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Abstract
Purpose of the Review  This review summarizes the new developments in polyagonist pharmacotherapy for type 2 diabetes.
Recent Findings  Several dual- and triple-agonists targeting different pathogenic pathways of type 2 diabetes have entered 
clinical trials and have led to significant improvements in glycaemia, body weight, fatty liver, and cardio-renal risk factors, 
with variable adverse event profiles but no new serious safety concerns. Combining agents with complementary and syner-
gistic mechanisms of action have enhanced efficacy and safety. Targeting multiple pathogenic pathways simultaneously has 
led to enhanced benefits which potentially match those of bariatric surgery. Tirzepatide, cotadutide, BI456906, ritatrutide, 
and CagriSema have entered phase 3 clinical trials. Outcomes from published clinical studies are reviewed. Efficacy-safety 
profiles are heterogeneous between agents, suggesting the potential application of precision medicine and need for personal-
ized approach in pharmacological management of type 2 diabetes and obesity.
Summary  Polyagonism has become a key strategy to address the complex pathogenesis of type 2 diabetes and co-morbidities 
and increasing number of agents are moving through clinical trials. Heterogeneity in efficacy-safety profiles calls for applica-
tion of precision medicine and need for judicious personalization of care.
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Introduction

Diabetes mellitus affects 537 million adults around the world 
and is expected to rise to 783 million by 2045 [1]. Nearly 
90% of these individuals have type 2 diabetes (T2D). Dia-
betes is the ninth leading cause of deaths around the world 
and a major risk factor for the top two leading causes of 
death—ischaemic heart disease and stroke [2]. Diabetes 
management is multi-target oriented: improving glycaemia, 
preventing cardiovascular and renal disease, improving qual-
ity of life and survival, managing co-morbidities, and mini-
mizing treatment burden.

Multiple hormones regulate glucose and energy homeo-
stasis, and these have become new targets for pharmaco-
logical manipulation. Review of their physiological and 

pathophysiological effects is beyond the scope of this paper 
and has been described in recent in-depth reviews [3–7, 
8••] (see Fig.  1 for a summary). Discovery of incretin 
effect, identification of glucagon-like peptide (GLP-1) and 
glucose-dependent insulinotropic peptide (GIP) as incre-
tin hormones and isolating exendin-4 from Gila monster 
venom as structurally homologous to GLP-1 culminated in 
developing exendin-4 analogues (exenatide, lixisenatide) 
followed by GLP-1 receptor agonists (GLP-1-RAs) (lira-
glutide, dulaglutide, semaglutide) adding to the therapeu-
tic repertoire [8••]. Added advantages of weight reduction, 
improving cardiovascular and renal outcomes [9], extending 
the half-life of molecules to enable weekly administration 
[10], developing oral preparations (oral semaglutide), and 
more recently, development of a non-peptide small molecule 
GLP-1RA (orforglipron) [11] have made modulation of hor-
mone targets a key strategy in management of T2D and its 
co-morbidities like obesity and fatty liver disease.

However, the benefits of GLP-1RAs did not reach the 
magnitude of that seen with bariatric surgery. Gastroin-
testinal adverse effects were a limiting factor at least for 
some [12]. Most other peptide hormones in isolation did not 
deliver meaningful benefits. The success of bariatric surgery 
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in reducing weight, improving glycaemia, and even achiev-
ing remission of T2D is attributed to changes in multiple 
hormones in gut-brain-pancreas cross talk, hence the value 
of unimolecular polypharmacy, i.e., single molecules that 
target more than one receptor.

In this review, we highlight the recent developments in 
unimolecular polyagonists in the treatment of T2D, highlight 
data from clinical trials and explore the potential for preci-
sion medicine in T2D care with different polyagonists.

Unimolecular Polypharmacy

Rationale

Co-morbidities and complications of T2D require treatment 
targeting multiple pathogenic mechanisms. Single agent is 
unlikely to address all pathways involved. Polypharmacy 
with multiple agents is unlikely to be acceptable, afford-
able, or safe, hence the value of medications with multiple 
targets. Co-administration of peptides are challenging due 
to discrepancies in their pharmacokinetics and due to pep-
tide—peptide interactions [13]. Developing a single peptide 

molecule with ability to act on more than one target receptor 
is an attractive alternative [14].

