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Abstract Recognition of the molecular heterogeneity of co-
lorectal cancer (CRC) has led to the classification of CRC
based on a variety of clinical and molecular characteristics.
Although the clinical significance of the majority of these
molecular alterations is still being ascertained, it is widely
anticipated that these characteristics will improve the accuracy
of our ability to determine the prognosis and therapeutic re-
sponse of CRC patients. A few of these markers, such as
microsatellite instability and the CpG island methylator phe-
notype (CIMP), show promise as predictive markers for cyto-
toxic chemotherapy. KRAS is a validated biomarker for epi-
dermal growth factor receptor (EGFR)-targeted therapy, while
NRAS and PI3KCA are evolving markers for targeted thera-
pies. Multiple new actionable drug targets and potential re-
sponse biomarkers are being identified on a regular basis,
but most are not ready for clinical use at this time. This review
focuses on key molecular features of CRCs and the applica-
tion of these molecular alterations as predictive biomarkers for
CRC.

Keywords Biomarker . Colorectal cancer . Treatment .

Molecular . MSI .Microsatellite instability . Methylation .

CIMP . KRAS . NRAS . BRAF . TP53 . PIK3CA .MET .

MEK . EGFR

Introduction

Historically, the use of surgery, chemotherapy, and/or radia-
tion therapy for colorectal cancer (CRC) has been guided by
the TNM stage alone [1]. However, it is well known that the
TNM stage is, at best, a modestly accurate predictor for re-
sponse to treatment. It has been increasingly recognized that
there are tumor molecular characteristics that more accurately
guide the management of CRC patients by improving our
ability to identify individuals at high risk of disease recurrence
and to determine therapies that will be most effective in spe-
cific patients. This review focuses on recent advances in the
discovery and validation of predictive markers that can be
used to guide the treatment of CRC patients. We will discuss
both validated and emerging biomarkers for conventional cy-
totoxic chemotherapy as well as for targeted therapies, such as
anti-EGFR therapy. Mutant KRAS has served as the paradigm
for predictive biomarkers for anti-EGFR therapy. However,
the complexity of the molecular genetics and epigenetics of
CRC and of the molecular biology of signaling pathways has
revealed that the development and validation of other bio-
markers for targeted therapy will be challenging. Many poten-
tial candidate genes for targeted therapy have been recently
identified, creating opportunities for companion predictive
marker assays. Predictive gene signature platforms are also
under active investigation. In just the last few years, this area
has greatly expanded as researchers and clinicians attempt to
develop CRC treatments that will be optimally effective for
specific patients.

Molecular Characterization

The identification of specific chromosomal abnormalities and
gene mutations in CRC over 30 years ago provided the first
glimpse into the potential for these molecular alterations to be
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used to guide therapy for CRC. Since that time, tremendous
advances have been made in our understanding of the molecu-
lar pathology of CRC. There are three commonly recognized
molecular subclasses of CRC that are characterized by their
forms of genomic and epigenomic instability: chromosome un-
stable (CIN; also referred to as microsatellite stable (MSS)
CRC), microsatellite unstable (MSI), and the CpG island meth-
ylator phenotype (CIMP) [2]. Although this classification
scheme is believed to oversimplify the molecular complexity
of CRCs, it has been shown that CIN, MSI, and CIMP CRCs
each have characteristic clinical and molecular phenotypes.

Recent Advances in the Molecular Characterization of CRC

The Cancer Genome Atlas (TCGA) Network performed a
genome-scale analysis of 276 CRC samples, noting heteroge-
neity in the gene expression signatures and mutation profiles
of the different individuals’ tumors [3]. Of those that
underwent whole genome sequencing, 16 % were found to
be hypermutated, which meant that they had a substantially
higher density of sequence mutations compared to the other
CRCs. The vast majority of these hypermutated cases were
also MSI and/or CIMP, although a previously unrecognized
class of hypermutable CRCs was also observed. In addition to
the common driver genes already known to occur in CRC
(e.g., APC, KRAS, TP53), the non-hypermutated CRCs had
a variety of gene mutations in other genes, including 24 that
occurred with a reasonably high frequency. The findings from
the TCGA and others have ledmultiple groups to develop new
classification schemes that are more accurate and consistent
than our current scheme based on CIN, MSI, and CIMP [4].

