-
drogenase (15-PGDH), an enzyme in the cyclooxygenase-2 
pathway that acts as a tumor suppressor in colorectal neopla-
sia [48]. Dayama et al. identified patterns of gene expression 
and alterations in the microbiome that have been previously 
linked to colorectal cancer. For example, gene expression of 
LCN2 was correlated with a paucity of Ruminococcaceae, 
which is depleted in CRC, while expression of DUOX2 was 
correlated with an abundance of Veillonella, which was pre-
viously identified as a pro-inflammatory bacteria in the CRC 
microbiome [49].

Based on the increased risk of colon cancer, the Cystic 
Fibrosis Foundation and the American Gastroenterological 
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Association (AGA) established a CF colorectal cancer 
(CRC) screening task force to evaluate available evidence 
and formulate new CRC screening recommendations in 
CF. Published in 2018, these CRC screening recommenda-
tions are unique to the CF population [44••]. The task force 
recommends that decisions regarding CRC screening and 
surveillance be based on shared decision making between 
the provider and patient, with consideration of treatment, 
comorbid conditions (e.g. severity of lung disease), safety, 
and quality of life. The task force recommends CRC screen-
ing by colonoscopy (and not by non-endoscopic methods) to 
begin at age 40 in the non-transplant population and at 30 in 
those patients who have undergone solid organ transplant. 
Rescreening is recommended every 5 years in all transplant 
patients. Surveillance colonoscopy is recommended at 
3 years for adenomatous polyps. Finally, it is recommended 
that all adults undergoing colonoscopy receive intensive 
bowel preparation regimens.

CFTR Modulators

The most important recent pharmacologic advancements in 
CF have been the approval of CFTR modulating therapies 
over the last 10 years. Dubbed a “cause for celebration” by 
National Institutes of Health (NIH) director Francis Collins, 
these medications function by targeting specific mutations in 
CFTR [50]. CF is caused by mutations in CFTR that affect 
the quantity of the protein that reaches the cell surface or 
the function of CFTR channels at the cell surface (Table 1). 
Unlike previous therapies which sought to alleviate the 
symptoms of CF, these molecularly targeted therapies treat 
the mechanism of disease by targeting specific mutations 
(Tables 1, 2).

The first of these medications, ivacaftor (Vertex Phar-
maceuticals, Boston, MA), was approved by the Food and 
Drug Administration (FDA) in 2012. A so-called “poten-
tiator,” ivacaftor potentiates the activity dysfunction-
ing of gating membranes in the CFTR protein. Ivacaftor 
primarily targets the G551D CFTR missense mutation, 
present in 4–5% of patients with CF. Ivacaftor has been 
shown in multiple randomized controlled trials (RCTs) to 
increase the time that activated CFTR channels at the cell 
surface remain open, and may lead to significant pulmo-
nary improvement for adult and pediatric patients with the 
G551D mutation [51–54]. Secondary outcomes from these 
trials suggest ivacaftor improves nutritional status in both 
adult and pediatric patients and exocrine pancreatic func-
tion (as measured by increasing fecal elastase and decreas-
ing immunoreactive trypsinogen) in pediatric patients [51, 
54]. A large follow-up study extending an RCT population 
of 2–5 year-olds to 84 weeks showed maintenance, but not 
improvement of, gains made in body mass index (BMI) z 
scores and pancreatic function during the original 24-week 

study period [55]. Analysis of combined data from two 
RCTs including patients age 6 and older with the G551D 
mutation revealed improved nutritional status at 48 weeks 
[56].

The most important target of these therapies is the 
F508del CFTR mutation, the most common mutation asso-
ciated with CF [50]. Although hundreds of different disease-
causing CFTR mutations have been identified, nearly 90% 
of individuals with cystic fibrosis have at least one copy of 
F508del [1••,57]. The F508del mutation leads to a marked 
reduction in the quantity [1••,58, 59] and quality of CFTR 
protein at the surface of epithelial cells [1••,58] (Table 1).

Lumacaftor was the first drug to specifically target the 
F508del mutation, and works by helping to correct F508del 
CFTR misprocessing and increase the amount of CFTR at 
the cell surface. FDA approved in 2015 for use in F508del 
homozygotes aged ≥ 2 years as a combination pill with 
ivacaftor, lumacaftor-ivacaftor (Vertex Pharmaceuticals, 
Boston, MA) expanded on the promise shown by ivacaftor 
alone. As with previous trials that focused primarily on pul-
monary outcomes, GI-specific endpoints from large trials are 
secondary. The TRANSPORT trial, conducted in patients 
aged 12 or older, demonstrated modest BMI increases at 
24 weeks statistically significant compared to placebo [60]. 
Long-term follow up of these patients to 96 weeks suggests 
modest but persistent increase in BMI [60, 61]. Despite the 
success of lumacaftor-ivacaftor, the drug is associated with 
pulmonary complications including acute pulmonary events 
such as dyspnea, chest tightness, and a decrease in forced 
expiratory volume in 1 s  (FEV1) in up to 20% of patients [60, 
62–64]. In addition, lumacaftor causes CYP3A4 induction in 
some patients, leading to prohibitive drug-drug interactions 
(e.g. inactivation of hormonal contraception) and potentially 
limiting efficacy of the drug itself [65].