Harnessing the complementary and synergistic effects of 
polyagonism is another advantage of unimolecular polyp-
harmacy. For example, GIP agonists as monotherapy was 
not effective in treating T2D: it increased glucagon, had 
less insulinotropic effect in people with diabetes, did not 
reduce appetite, increased adiposity, and did not decrease 
glucose level in people with T2D [15]. It was not expected 
to work well in combination with a GLP-1 agonist either, as 
it antagonized appetite suppressant effects of GLP-1RA in 
human studies, had no additive increase in insulin release, 
and blunted the glucagonostatic effects of GLP-1 agonists 
[16, 17]. However, all drawbacks of GIP were based on 
short term infusions of GIP and long-lasting GIPs were 
not available for study in humans [8••]. GIP’s weak insuli-
nootropic effects in people with T2D is largely due to post-
receptor signalling defects in beta cells [18] and to some 
extent, due to hyperglycaemia-induced suppression of GIP 
receptor expression in beta cells [19]. Reducing the level of 
glycaemia (with GLP-1 for example) could therefore make 
the beta cells more responsive to GIP. GIP could potentiate 
the effects of GLP-1 by accelerating the recycling of GLP-
1-receptors [20]. The undesirable effects of GIP mediated 

Fig. 1   Role of key hormones in glucose and energy homeostasis. 
Glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent 
insulinotropic peptide (GIP), and oxyntomodulin (OXM) are pre-
proglucagon derivatives with varying effects on the pancreas, liver, 
adipose tissue, and brain to regulate glucose and energy homeosta-

sis. Cholecystokinin (CCK) and peptide-tyrosine-tyrosine (PYY) are 
pancreatic peptides predominantly act through central mechanisms to 
regular energy intake and expenditure (image created using BioRen-
der.com)
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glucagonotropism on raising blood glucose could potentially 
be overcome by the overall glucose lowering effect of GLP-
1, thus making the two targets complementary to each other 
[21].

The first GLP-1/GIP dual agonist was not superior to 
liraglutide [22], but tirzepatide was superior to the active 
comparator dulaglutide 1.5 mg once a week [23]. Subtle 
changes in the GLP-1 and GIP molecules alter the post-
receptor signalling pathways activated (i.e., biased agonism) 
in such a way that the receptor down regulation is minimally 
affected. The overwhelming success of tirzepatide may at 
least partly be due to such a structural uniqueness that leads 
to decreased receptor down regulation at one or both recep-
tors [21]. Finally, the centrally mediated anti-emetic effects 
of GIP may mitigate the centrally mediated adverse effects 
of GLP-1 like nausea/vomiting thus making the combina-
tion more tolerable [24]. For an example adverse events of 
tirzepatide 10 mg once a week injection was not worse than 
dulaglutide 1.5 mg once a week, but the former conferred 
greater weight loss and HbA1c improvement [25].

Similarly, the combination of GLP-1 and glucagon ago-
nists, when made in correct proportions can harness the 
weight loss effects of both receptor activities and utilize the 
liver-friendly actions of glucagon while using the glucose 
lowering effects of GLP-1 to overcome the potential hyper-
glycaemic effects of glucagon. Likewise, combination of all 
the pre-proglucagon derived peptides could yield synergistic 
benefits: potent insulinotropism of GLP-1 and GIP overcom-
ing glucagon-mediated hyperlgycaemia and potent weight 
reducing effects of GLP-1 and glucagon overcoming the 
appetite stimulating and adipocyte expanding effects of GIP.

Development of Polyagonists

Structural similarities of pre-proglucagon derivatives 
make them candidates for unimolecular polyagonists [26]. 
Native glucagon peptide sequence was modified to develop 

of GLP-1/GCGR [27] and GLP-1/GIP [28] dual agonists. 
Similarly, modification of glucagon molecule to increase its 
affinity to GIP and GLP-1 receptors (YAG glucagon [14], 
HM15211 [29]); fusion of GIP and oxyntomodulin peptide 
segments ([DA2]GIP-Oxm [30]); fusion of key amino acid 
sequences from GIP, GLP-1, and glucagon ([DA2]GLP-1/
GCG [31]); and addition on GCGR agonistic amino acid 
sequence to previously developed GIP/GLP-1 dual agonist 
[32] are some of the strategies used to develop triagonists.