Gene Expression Signature Assays and Mutation Signature
Assays

With the advent of next-generation sequencing and improving
high-throughput technologies, gene signature assays have
been developed for CRC. Two assays have been validated
and approved for clinical use: Oncotype DX (Genomic
Health, Inc.) and ColoPrint (Agendia) [5, 6]. These expression
signature assay platforms appear to be best used for prognosis,
rather than prediction of chemotherapy benefit [7, 8]. Multiple
other assays, such as UW-OncoPlex (University of Washing-
ton), attempt to more broadly assay somatic alterations to
identify clinically actionable and emerging somatic mutations
[9]. The uptake of such assays into the clinic varies widely, but
is likely to become a standard-of-care instrument in the future.

Cytotoxic Chemotherapy

Currently, CRC is predominantly managed with surgical re-
section for early stage CRC and with a combination of surgery

and chemotherapy for advanced disease. 5-Fluorouracil (5-
FU) is the backbone cytotoxic agent used in most regimens.
While originally given as a single agent, 5-FU is now most
commonly administered in combination with oxaliplatin
(FOLFOX) for adjuvant therapy for stage III (and high-risk
stage II) CRC and with either oxaliplatin (FOLFOX) or
irinotecan (FOLFIRI) for metastatic CRC [10–13]. Conse-
quently, predictive biomarkers for CRC have initially focused
on these conventional cytotoxic chemotherapy agents.

Established Molecular Markers

There has been considerable interest in identifying predictive
molecular markers for chemotherapy effect both in the adju-
vant and metastatic settings. Candidate biomarkers that have
been heavily scrutinized include mutant TP53, thymidylate
synthase (TS) expression, and amplified ERCC1, among
others [14–16]. Unfortunately, none of these markers has been
established as a predictive marker that is ready to be used
clinically. However, despite the lack of success so far, recent
data has shown that MSI is a robust prognostic marker for
survival and is also a promising marker for 5-FU responsive-
ness [17, 18].

Microsatellite Instability

MSI was discovered in the early 1990s during studies to iden-
tify potential tumor suppressor genes in CRC [17]. MSI is
recognized by the presence of a high frequency of frameshift
mutations in microsatellite DNA and results from inactivation
of the DNA mismatch repair (MMR) system. A portion of
MSI tumors are due to germline mutations in one of the
MMR genes, MLH1, MSH2, MSH6, or PMS2, which cause
Lynch syndrome. The majority (80 %) of MSI cases is spo-
radic and is due to hypermethylation of the MLH1 gene pro-
moter [17, 19]. This is often associated with mutant BRAF-
V600E and CIMP [20].

A large number of studies have demonstrated that individuals
with proximal MSI CRCs have a better prognosis than stage-
matched MSS CRCs, particularly when no adjuvant therapy is
given [18]. More recently, MSI has also been shown to predict
lack of benefit of adjuvant 5-FU in stage II–III colon cancer
patients (and possible harm in stage II patients) [21–23]. How-
ever, its role as a predictive marker with modern combination
chemotherapy regimens, such as FOLFOX and FOLFIRI, is
uncertain [24, 25]. This uncertainty is a consequence of differ-
ences in the studies’ chemotherapy regimens and assays for
MSI, which make it difficult to compare studies and develop a
robust and generalizable conclusion about the role of MSI as a
predictive marker for conventional chemotherapy.

There is continued investigation of the use of MSI to pre-
dict response to chemotherapy for modern combination regi-
mens. A recently published retrospective analysis of stage III
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patients treated with adjuvant FOLFOX in the N0147 trial
demonstrated a predictive value for MSI [22]. This marked
difference in chemotherapy response prediction capability be-
tween single-agent 5-FU and combination regimens may be
partly due to variability in multivariate models, as newer
models often account for KRAS and BRAF status [26]. The
ability of MSI to predict response to oxaliplatin may reflect
effects unrelated to inactivation of the MMR system, as was
concluded by investigators in the NSABP-07 trial. The benefit
from oxaliplatin in individuals with MSS tumors may attenu-
ate the beneficial effect of MSI status on survival [27]. Al-
though MSI was retrospectively shown to predict improved
disease-free survival (DFS) with adjuvant irinotecan and 5-FU
(IFL regimen) in the CALGB (Alliance) 89803 trial, MSI has
not consistently served as a predictor of benefit from combi-
nation chemotherapy with 5-FU and irinotecan [28–30].