Developed as an alternative to lumacaftor-ivacaftor, 
tezacaftor as a fixed dose combination with ivacaftor (Ver-
tex Pharmaceuticals, Boston, MA) was FDA approved 
in 2018 for CF patients 6 or older who are homozygous 
for the F508del mutation. Like lumacaftor, tezacaftor is 
a “corrector,” and improves processing and trafficking of 
mutant F508del CFTR proteins. Two large randomized 
placebo-controlled clinical trials were designed to evalu-
ate the efficacy and safety of tezacaftor-ivacaftor. The first, 
EVOLVE, was a 24-week trial studying tezacaftor-ivacaftor 
in patients homozygous for the F508del mutation. The sec-
ond, EXPAND, was a multicenter, crossover trial evaluating 
tezacaftor-ivacaftor in patients heterozygous for F508del and 
a residual function mutation. Although both trials demon-
strated improvement in  FEV1, the primary endpoint, nei-
ther achieved statistical significance in BMI improvement 
[66, 67]. Compared to lumacaftor-ivacaftor, tezacaftor-
ivacaftor has demonstrated superiority in side-effect profile 
and medication interactions [68], though concomitant use 
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of tezacaftor-ivacaftor with strong CYP3A inducers may 
require dosage adjustments [68, 69].

With the combination of ivacaftor plus either lumacaftor 
or tezacaftor, approximately 50% of patients with CF were 
eligible for CFTR modulating therapy [70]. In 2019, a new 
triple combination therapy containing ivacaftor, tezacaftor, 
and the novel drug elexacaftor (Vertex Pharmaceuticals, 
Boston, MA) was FDA approved for CF patients aged ≥ 12 
with at least 1 F508del mutation. Elexacaftor is a CFTR cor-
rector that binds CFTR at a different site than tezacaftor to 
facilitate processing and trafficking of the CFTR protein to 
the cell membrane [71]. The concomitant use of elexacaftor, 
tezacaftor, and ivacaftor improve the function of F508del 
mutated CFTR protein at the cell surface. The addition of 
triple combination therapy to the arsenal of CFTR modula-
tors has increased eligibility for CFTR modulating therapy 
to approximately 90% of CF genotypes [70].

Two trials evaluated the safety and efficacy of elaxacaftor-
tezacaftor-ivacaftor combination therapy. The first compared 
the study drug to tezacaftor-ivacaftor in patients aged ≥ 12 
who were homozygous for the F508del mutation. After 
4 weeks, those patients in the interventional arm had an 
absolute improvement of 10% predicted  FEV1 versus the 
standard of care. While not included as a primary or sec-
ondary outcome, the trial noted a 4-week increase in BMI 
[72••]. The second trial, VX17-445-102 Study, compared 
the study drug to placebo in a similarly aged population of 
F508del heterozygotes. At 4 weeks, the interventional group 
showed a 13.8% absolute increase in predicted  FEV1 ver-
sus the standard of care. At 24 weeks, the mean difference 
in BMI (a secondary outcome) between the interventional 
group and placebo group was 1.04 kg/m2, which was statisti-
cally significant [1••]. Among gastrointestinal side effects in 
the second trial, diarrhea was reported in 12.9% of patients 
in the interventional group versus 7.0% in the placebo group. 
Use of elexacaftor-tezacaftor-ivacaftor in younger children 
age 6–11 has also been assessed in a 24-week open-label 
study which demonstrated safety and efficacy as well as 
increase in BMI for age z-score over the study period [73].

Notably, all of the CFTR modulators have a risk of ele-
vation of liver enzymes. For patients without pre-existing 
liver disease or liver function test abnormalities, liver 
function testing should be performed at baseline, every 
3 months during the first year of treatment, and annually 
thereafter. In addition, dosing should be interrupted in 
patients with significant elevations of transaminases (e.g., 
ALT or AST > 5 × upper limit of normal [ULN], or ALT or 
AST > 3 × ULN with bilirubin > 2 × ULN) and laboratory 
tests should be closely followed until abnormalities resolve 
[74]. The manufacturer does not recommend use of elex-
acaftor-tezacaftor-ivacaftor in Child–Pugh Class B or C 
liver disease; if used despite the risks in Child–Pugh Class 
B liver disease, dose adjustment is recommended due to 

