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Abstract
Purpose of Review Maintaining positive health behaviours promotes better health outcomes for people with type 1 diabetes 
(T1D). However, implementing these behaviours may also lead to additional management burdens and challenges. Diabetes 
technologies, including continuous glucose monitoring systems, automated insulin delivery systems, and digital platforms, 
are being rapidly developed and widely used to reduce these burdens. Our aim was to review recent evidence to explore the 
influence of these technologies on health behaviours and well-being among adults with T1D and discuss future directions.
Recent Findings Current evidence, albeit limited, suggests that technologies applied in diabetes self-management education and support 
(DSME/S), nutrition, physical activity (PA), and psychosocial care areas improved glucose outcomes. They may also increase flex-
ibility in insulin adjustment and eating behaviours, reduce carb counting burden, increase confidence in PA, and reduce mental burden.
Summary Technologies have the potential to promote health behaviours changes and well-being for people with T1D. More 
confirmative studies on their effectiveness and safety are needed to ensure optimal integration in standard care practices.

Keywords Diabetes technology · Continuous glucose monitoring · Automated insulin delivery · Health behaviour · Well-
being · Type 1 diabetes
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Introduction

More than 8.4 million individuals live with type 1 diabetes 
(T1D) globally, and the prevalence is projected to double 
by 2040 [1]. T1D is an autoimmune disease character-
ized by the destruction of pancreatic beta cells, leading to 
insulin deficiency, hyperglycaemia, and subsequent micro-
vascular and macrovascular complications [2]. The aim 
of T1D management is to effectively deliver exogenous 
insulin to maintain normoglycemia in order to prevent 
diabetes-related complications while minimizing its psy-
chosocial burden [3]. A recent guideline points out that to 
achieve these aims, cultivating positive health behaviours 
and promoting psychological well-being are fundamental 
[4]. Specifically, five areas warrant attention: diabetes self-
management education and support (DSME/S), medical 
nutrition therapy, routine physical activity (PA), tobacco 
cessation counselling, and psychosocial care [4]. Integrat-
ing these strategies into daily T1D management, however, 
could become a substantial burden to many people living 
with T1D (PwT1D).

To reduce this burden, diabetes technologies are being 
rapidly developed and have been widely adopted across the 
globe [5–10]. These technologies can assist PwT1D with 
their self-management, including lifestyle modifications, 
glucose monitoring, and therapy adjustments [4]. Wear-
able technologies are revolutionizing diabetes care, and 
one example is the continuous glucose monitoring (CGM) 
systems which measure interstitial glucose and provide 
continuous information on glucose profile and dysglycae-
mia alerts [11]. Combination of continuous subcutaneous 
insulin infusion (CSII) and CGM forms sensor-augmented 
pump (SAP) which allows predictive low-glucose suspend 
feature, further reducing risks of hypoglycemia [12]. Auto-
mated insulin delivery (AID) systems, combining CGM, 
CSII, and a control algorithm, can automatically modulate 
insulin infusion to address both hypoglycaemia and hyper-
glycemia [13]. In this review, AID refers to single-hormone 
hybrid closed-loop systems, unless specified. Beyond wear-
able technologies, digital platforms including websites, 
software, and mobile applications (app) have been devel-
oped to facilitate diabetes education and support, insulin 
dose estimations, carb counting (CC), etc.

We reviewed recent literature (published within the 
past 5 years until April 2023) to explore the influence of 
these advanced technologies on health behaviours and 
psychological well-being among non-pregnant adults with 
T1D, and discuss future directions. We also searched the 
International Clinical Trials Registry for ongoing trials. A 
complete methodology of search strategies can be found in 
supplementary material 1.