Interestingly, the underlying cause of MSI may affect
whether MSI is predictive for chemotherapy responsiveness.
In a retrospective analysis of stage II and III colon cancer
patients that received adjuvant 5-FU or placebo, Sinicrope
et al. compared individuals with MSI CRCs secondary to
germline mutations (i.e., Lynch syndrome) to those with spo-
radic MSI tumors [31]. Individuals with germline mutations
had improved DFS after 5-FU adjuvant chemotherapy, while
patients with sporadic MSI CRCs did not receive benefit (p=
0.006). These findings suggest that recognizing both molecu-
lar features and their etiology is important for determining the
utility of predictive biomarkers. Additional studies are needed
to clarify whether the disparate MSI effect in single-agent 5-
FU vs. in modern multi-agent therapies is also related to the
etiology of MSI. Thus, MSI is largely accepted now as a
prognostic marker, but its role as a predictive biomarker is
more controversial, which has led to its continued scrutiny
(Table 1).

Emerging Markers

CIMP

CIMP is found in 5–40 % of CRCs and is defined by an
exceptionally high frequency of aberrantly methylated CpG
dinucleotides in the genome [45]. In normal cells, the majority
of DNA is methylated at CpG dinucleotides except in CG-rich
regions (“CpG islands”). These CpG islands are found in ap-
proximately half of gene promoters and are usually
unmethylated in normal cells. However, in the majority of
CRCs, many of the CpG islands become aberrantly methylat-
ed. CIMP CRCs are distinct from other CRCs because they
have an exceptionally high frequency of methylated CpG
islands. CIMP is thought to promote carcinogenesis by silenc-
ing tumor suppressor genes via methylation-mediated tran-
scriptional repression [2].

Since the initial discovery of CIMP in 1999, a number of
assay panels have been developed to determine the CIMP
status of CRCs. Unfortunately, there has been no consensus
regarding which panel to use, which has, in turn, slowed the
investigation and development of CIMP as a predictive bio-
marker [45]. Despite the lack of a “gold-standard” CIMP as-
say, there does appear to be an association between CIMP and
poor prognosis and, albeit less consistently, between CIMP
and a favorable response to 5-FU [45] (Table 2). Recently, in
an exploratory retrospective analysis of a randomized trial of
5-FU/leucovorin (5-FU/LV) alone vs. with irinotecan (IFL
regimen) in stage III colon cancer patients (CALGB/Alliance
89803), Shiovitz, et al. found that CIMP-positive individuals
had worse overall survival [46•, 59]. These authors also found
on sub-group analysis that patients with CIMP-positive colon
cancers that were also MMR-intact (MMR-I) did better with
IFL than with 5-FU/LV alone with a 5-year overall survival
(OS) of 66 vs. 46%, respectively. Furthermore, in this updated
data analysis from this trial, CIMP was a stronger prognostic
feature than MSI [28, 46•]. Other studies assessing the use of
CIMP to predict response to FOLFOX therapy did not observe
CIMP to be a significant predictor [60]. At this time, CIMP
appears to have a strong potential to be a prognostic marker
for CRC, but its use as a predictive marker for conventional
chemotherapy will require further investigation.

BRAF

There is substantial evidence from the retrospective analysis
of cohort and randomized clinical trials that mutant BRAF is a
marker of poor prognosis [26, 36]. There is also some data to
suggest that individuals with BRAF-mutant metastatic CRC
may benefit from aggressive first-line therapy (Table 1).When
the chemotherapy triplet regimen of 5-FU, oxaliplatin, and
irinotecan (FOLFOXIRI) was compared to FOLFIRI, signif-
icantly improved response rate (RR; 60 vs. 34 %, respective-
ly), progression-free survival (PFS; 9.8 vs. 6.9 months), and
OS (22.6 vs. 16.7 months) were noted in unselected stage IV
patients [32]. The clinical importance of these results is not
clear as this regimen is not standard-of-care. Also, of note are
results from the analysis of a small phase 2 trial suggesting
improved PFS with the use of FOLFOXIRI + bevacizumab in
patients with metastatic BRAF-mutant CRCs [42•]. In these
patients, median PFS was 9.2 months and OS was
24.1 months. For approximate comparison, median PFS for
BRAF-mutant CRCs was 5.6 months with FOLFIRI and
8.0 months with FOLFIRI + cetuximab [37]. However, in
the MRC FOCUS trial of advanced CRC, mutant BRAF was
not shown to be a significant predictive marker for any 5-FU-
based chemotherapy regimen (5-FU/LV, 5-FU + oxaliplatin,
or 5-FU + irinotecan) [61]. Thus, BRAF is best considered as
an emerging marker for predicting response to conventional
chemotherapy, which is still in need of further assessment.
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Table 1 Studies of candidate biomarkers with conventional cytotoxic treatment of colorectal cancer (+/- targeted therapy)