an association with bilirubin elevation in a small clinical 
study [74]. Patients with pre-existing liver disease or his-
tory of liver function test abnormalities may need more 
frequent lab monitoring. In the VX17-445–102 study, one 
patient with pre-existing cirrhosis in the interventional 
arm discontinued the drug due to portal hypertension. 
[1••] Otherwise, data regarding liver injury linked to these 
medications is sparse, but more data may emerge as their 
use increases [75]. Further complicating the picture, elex-
acaftor inhibits uptake by OATP1B1 and OATP1B3, anion 
transporting polypeptides expressed in hepatocytes [74]. 
Since bilirubin is a substrate of OATP1B1 and OATP1B3, 
one might expect hyperbilirubinemia as a result of this 
mechanism. Indeed, 5% of patients in the VX17-445–102 
study receiving the drug developed hyperbilirubinemia, 
compared to 1% in the placebo group. [1••]

Most of the data regarding GI outcomes of CFTR mod-
ulators come in the form of observational studies and case 
reports. In addition, because of the recent entry into the 
market of tezacaftor-ivacaftor and elexacaftor-tezacaftor-
ivacaftor, much of the current data assessing GI-specific 
outcomes of CFTR modulators pertains to ivacaftor and 
lumacaftor-ivacaftor. However, more data should emerge 
as investigators begin to evaluate the GI effects of these 
newer medications.

Lumacaftor and ivacaftor have shown promise in treat-
ing CF-related hepatobiliary complications. Though cau-
sality cannot be established due to its observational nature, 
a review of U.S. and U.K. CF registry data indicated that 
ivacaftor treatment was associated with fewer hepatobil-
iary complications compared with no CFTR modulator 
therapy [76, 77]. In a cross-sectional study of 20 subjects 
with CF, lumacaftor-ivacaftor use was associated with 
reduced hepatic steatosis (as measured by magnetic reso-
nance imaging [MRI] proton density fat fraction [PDFF]) 
[78]. The drug was also associated with lower total bili-
rubin. Finally, ivacaftor may help restore disruption of 
enterohepatic circulation of bile acids in CF patients with 
S1251N and G551D gating mutations [79].

Lumacaftor and ivacaftor may also improve CF-related 
pancreatic disease. A small case series suggests that use 
of ivacaftor may reduce episodes of pancreatitis in pancre-
atic sufficient CF patients with recurrent pancreatitis [80]. 
While modest promise has been shown in early markers 
of CFRD, such as glucose tolerance and insulin response, 
permanent improvements in CFRD have proven elusive 
[77, 81–85]. For both ivacaftor alone and lumacaftor-iva-
caftor, studies reporting a variety of pancreatic exocrine 
function outcomes (fecal elastase, lipase supplementation 
dosage, and serum immunoreactive trypsinogen) suggest 
improvement of EPI, but limited conclusions can be drawn 
due to study limitations, including small sample size, lack 
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of control group, and unknown variability of outcome 
measures over time [51, 54, 77, 86, 87].

Lumacaftor and ivacaftor may improve additional GI-
related illness. Ooi and colleagues evaluated the effects 
of ivacaftor on fecal calprotectin and intestinal microbial 
communities (using 16SrRNA variable 3 gene region 
amplicon sequencing) in 16 patients [88••]. Ivacaftor was 
associated with an increase in Akkermansia spp, and a 
decrease in Enterobacteriaceae which correlated with 
a decrease in fecal calprotectin. The clinical impact of 
these findings is not known. Other studies have shown 
promise in nutritional status [56], extra-esophageal reflux 
[89], symptomatic celiac disease (CD) in pediatric patients 
(case series) [90], and proximal small intestine pH profile 
[91].

Conclusions

As new therapies emerge and patient longevity increases 
in CF, research has increasingly focused on GI manifes-
tations. Four recent developments provide a major boost 
to the emerging field of CF gastroenterology. The devel-
opment of patient-reported GI symptom scoring systems 
has helped standardize symptom reporting and identify 
areas for intervention. Studies attempting to characterize 
the microbiome in CF demonstrate its potential role in GI 
symptoms and raise the possibility of targeting the micro-
biome for therapeutic benefit. Recognition of the height-
ened risk of colorectal cancer in the CF population has led 
to recommendations for screening colonoscopy beginning 
at age 40 in the general CF population and 30 in transplant 
recipients. Finally, CFTR modulators are the first targeted 
pharmacologic therapies for CF. Because these new medi-
cations were originally studied for their impact on pul-
monary complications, data regarding their impact on GI 
manifestations of CF are just beginning to emerge. Future 
research should assess the impact of CFTR modulators 
on the gut microbiome, GI symptoms, and GI cancer risk.
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