Diabetes Self‑Management Education 
and Support

The aim of DSME/S is to provide evidenced-based informa-
tion and strategies to support and educate PwT1D in various 
aspects of diabetes management, empowering PwT1D to make 
confident decisions, engage in self-care behaviours, and sus-
tain self-management [14]. Examples of technology used in 
DSME/S interventions include short message services, mobile 
and/or web apps, and social media platforms. Compared to 
in-person approaches, the strength of digital DSME/S inter-
ventions include increased accessibility for a larger proportion 
of PwT1D and availability of information at any time [15], no 
travel time and decreased sense of stigmatization [16]. In this 
section, only technologies targeting multiple positive health 
behaviours are considered; otherwise, they are discussed in 
relevant sections below.

Influence of digital DSME/S use on health outcomes var-
ies among interventions, due to the format of delivery, type of 
features, program length, and population. For instance, Tang-
TangQuan is a free mobile DSME/S app for PwT1D in China, 
composed of four components: personal diabetes diary, dietary 
panel, diabetes education modules, and a peer support commu-
nity. A longitudinal cohort study including 693 adults with T1D 
suggested that relative to baseline, glycaemic improvements were 
observed after 12 months of app use (HbA1c: 6.9 ± 1.3% vs. 
6.6 ± 1.3%, p < 0.001; fasting blood glucose: 7.57 ± 2.28 mmol/L 
vs. 7.22 ± 2.40 mmol/L, p = 0.006; postprandial blood glucose: 
8.35 ± 2.25 mmol/L vs. 8.06 ± 2.47 mmol/L, p = 0.021), espe-
cially among those more engaged in peer support [17••]. Other 
examples of digital DSME/S interventions being investigated are 
the Support platform [18]. Support is a self-guided free online 
web app, including learning modules, discussion forums, and vir-
tual reward points, for PwT1D in Canada. A prospective study is 
ongoing to evaluate users’ satisfaction, engagement, and efficacy 
to change the fear and the frequency of hypoglycaemia among 
adult PwT1D (NCT04233138) [19].

Medical Nutrition Therapy

International guidelines recommend medical nutrition ther-
apy provided by a registered dietitian as part of diabetes care 
[20–22]. However, adopting a specialized diet (e.g., low carbo-
hydrate) or tracking intake (e.g., CC) can amplify the burden 
of diabetes management. New technologies can reduce these 
challenges to reach treatment goals.

Wearable Technologies

A main challenge around insulin adjustments is hypogly-
caemia, a common complication mainly treated with simple 
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carbohydrates [23]. Recent literature shows significant reduc-
tion of hypoglycaemic events with the use of wearable technol-
ogy [24]. In a sample of adults with T1D treated by multiple 
daily injections (MDI), real-time CGM (rt-CGM) users were 
more proactive in preventing level-2 hypoglycaemia (defined 
as ≤ 3.0 mmol/L) by taking carbohydrates at a higher glucose 
threshold (4.4 ± 0.8 vs 3.9 ± 0.8; p = 0.005) [25••]. SAP users 
also reported needing less carbohydrates to treat hypoglycae-
mia, owing to the system’s insulin suspend features [26]. These 
results suggest that both rt-CGM and SAP may reduce the bur-
den of hypoglycaemia for PwT1D by allowing for earlier detec-
tion of impending hypoglycaemia and a corresponding reduced 
amount of rescue carbohydrate, when compared to systems 
without rt-CGM. Lower carbohydrate intake could reduce the 
risks of rebound hyperglycaemia and weight gain [26]. Moreo-
ver, the use of CGM might also influence one’s relationship 
with food. A qualitative study found that intermittently scanned 
CGM (is-CGM) use increased self-awareness of food intake, 
which promoted more flexible eating behaviours for some par-
ticipants but led others to develop a more restrictive relationship 
with food [27•]. Conversely, an interventional study found that 
after 12 weeks of is-CGM use, neither food variety, coefficient 
of variance (glycemic variability), nor HbA1c changed [28]. 
While close monitoring of food intake is central in T1D man-
agement, it has also been shown to increase the risk of disor-
dered eating behaviours in PwT1D [27•]. A recent systematic 
review, exploring the use of technology in the context of dis-
ordered eating behaviours, found limited inconclusive results, 
indicating that further research is required to better understand 
technology use in this context [29].