Biomarker Mutation
prevalence

Stage Biomarker Features Treatmentb Median DFS/PFS
(months)e

Median OS
(months) e

Unselecteda

[32–35]
100 % IV FOLFOX 7.2

FOLFOX + cetux 7.2

FOLFIRI 6.9–8.0 16.7–18.6

FOLFIRI + cetux 8.9

FOLFOXIRI 9.8 19.9

FOLFOXIRI + bev 13.1 22.6

MSI
[22, 23, 31]

12–16 % II All
Germline MSI
Somatic MSI

5-FUc HR 2.3*
HR 0.31
HR 1.5*

HR 2.95

III All
Germline MSI
Somatic MSI

HR 1.01*
HR 0.26
HR 0.77*

MSS
[22, 23, 31]

88 % II 5-FUc HR 0.84*

III HR 0.64

KRAS
[34, 36, 37, 38•, 39]

37–40 % IV Exon 2 mutation FOLFOX 8.6–9.2 19.2

FOLFOX + cetux 5.5

FOLFOX + pan 7.4 15.5

FOLFIRI 8.1 17.7

FOLFIRI + cetux 7.6 17.5

3–4 % Exon 3 or 4 mutation FOLFIRI 16.7

FOLFIRI + cetux 16.2

NRAS
[39, 40••, 41]

2–3 % IV Exon 2–4 mutation FOLFOX 8.0 17.8

FOLFOX + pan 7.3 17.1

BRAF
[36, 37, 39, 42•]

5–18 % IV V600E mutation FOLFIRI 5.6 10.3

FOLFIRI + cetux 8.0 14.1

FOLFOXIRI

FOLFOXIRI + bev 9.2 24.1

RAS wild type
[33, 34, 37, 38•, 39,
40••, 43••, 44]

53 % IV KRAS exon 2 wild type FOLFOX 7.2–8.6 19.4–19.7

FOLFOX + cetux 7.7

FOLFOX + pan 9.6–10.0

FOLFIRI 8.7 23.9

FOLFIRI + cetux 9.9–10.0 21.0

FOLFIRI + bev 10.3 24.9–28.7

25.0

Wild type for expanded
KRAS and NRAS

FOLFOX 7.9 20.2

FOLFOX + pan 10.1 25.8

FOLFIRId 8.8 21.6

FOLFIRI + cetuxd 10.4–10.9 25.1–33.1

FOLFIRI + bev 10.2 25.6

FOLFOXIRI+pand 11.3

MSI microsatellite unstable, MSS microsatellite stable, 5-FU 5-fluorouracil, FOLFOX 5-FU, leucovorin, oxaliplatin, FOLFIRI 5-FU, leucovorin,
irinotecan, FOLFOXIRI 5-FU, leucovorin, oxaliplatin, irinotecan, cetux cetuximab, pan panitumumab, bev bevacizumab, DFS disease-free survival,
PFS progression-free survival, OS overall survival
a These data reflect trials where biomarkers were not used to guide the therapy choice, often predating recognition of predictive biomarker. These data are
meant to serve as a reference for the biomarker-guided therapy outcomes
b For stage IV cases, only first-line therapy data are included
c Reported hazard ratios are for adjuvant 5-FU/LV vs. surgery alone. Median survival data were not reported
d These data include individuals who are wild type for KRAS, NRAS, and BRAF
e These data are reported in phase 2–3 trials. The appropriate comparisons are not noted, but can be found in the associated references. Unavailable data
values were left blank

*Result does not meet statistical significance at p<0.05
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Anti-angiogenic Therapy

In the decade since the FDA approval of the vascular endothe-
lial growth factor (VEGF)-targeted agent bevacizumab for
CRC, multiple studies have demonstrated superiority of
bevacizumab-based chemotherapy to cytotoxic chemotherapy
alone for the treatment of metastatic CRC [62, 63]. Notably,
bevacizumab-related hypertension occurs more often in indi-
viduals who respond to treatment [64, 65]. Consequently, hy-
pertension is considered a pharmacodynamic biomarker, but
lacks the predictive capability needed to guide the selection of
optimized individual therapeutic regimens. Overall, to date, no
reliable biomarkers for prediction of response to anti-
angiogenic therapy have been found, although there are some
promising potential biomarkers, which will be discussed below.

Multiple retrospective studies have attempted to identify
predictive markers of bevacizumab response in CRC [66].
Recently, retrospective studies have suggested an association
between carcinoembryonic antigen (CEA) levels and response
to bevacizumab-based chemotherapy. Lower baseline CEA
levels suggest a higher likelihood of treatment response and
longer median PFS and OS [67•, 68]. Prager et al. assessed
baseline CEA levels in a cohort of patients receiving first-line
therapy with chemotherapy (FOLFOX, XELOX, FOLFIRI,
or XELIRI) and bevacizumab and compared them to patients
who received a cetuximab-based regimen. The CEA classifi-
cation of high vs. low was somewhat arbitrarily derived as
above or below the study median value, questioning the use
of this threshold in other populations, but the results were
validated in an independent cohort. Arguing against the use

of CEA, a similar unrelated retrospective analysis did not ob-
serve that CEA predicted response to either bevacizumab or
cediranib [69•]. Additional suggested predictive biomarkers
for bevacizumab treatment response and/or efficacy include:
level of tumor VEGF-A expression, germline genetic varia-
tions in pericyte maturation genes, phosphatase and tensin
homolog (PTEN) loss, and levels of phosphorylated AMP-
activated protein kinase (pAMPK) [47, 70–73]. However, de-
spite the identification of a number of plausible predictive
markers for responsiveness to bevacizumab, none of these
markers has been validated as a clinically useful biomarker.
Baseline serum VEGF and CEA levels appear to have the
highest potential to be used as predictive markers to date,
but will require additional studies using stringent thresholds
and validated assays before they are ready to be used clinically
[68, 74].

Similar to the situation for bevacizumab the newer anti-
angiogenic agents regorafenib and aflibercept lack predictive
markers [75]. Thus, with a deficiency of predictive bio-
markers, the selection of anti-angiogenic therapy should be
guided by other factors at this time, including potential side
effects and tumor molecular features that predict benefit or
harm from other agents.

EGFR-Targeted Therapy

Two targeted anti-epidermal growth factor receptor (EGFR)
monoclonal antibodies have been approved in combination
with chemotherapy for the treatment of metastatic CRC.

Table 2 Emerging predictive biomarkers in colorectal cancer

Biomarker Biomarker prevalence Stage Application(s)

CIMP
[45, 46•]

24 % II–III • Controversial whether CIMP-positive individuals derive greater benefit from adjuvant
5-FU as a single agent

• CIMP-positive, MMR-I individuals had longer 5-year OS with IFL vs. 5-FU/LV.
CIMP-negative, MMR-D patients had a trend toward benefit from IFL. Other sub-groups
did not appear to benefit from the addition of irinotecan to 5-FU/LV

TP53
[47]

52 % II–III • Wild-type TP53 was predictive of benefit from adjuvant CAPOX + cetuximab vs. CAPOX
alone in the EXPERT-C trial, whereas there was no difference among TP53-mutant cases.
TP53 is not yet routinely used for chemotherapy response prediction

PIK3CA
[39, 48••, 49–52]

10 % Exon 9 IV • Exon 20 mutations are predictive of worse outcomes with anti-EGFR therapy
• PI3K inhibitors are being evaluated
• PIK3CA mutations may predict benefit from aspirin for secondary prevention

3 % Exon 20

MET
[53•, 54]

Increased after exposure
to anti-EGFR therapy

IV • Over-amplification or increased expression of MET is associated with resistance to
anti-EGFR therapy

MEK
[55, 56]

Increased after exposure
to anti-EGFR therapy

IV • Selective MEK-1/2 inhibitors are currently being evaluated in clinical trials, alone and in
combination with other targeted therapies

HER2
[57]

2–3 % IV • Dual blockade of HER2 and EGFR has increased efficacy compared to either agent alone
in preclinical models

BRAF
[36, 58]

5–18 % IV • BRAF inhibitors have been poorly effective as single agents, but continue to be evaluated in
combination therapies

CIMP CpG island methylator phenotype, MMR-I mismatch-repair-intact, MMR-D mismatch repair-deficient, 5-FU 5-fluorouracil, LV leucovorin, IFL
irinotecan, 5-FU, LV, CAPOX capecitabine, oxaliplatin