Postprandial glycaemic fluctuations contribute signifi-
cantly to the overall glycaemic outcomes; thus, it is imper-
ative to optimize prandial insulin administration [30]. Of 
the currently available commercial AID systems, CC is still 
required as current algorithms require meal-announcement 
with carbohydrate intake to provide appropriate bolus 
doses. A 3-week non-inferiority trial with 30 adults using 
AID compared glycaemic outcomes using conventional CC 
and a simplified qualitative meal-size estimation (based on 
carbohydrate content). The authors reported significantly 
higher time in range (TIR, 3.9 to 10.0 mmol/L) with the 
conventional CC method (74.1 ± 10.0% vs 70.5 ± 11.2%, 
p = 0.018), lower time above range (TAR > 10.0 mmol/L, 
24 ± 10% vs 28 ± 11%, p = 0.014), and similar time below 
range (TBR, < 3.9 mmol/L) [31]. Although non-inferiority 
was not achieved, the meal-size estimation arm still had 
TIR within target (≥ 70%) and low TBR (1.6%) [31]. More 
recent advances may reduce the need for CC and its related 
burden. Algorithms such as the recently FDA approved AID 
device (iLET Bionic Pancreas) only requires a qualitative 
estimation of carbohydrate content (compared to the usual 

amount for the user) instead of quantitative CC. In this 
13-week RCT, iLet users reported higher TIR (65 ± 9% vs. 
54 ± 17%, p < 0.001) and lower TAR (33 ± 9% vs. 44 ± 18%, 
p < 0.001) compared to standard care (MDI or CSII with rt-
CGM, or AID) without a difference in TBR [32••].

While current nutrition guidelines focus on carbohy-
drate intake, there is established evidence that protein and 
fat content also influence postprandial glycemia [33]. Ear-
lier studies suggested that CSII offers more flexibility in 
insulin dose adjustment [34, 35]; however, the more recent 
advancement in AID has the potential to effectively man-
age postprandial glycemia, even with varied meal com-
positions as it can modulate insulin infusion in response 
to glucose changes [36]. A randomized cross-over study 
compared the glycaemic response to high fat and/or high 
protein meals in participants using AID [36]. The study 
found that high fat and high protein meals resulted in a 
delayed postprandial glycaemic peak and needed a higher 
basal rate for 5-h post-meal, compared to the standard 
meal. Additionally, compared to standard meal (TIR 43 
[32–65] %) and high protein meal (54 [27–72] %), high fat 
meal (38 [23–74] %), and high fat and high protein meal 
(34 [16–77] %) had the lowest TIR, although statistical 
significance was not reached [36]. TBR was similar (0%) 
suggesting that postprandial hyperglycaemia with high fat 
meals remains challenging even with an AID. Future algo-
rithms should be developed to account for diverse meal 
compositions [36].

AID systems might also offer additional support to peo-
ple following special diets (e.g., low carbohydrate diet). A 
study assessed the association between carbohydrate intake 
and glycaemic management in 36 AID users by compar-
ing the groups based on percent time spent in auto-mode 
and their average daily carbohydrate consumption (low 
(100.9 ± 69.9  g/day) vs medium (171.2 ± 53.4) vs high 
(222.7 ± 70.6)) [37]. Participants in the low carbohydrate 
group had higher TIR (77.4 ± 15.4 vs 70.4 ± 17.8, p < 0.001) 
and lower TAR (20.1 ± 14.7 vs 27.2 ± 18.4, p < 0.001) com-
pared to the high carbohydrate group. The results were espe-
cially prominent among AID users who spent more than 90% 
of the time on auto-mode with higher TIR (82 ± 11.8 vs 
73.8 ± 16.3, p < 0.001) and lower TAR (16.2 ± 11.5 vs 24.2, 
p < 0.001). The TBR was similar between the groups.