Curr Gastroenterol Rep (2015) 17: 6 Page 5 of 11 6



While rare reports note EGFR mutations that preferentially
affect cetuximab vs. panitumumab responsiveness [76•], gen-
erally, these agents are thought to have equivalent efficacy
[77]. The addition of panitumumab in the first line in unse-
lected stage IV patients showed a 1.4-month increase in PFS
compared to FOLFOX alone (PRIME trial [38•]), while
cetuximab combined with FOLFIRI in the CRYSTAL trial
added a 0.9-month PFS benefit [33]. The OPUS study, which
combined cetuximab and FOLFOX in unselected metastatic
patients, failed to demonstrate a survival benefit [34].

Established predictive markers

KRAS exon 2

Shortly after the clinical benefit of cetuximab and
panitumumab was shown in patients with metastatic CRC, it
was noted that anti-EGFR therapy efficacy was confined to
individuals with KRAS wild-type tumors, with no response or
even harm to patients with KRAS-mutant tumors [78, 79]. For
example, stratified analysis in the OPUS study noted im-
proved survival in individuals with KRAS wild-type CRCs
(7.7 vs. 7.2 months in cetuximab + FOLFOX vs. FOLFOX
alone, p=0.02), but worse survival in individuals with KRAS-
mutant tumors (5.5 vs. 8.6 months, p=0.02) [34]. Importantly,
this original definition of mutation status was restricted to
KRAS exon 2, and codons 12 and 13. Interestingly, EGFR
expression does not appear to correlate with response to either
cetuximab or panitumumab [80, 81]. KRAS mutation status is
now clearly established as the first clinically useful biomarker
to predict response to anti-EGFR therapy.

Expanded RAS testing

Multiple retrospective studies have now shown that KRAS
testing restricted to exon 2 misses cases resistant to anti-
EGFR therapy. “Expanded RAS” testing is now advocated,
which also tests exons 3 (codon 61) and 4 (codons 117, 146)
ofKRAS and exons 2–4 ofNRAS [1]. In the PRIME trial, 17%
of patients with CRCs that were wild type for KRAS exon 2
were found to have a mutation in another RAS exon: 4 %
KRAS exon 3, 6 % KRAS exon 4, 3 % NRAS exon 2, and
4 % NRAS exon 3 (and 0 % NRAS exon 4) [40••]. While the
numbers were small, any RASmutation was associated with a
statistically significant worse PFS (hazard ratio (HR) 1.31,
95 % confidence interval (CI)=1.07–1.60). Those patients
with no RAS mutations detected using the expanded RAS
protocol (“expanded wild type”) were most likely to receive
benefit (HR 0.72, 95 % CI=1.04–1.62). Similarly, in the
FIRE-3 study, 16 % of individuals who were wild type at
KRAS exon 2 were found to have a RASmutation by expanded
RAS testing [43••]. Comparing FOLFIRI + cetuximab to
FOLFIRI + bevacizumab, PFS in the expanded wild-type

population was 10.4 vs. 10.2 months (p=0.54) and OS was
33.1 vs. 25.6 months (p=0.011), respectively. These absolute
differences were greater than when evaluating the entire
intent-to-treat population, which included a more limited as-
sessment of KRAS mutation status.

Anti-EGFR therapy has been evaluated beyond its use with
doublet chemotherapy in metastatic CRC. Expansion of anti-
EGFR therapy to adjuvant therapy in non-metastatic CRC has
failed to show a benefit, even within KRAS wild-type CRC
[82, 83•]. This suggests a difference in tumor biology in stage
III as compared to stage IV patients. The application of anti-
EGFR therapy is also being explored with triplet therapy for
metastatic CRC. There is phase 2 clinical trial data that first-
line panitumumab + FOLFOXIRI is efficacious in patients
with wild type KRAS,HRAS, NRAS, and BRAFwith a median
PFS of 11.3 months [44].

Based on the above information, the National Comprehen-
sive Cancer Network (NCCN) currently advocates for full
testing of KRAS and NRAS in all cases of metastatic CRC to
guide therapy selection [1] (Table 1).KRAS,NRAS, and BRAF
mutations appear to be mutually exclusive [39]. Retrospective
studies suggest that the clinical outcomes predicted by KRAS
mutations are irrespective of the mutated codon [84•, 85]. It
remains controversial whether patients with KRAS G13D mu-
tations might gain benefit from anti-EGFR therapy; the appar-
ent responsiveness of CRCs with KRASG13Dmutations may
be an effect of codon 13 mutations reflecting a worst progno-
sis in early stage and metastatic CRC [86, 87]. Currently, the
role of EGFR pathway testing in non-metastatic CRC is not
established since anti-EGFR therapy has failed to show effi-
cacy in stage II or III CRC patients. As BRAF lacks the pre-
dictive value for anti-EGFR therapy, BRAF testing is currently
considered optional for KRAS/NRASwild-type tumors [1, 37].
Given the evolving knowledge about the RAS pathway, clin-
ical trials that include anti-EGFR therapy should be critically
evaluated in the context of their inclusion/exclusion criteria
and RAS testing strategies.

Emerging Predictive Markers

PI3K/AKT/PTEN

Distinct from the RAS/RAF pathway, members of the
phosphoinositide-3-kinase (PI3K), pathway, PIK3CA, AKT,
and PTEN also are downstream effectors of EGFR signaling.
Mutations in these genes may also affect anti-EGFR therapy
responsiveness. In retrospective studies, patients with CRCs
that have PIK3CA exon 20 (kinase domain) mutations have
much worse outcomes with cetuximab compared to patients
with PIK3CAwild-type CRCs [39]. PIK3CA exon 9 (helical
domain) mutations do not seem to serve as a predictivemarker
for anti-EGFR therapy, which highlights the complexity of the
effects of the specific mutations on the functions of the altered
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kinases. Of interest, PIK3CA exon 9 mutations are often seen
with KRAS mutations and KRAS remains the stronger predic-
tive biomarker. Collectively, approximately 70–80 % of cases
unresponsive to EGFR-targeted therapy appear to be second-
ary to mutations in KRAS, NRAS, PI3KCA, and other proteins
relevant to EGFR signaling [39, 53•, 57].

PIK3CA mutations may also be beneficial in guiding sec-
ondary prevention options. Large studies have demonstrated
that aspirin reduces adenoma and CRC formation [88]. More
recent observational data suggests that the aspirin benefit is
limited to individuals withPIK3CA-mutant tumors [48••]. The
use of aspirin in secondary prevention remains a complex
issue because of the risks of aspirin use; further study is
required.

TP53

TP53 is not in the EGFR pathway or traditionally thought of
as a predictive biomarker for EGFR-targeted therapy. Howev-
er, in the phase 2 EXPERT-C trial, which added cetuximab in
the adjuvant setting for high-risk stage II rectal cancer pa-
tients, exploratory retrospective analysis suggested TP53 mu-
tation status did predict benefit from cetuximab [89•, 90].
Patients with TP53 wild-type tumors who received cetuximab
in addition to adjuvant capecitabine and oxaliplatin (CAPOX)
had improved PFS and OS compared to CAPOX alone
(Table 2). However, among individuals with TP53-mutant tu-
mors, there was no difference in survival with the addition of
cetuximab. Of note, only 60 % of patients were wild type for
KRAS (exons 2 and 3) and BRAF, but the interaction between
TP53 and treatment arm remained significant when adjusting
for KRAS mutation status. At this time, TP53 mutation status
is not routinely assessed in rectal cancer patients.

Emerging Mechanism-Driven Therapy

Several hallmark cellular changes necessary for carcinogene-
sis are now recognized, including the induction of angiogen-
esis, evading growth suppressors, and activation of invasion
and metastasis [91] The development of newer agents for
CRC has focused on key pathways in CRC that mediate these
hallmark behaviors of cancer cells [92], with the aim of
counteracting the cellular signaling changes that result from
driver gene mutations in these central signaling pathways.
Beyond the EGFR pathway, none of these agents are currently
ready for clinical use in patients with CRC. However, several
agents are on the horizon and show promise for future imple-
mentation. Ideally, these agents will have companion diagnos-
tic assays that will be used to select individuals who have the
highest likelihood of response.

PI3K Inhibitors

PI3K pathway inhibitors have been developed, but their role
in the treatment of CRC is currently unclear. Newer investi-
gational agents have shown some promise in the preclinical
setting for PI3KCA-mutant tumors [49, 50]. However, once
applied to the clinical setting, PI3K inhibitors have largely
failed to show significant clinical benefit in CRC, despite the
hypothesis that they would be effective given the high fre-
quency of mutations in PIK3CA, PTEN, and other PI3K sig-
naling pathway members in CRC [51, 52]. Further study of
these agents is likely to focus on the efficacy of this class of
agents in combination with targeted therapies, as guided by
tumor molecular characteristics, such as concurrentKRAS and
PIK3CA mutations [93].