These results show significant potential for certain AID 
algorithms to reduce the burden of prandial insulin adminis-
tration while maintaining effective glycaemic management. 
However, there remains a need to further improve these 
technologies to respond faster to glucose fluctuations (e.g., 
improved insulin pharmacodynamics and CGM accuracy, 
more advanced AID algorithm) to potentially reduce the 
need for CC by users (ACTRN12622001400752).
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Digital Platforms

The use of mobile apps to help with CC and bolus estimation 
for T1D has been increasing due to their convenience, with 
a variety of mobile apps to choose from. A study surveying 
adults with diabetes, 1052 of whom live with T1D, found 
that more than half PwT1D relied on apps for their self-man-
agement (such as bolus calculator and carbohydrate intake 
tracking). Using the Summary of Diabetes Self-Care Activi-
ties Questionnaire [38] to measure self-care behaviours, par-
ticipants who used an app reported improved overall scores, 
specifically in the general diet subscale and blood glucose 
monitoring subscale [39]. While current applications con-
tinue to rely on input from the user, future technologies inte-
grating artificial intelligence are currently being tested to 
utilize food image recognition systems to replace manual 
CC by PwT1D (jRCTs042210167).

Physical Activity

Despite the numerous benefits of engaging in PA, only ~ 30% 
of PwT1D compared to ~ 50% of individuals without diabe-
tes meet the recommended 150 min of moderate to vigorous 
PA per week [40, 41]. Specific barriers to PA for PwT1D, 
notably fear of hypoglycaemia and significant glycaemic 
variations [42, 43] might be alleviated by technological 
developments.

Wearable Technologies

Glucose management for PwT1D during PA is easier with 
CGM [44], and the glycaemic benefits depend on the type of 
CGM. A study that compared rt-CGM with is-CGM during 
4 days with consecutive exercise found the former reduced 
TBR (6.8 ± 5.5% vs. 11.4 ± 8.6%, p = 0.018) and increased 
TIR (78.5 ± 10.2% vs. 69.7 ± 16%, p = 0.015) during exercise 
in 60 adult PwT1D using either MDI or CSII, indicating the 
extra benefits of alerts [45]. Whether using a CGM contrib-
utes to an increase in time spent exercising remains unclear. 
A prospective national registry in the Netherlands included 
1365 participants with diabetes using insulin (1054 PwT1D). 
The study found that after 1 year of is-CGM use, 37% of 
participants reported exercising more frequently [46]. How-
ever, a sub-analysis of the GOLD randomized trial includ-
ing 116 adult PwT1D revealed no change in amount of PA, 
estimated by the International PA Questionnaires (IPAQ) 
scale [47], between four month rt-CGM and self-monitoring 
blood glucose, despite improvements in hypoglycemia and 
fear of hypoglycaemia for CGM group [48]. This may indi-
cate that apart from hypoglycaemia, barriers unrelated to 
diabetes, including lack of time and motivation, may also 
hinder PwT1D from PA participation.

The accuracy of CGM tends to decrease during periods of 
increased activity [49, 50•, 51, 52], due to rapid changes in 
glycaemia, increased glucose uptake by muscles, and mechan-
ical forces applied to the sensor [49, 50•, 51, 52]. In most 
cases, however, the decreased accuracy is unlikely to result in 
a decision that could jeopardize safety [50•, 51]. Considering 
these data, the use of CGM data to determine insulin dosage 
and monitor hypoglycaemia trends during exercise can be 
considered while being interpreted with caution [4].