MEK inhibitors

MEK inhibitors have been evaluated as MEK is downstream
of EGFR in the RAS/RAF pathway. While responses were
seen in melanoma and lung cancer, the pure MEK inhibitor
RO4987655 failed to show benefit in KRAS-mutant CRC
[94]. Despite the lack of efficacy of RO4987655, selumetinib
(AZD6244) is a selective MEK-1/2 inhibitor that has shown
in vitro and in vivo activity in CRC. It is currently being
evaluated for the treatment of metastatic CRC in early phase
clinical trials [55]. Selective MEK-1/2 inhibitors have shown
in vitro efficacy in modulating sensitivity to cetuximab [56]. It
remains to be seen whether MEK inhibitors will make it
through multi-phase clinical trials and into clinical practice
and whether specific biomarkers will be useful in selecting
patients eligible for treatment.

Dual Pathway Blockade

Overcoming resistance to anti-EGFR therapies has been one
focus of dual-targeted therapy trials. Amplification of the
MET gene and increased expression of MET has been associ-
ated with both primary and secondary (acquired) resistance to
cetuximab/panitumumab, distinct from the effect of mutations
in KRAS, NRAS, BRAF, and PIK3CA [53•]. MJ-56 has shown
in vitro efficacy in human CRC cell lines, attenuating signal-
ing of EGFR and c-MET [54]. HER2 amplification as a po-
tential resistancemechanism also has been identified inKRAS/
NRAS/BRAF/PIK3CA wild-type (“quadruple negative”) tu-
mors [57]. In preclinical studies, dual blockade of EGFR
and HER2 inHER2-amplified colorectal xenografts was more
effective than either agent alone suggesting that this regimen
may be effective in patients with CRCs that have amplified
HER2.

Some studies have used more than one targeted therapy or
have used a multiple pathway agent in an attempt to block
multiple key growth pathways in the tumor cell. Following
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the recognition of the frequency of BRAFV600Emutations in
melanoma, BRAF inhibitors were developed and implemented
in clinical practice [95]. However, the success seen in the
treatment of melanoma with these agents was not paralleled
in CRC [58]. This has led to the use of BRAF inhibitors in
combination with other agents in early phase dual agent trials.
Dual blockade of the MEK and PI3K/mTOR pathways in
mouse CRC xenografts improved results over monotherapy,
but did not induce tumor regression [96]. Although based on
solid conceptual grounds as a way to overcome resistance to
single targeted therapy regimens, the use of multiple pathway
inhibitors has had suboptimal results when applied to the clin-
ical setting, often increasing toxicity but not improving treat-
ment outcomes [97••, 98]. This observation has led to the
consideration of a strategy involving targeted therapy and cy-
totoxic chemotherapy, which may cause better tumor re-
sponse. Along this vein, there is early preclinical data that
the proteasome inhibitor carfilzomib may be synergistic with
irinotecan in CRC cell lines through effects mediated on the
MEK/ERK and PI3K/AKT pathways [99]. Thus, new thera-
peutic targets for CRC continue to be explored and optimized
(Table 2), but are not ready for clinical practice.

Conclusions

The next era of CRC treatment trials involves focusing on
tumor genetic signatures, rather than single-gene alterations.
This includes identification of new targets, combination
targeted therapies, and possibly immune modulation. There
is clear lack of benefit from EGFR-targeted therapies in indi-
viduals with metastatic CRC harboring KRAS exon 2 muta-
tions. In addition, mutations in KRAS exons 3 and 4, NRAS
exons 2–4, PIK3CA exon 20, and possibly TP53 are predic-
tive of lack of benefit. No clinically useful predictive bio-
markers for anti-angiogenic therapy have been identified. In-
hibitors of PI3K, MEK, MET, HER2, and other newer targets
are under active investigation but are not yet ready for appli-
cation to clinical practice. The increasing complexity of mu-
tation profiling for therapies targeting EGFR and other end-
points suggests the need for greater molecular characterization
of tumors before, and possibly after, starting treatment. Future
trials will need to better determine eligibility based on who is
predicted to respond to targeted therapy. In addition, combi-
nation targeted therapies and/or dual downstream inhibition of
resistance mechanisms appear to be promising future ap-
proaches to CRC treatment.
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