Compared with CSII + CGM therapy, AID improved over-
night and whole day TIR and TAR without increasing TBR, 
in a small sample size (N = 13) crossover RCT evaluating a 
3-day period with daily exercise interventions [53]. Using PA 
specific AID settings could increase those benefits, especially 
lowering hypoglycaemia risk. A study which evaluated the 
TBR during 60 min of aerobic exercise and 1 h after found 
that TBR was 13.0 ± 19.0% when no strategy was applied, but 
was reduced to 7.0 ± 12.6% when target glucose was increased 
1 h prior to exercise, and was further reduced to 2.0 ± 6.2% 
when a 33% reduction in meal bolus was applied 1 h prior 
to exercise in addition to increased target p < 0.0001 and 
p = 0.005, respectively) [54]. Additionally, two other recent 
studies demonstrated the glycaemic benefits of pre-exercise 
strategies with increased TIR and decreased TBR when pre-
exercise glucose target was increased and meal bolus was 
reduced 1–2 h prior to exercise with AID use [55, 56].

While the previously mentioned studies assessed the benefit 
of strategies applied 1–2 h prior to exercise, new and future 
technologies are aiming to reduce the need for PwT1D to 
announce planned activity to AID systems. Adding PA detec-
tion from accelerometer or physiological data (e.g., heart rate, 
skin moisture) could be an effective strategy to improve the 
performance of AID systems around unannounced PA. Detec-
tion systems have been shown to detect the start of PA within 
1 min, allowing for prompt insulin reduction before significant 
glucose decline [57]. During a 3-day inpatient study which 
included six unannounced exercise sessions including mod-
erate aerobic, high intensity interval, and resistance training, 
10 PwT1D using AID with PA detection spent 0.88 ± 2.15% 
time below 3.0 mmol/L and 1.34 ± 1.55% time between 3.0 
and 3.9 mmol/L during and 2 h after the exercise sessions 
[58]. An alternative approach to improving the performance of 
AID during activity is based on machine learning of previous 
exercise habits. A crossover RCT including 15 adults with T1D 
evaluated the effect of an AID system (APEX) which used 
artificial intelligence to identify existing exercise behaviours, 
and prospectively adjust insulin delivery [58]. Compared with 
a conventional AID system, the APEX system significantly 
reduced hypoglycaemic episodes during exercise (13 vs. 5) 
and the 4 h following exercise (11 vs. 2). These innovative 
systems, driven by artificial intelligence, are providing promis-
ing solutions that substantially alleviate glucose management 
burden during physical activity. Larger sample size studies 
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investigating various exercise types and intensities will be 
needed to provide confirmatory results.

Another avenue for improving AID with respect to hypo-
glycaemia prevention around PA is dual-hormone systems, 
featuring liquid, stable glucagon, to increase blood glucose 
concentration to maintain target range. Compared to single-
hormone AID, a dual-hormone AID system was associated 
with reduced TBR during and 4 h after unannounced exer-
cise (8.3% [0.0–12.5] vs 0.0% [0.0–4.2], p = 0.025), but was 
associated with greater TAR (6.3% [0.0, 12.5] vs. 20.8% 
[0.0–47.9], p = 0.038), respectively [59]. In addition to intra-
activity hypoglycaemia, the risk for nocturnal hypoglycaemia 
is high following PA, mainly due to persisting elevated insulin 
sensitivity. In a recent pooled analysis involving two avail-
able trials comparing dual-hormone to single-hormone AID, 
41 adult participants spent 94.0 ± 11.0% and 83.1 ± 20.5% 
(p < 0.05) in target range and 0 (0, 20.1)% vs 0 (0,0)% 
(p < 0.001) TBR during the overnight period after exercise, 
respectively [60•]. Dual-hormone AID may also reduce fear 
of hypoglycaemia during exercise, although evidence remains 
scarce [61]. Overall, despite its costs and system complexity, 
dual-hormone AID warrants more attention regarding both 
clinical studies and product development, to offer an alter-
native option for PwT1D who could not attain optimal PA 
glucose targets or have fear of hypoglycaemia keeping them 
from PA despite using a single-hormone AID [62].

Digital Platforms

The online T1D and exercise education platform (ExT1D) pro-
vided effective training and education for reducing exercise 
related hypoglycaemic events. Compared to standard treat-
ment, the ExT1D intervention reduced the median frequency 
and duration of exercise-related hypoglycaemic events by 43% 
and 52%, respectively [63]. Personalized digital health infor-
mation such as CGM glucose, physical activity, sleep, and 
mood can substantiate human delivered exercise support for 
PwT1D as was shown in a recent study [64]. Specifically, this 
study of adults with T1D (n = 17) found that after 10 weeks 
of expert delivered feedback based on personalized data, and 
other informational and motivation resources (exercise vid-
eos, text based coach, self-monitoring diary), physical activity 
participation increased from a median of 0 to 64 min per week 
with no severe hypoglycaemia or ketoacidosis events [64].

Smoking Cessation: Tobacco 
and E‑Cigarettes

The estimated global prevalence of current smokers living 
with T1D ranges between 10 and 30% [65], which is com-
parable to the general population (17%) [66]. Smoking can 

increase insulin resistance and is a risk factor for develop-
ing microvascular and macrovascular complications, as well 
as increased glycaemic variability and hypoglycaemia [67, 
68]. While smoking abstinence can reduce morbidity and 
mortality, it can cause significant glycaemic fluctuations as it 
increases insulin sensitivity and leads to weight fluctuations 
that can impact glucose management [67, 68].

Wearable technologies such as CGMs might help reduce 
the unexpected glycaemic variability associated with smok-
ing cessation. However, research is needed to explore their 
effectiveness in this context. There is currently a growing 
interest in exploring CGM as a behaviour change tool [69] 
with some interest to understand how the use of CGM dur-
ing smoking cessation can provide further perspectives to 
tailor cessation interventions [70]. Digital platforms can also 
be used to promote and facilitate smoking cessation. While 
the current evidence is not specific to T1D, research sug-
gests that technologies such as mobile apps [71] and chat-
bots [70] can help facilitate smoking cessation in the general 
population, by offering punctual and personalized support to 
promote cessation and abstinence [71, 72]. Further research 
should explore these platforms in T1D as this population 
has additional diabetes-specific challenges that might not 
be addressed in the current literature.

Psychosocial Care

The burden of daily decisions related to diabetes manage-
ment often contributes to depression and mental health chal-
lenges related to diabetes. Notably, 42 to 54% of PwT1D 
experience diabetes distress [73] and the prevalence of major 
depression is double that of the general population [74]. 
These challenges can impair PwT1D’s ability to effectively 
manage T1D and thus compromise glucose outcomes [75]. 
Current technologies can help implement effective psycho-
social care.

Wearable Technologies

Overall, the impact of CGM use on psychosocial aspects in 
adult PwT1D is positive. A post hoc analysis of a prospective 
study suggested that the rate of depressive disorder decreased 
after initiation of is-CGM for 12 months in 527 adult PwT1D 
[75]. Their mental well-being also improved with a signifi-
cant increase in the Mental Component Score. Furthermore, 
a prospective observational multicentre study found a higher 
Diabetes Treatment Satisfaction Questionnaire score (28.0 
[95% CI 26.1; 29.9] vs. 30.4 [28.9; 32.6]; p < 0.0001) in 
1913 adults with T1D after 12-month use of is-CGM, com-
pared with baseline (without CGM) [76]. The other quality 
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of life scales (Health Survey questionnaire, Problem Areas 
in Diabetes, Hypoglycemia Fear Survey –Worry) remained 
unchanged, possibly due to the already high quality of life 
at baseline. The same group further investigated the impact 
of rt-CGM in a 24-month prospective observational study 
including 441 adult PwT1D using CSII [77]. Improvement 
in general quality of life, diabetes-related emotional distress, 
and fear of hypoglycaemia were observed at month 12 and 
sustained throughout the 24-month follow-up, particularly 
in those with impaired awareness of hypoglycaemia. While 
most studies suggest positive impact of CGM use, it is worth 
noting that a cross-sectional study including 274 adults with 
T1D found that is- and rt-CGM users, compared to non-CGM 
users, reported more diabetes-related anxiety and emotional 
burden, possibly due to pain and skin reactions related to 
CGM, despite the beneficial effect on glycaemic management 
and fear of hypoglycaemia [78].

Alongside CGM, AID systems help reduce some psycho-
social burdens. AID reduced fear of hypoglycaemia [79–83] 

and increased overall emotional well-being [84–87] com-
pared with either CGM + CSII or MDI, among adults with 
T1D. Improvement in diabetes-related distress was observed 
in three prospective studies [82, 88, 89••], while two other 
retrospective observational studies revealed no change [83, 
86]. Whether AID use is associated with improved sleep 
quality is controversial: three studies of older adults with 
T1D [88, 90, 91] suggested no difference in Pittsburgh Sleep 
Quality Index score between AID and SAP treatment. An 
Australian RCT [91] comparing AID and SAP suggested a 
poorer sleep quality, assessed by daily diary sleep quality 
ratings, with AID treatment, possibly due to the more fre-
quent alarms during AID intervention. On the other hand, 
two studies, including one in older adults, reported improved 
sleep quality [79, 81, 82]. Moreover, a large sample pro-
spective study (N = 1435) suggested that continued use of 
AID resulted in a reduction in the overall impact of diabetes 
on participants’ lives and an improvement in device-related 
satisfaction [84].

Fig. 1  Summary of the influence of technology on lifestyle behav-
iours, glucose outcomes, and well-being for type 1 diabetes based on 
recent literature. Abbreviations: carbohydrate counting (CC), Diabe-

tes Self-Management, Education and Support (DSME/S), haemoglo-
bin A1c (HbA1c), time above range (TAR), time below range (TBR), 
time in range (TIR), type 1 diabetes (T1D)
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Digital Platforms

Telemedicine and virtual group appointments can also play a 
positive role in maintaining well-being. After four visits over 
12 months, two studies found that telehealth visits followed 
by virtual group appointments, compared to in-person medi-
cal visits and telehealth visits only, resulted in significant 
improvement in diabetes distress, self-efficacy, and the abil-
ity to talk about their illness [92, 93]. Neither study revealed 
a difference in depressive symptoms, quality of life, or self-
confidence for any of the groups [92, 93].

A study investigating the impact of ten 50-min psycho-
logical therapy sessions via real-time texting over 3 months 
observed a significant decrease in HbA1c and anxiety, but no 
change in diabetes distress or depressive symptoms among 
71 adults with T1D [94•]. Furthermore, a parallel RCT 
investigated sleep quality, diabetes distress, and glycaemic 
management in 14 adult PwT1D [95]. The 8-week study had 
two parallel arms: Sleep-Opt-In with weekly digital lessons 
related to sleep, phone calls with a trained sleep coach, and 
sleep tracking vs. the Healthy Living Attention arm with 
weekly general health emails and phone calls with a healthy 
living coach. After 8 weeks, the Sleep-Opt-In group showed 
an improvement in sleep regularity, daytime sleepiness, and 
general fatigue, while these worsened in the other group. They 
also had lower diabetes distress and fewer depressive symp-
toms [95]. Though no RCTs have evaluated the combination 
of both telemedicine and wearable technology yet, an upcom-
ing RCT will evaluate the use of a telemedicine-delivered 
cognitive behavioural therapy program alongside the use of 
CGM, compared to the use of CGM only, in young adults with 
T1D living with anxiety and depression (NCT05734313).

In summary, there are an emerging number of original 
articles on technology use and its impact on psychosocial 
care in the adult population with T1D [96, 97]. Collectively, 
they highlight that the use of technology is often associated 
with improved well-being, reduced fear of hypoglycaemia, 
and reduced depressive symptoms. Research with larger 
sample sizes in PwT1D is needed, as most existing literature 
combines T1D and T2D populations, who may not share the 
same level of psychosocial burdens. Furthermore, several 
studies group adolescents and adults together. Future studies 
investigating the impact of technology or telehealth integra-
tion on psychosocial care into an individuals’ treatment plan 
during different life stages are necessary.

Conclusions

Maintaining positive health behaviours facilitate better 
health outcomes (glucose and well-being) for PwT1D. 
However, enforcing these behaviours may also lead to bur-
dens and challenges (e.g., intensive DSME/S may cause Ta
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psychosocial burden, physical activity can lead to higher 
risks for hypoglycemia) which impede the realization of 
such health goals. Advanced diabetes technologies including 
CGM, AID, and digital platforms alleviate some manage-
ment burden and allow for more informed decisions (Fig. 1). 
Nevertheless, reaching optimal glycaemic and psychological 
outcomes in PwT1D remains challenging, even for those 
with access to these technologies [4, 5, 9]. Research investi-
gating why this state persists is scarce, and therefore, imple-
mentation research studying how to translate benefits of 
technologies in real-life conditions warrants more attention.

Current diabetes technologies are mostly designed 
around insulin delivery. Considering the complexity of 
T1D (e.g., large intra- and interpersonal variation), phar-
macotherapy may remain insufficient to achieve optimal 
diabetes outcomes. Positive health behaviours and well-
being interventions provide huge opportunities to supple-
ment T1D treatment [4, 98]. Technologies designed around 
these interventions should be encouraged and their integra-
tion with current AID systems should be a future focus of 
development.

Uptake of technologies does not guarantee high user 
engagement. Yet the benefits of technology use usually 
depend on the level of engagement and adherence [4]. Those 
having difficulty devoting time and adhering are, in most 
cases, also individuals prone for suboptimal health outcomes 
and to whom technologies can offer the most benefits. A bal-
ance between device complexity and functionality should be 
achieved to ensure PwT1D can obtain benefits without being 
overwhelming. Relevant studies should not only assess glu-
cose outcomes, but patient-reported outcomes and patient-
reported experience, to facilitate understanding of both 
health benefits and users’ experience and burden [99]. These 
studies will provide crucial information on engagement and 
adherence (including accessibility, usage, cost, and train-
ing), which is key to the successful implementation of these 
technologies. Practical barriers faced by healthcare profes-
sionals should also be assessed to provide a more rounded 
understanding.

Education and support play a major role [100]. Apart 
from comprehensive training at initiation, consistent train-
ing as well as routine clinical re-assessment of technology 
use should be implemented to sustain the benefits of technol-
ogy, and to identify those who would benefit from alterna-
tive options. Policy-makers need to encourage opportunities 
for consistent diabetes education and support, by ensuring 
proper policies are in place to better support the integration 
of diabetes education in clinical practice, to both PwT1D 
and healthcare professionals.

Recommendations for digital platforms in managing T1D 
remains difficult, mainly due to the lack of high-level evi-
dence and validations of such platforms by regulators. Cost-
effectiveness studies are rare, yet will facilitate future uptake 

and health coverage of these digital platforms, especially 
mobile applications.

In summary, technologies possess the potential to pro-
mote health behaviours changes and well-being for PwT1D, 
and therefore facilitate the realization of favorable health 
outcomes. A few ongoing studies are summarized in Table 1. 
More confirmative studies elucidating the effectiveness and 
safety of these technologies in a broad and diverse popu-
lation, along with implementation and cost-effectiveness 
studies, are urgently needed to ensure optimal integration 
of technologies in standard care practices. Collaborative 
engagement involving researchers, healthcare professionals, 
PwT1D, industry, and government remains vital and should 
be encouraged to accelerate this process.
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