In contrast, peptides with fundamentally different struc-
tures can be combined using recombinant gene technology 
to produce a recombinant fusion protein. Examples are 
AC164204 and AC164209, which are hybrids of amylin 
analogue davalintide and GLP-1 analogue exenatide [33], 
C218 (CCKR1 agonist and GLP-1RA hybrid peptide pep-
tide) and CCK-4/exendin-4 hybrid peptide. Antibody–drug 
combinations are increasingly used to develop molecules 
acting on multiple target receptors (e.g., maridebart-cafra-
glutide [AMG133]—an IgG immunoglobulin with GIPR 
antagonism bound to two GLP-1 analogues).

Several polyagonists in development are summarized in 
Table 1.

Clinical Outcomes

Efficacy

GLP‑1/GIP Dual Agonists

Tirzepatide is a GLP-1/GIP dual agonist approved by FDA 
for the treatment of T2D. It has shown greater reduction 
in HbA1c and weight than any other single pharmacologi-
cal agent. A network meta-analysis comparing ten incretin-
based therapies, as add-ons to metformin showed tirzepa-
tide 15 mg once a week to have the highest reduction in 
HbA1c (− 2.23 [95% CI − 2.45, − 2.01]%) and weight (11.33 

Table 1   Polyagonists in clinical trials

Agent Mechanism of action Route and frequency of administration Active trials Phase

Tirzepatide (LY3298176) GLP-1/GIP dual agonists Subcutaneous once a week Multiple (see text) 3
CT-868 GLP-1/GIP dual agonists Subcutaneous once a day NCT05110846 2
VK2735/VK2735-oral GLP-1/GIP dual agonists Subcutaneous once a week/oral once daily NCT05203237 1
LY-3537031 GLP-1/GIP dual agonists Subcutaneous NCT04648865 1
CT-388 GLP-1/GIP dual agonists Subcutaneous once a week NCT04838405 1
DR10627, DR10628 GLP-1/GIP dual agonists Subcutaneous CTR20232870 1
BI456906 GLP-1/GCGR dual agonist Subcutaneous once or twice a week NCT06066528 3
HEC88473 GLP-1/FGF21 dual agonist Subcutaneous once a week NCT05943886 1
Maridebart cafraglutide (AMG133) GLP-1R agonist/GIPR antagonist Subcutaneous injection once in 4 weeks NCT05669599 2
Retatrutide (LY3437943) GLP-1, GIP, GCGR triagonist Subcutaneous once a week NCT05929079 3
DR10624 GLP-1, GCGR, FGFR21 triagonist Subcutaneous injection NCT05378893 1
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[95% CI − 13.15, − 9.52] kg) while the next best reductions 
were with semaglutide 1 mg once weekly (HbA1c change 
by − 1.57 [95% CI − 1.81, − 1.33]%) and weight change 
by − 5.99 [95% CI − 7.78, − 4.19] kg) compared to placebo 
[34] (Table 2). Similarly, compared to basal insulin, tirze-
patide yields greater reduction in HbA1c (HbA1c − 0.90 
[95% CI − 1.06, − 0.75]%) and weight (95% CI − 12.0 
[− 13.8, − 10.1] kg, for pooled doses) [35].

A pre-specified meta-analysis of data from randomized 
controlled trials (RCTs) on 4-point major adverse cardiovas-
cular events (MACE) (time to first event analysis) reported 
there was no increase in events among individuals treated 
with tirzepatide. All studies were of short term and not 
designed to evaluate cardiovascular safety or efficacy [36•]. 
Furthermore, tirzepatide improved cardiovascular risk fac-
tors [37], biomarkers (YKL-40, hsCRP, and ICAM-1 and 
leptin) [38], and atherogenic lipids (triglyceride-rich lipid 
particles, small-LDL particles, apoCIII, and apoB) [39]. 
Furthermore, significant blood pressure reduction (SBP/
DBP 2.8–12.6/0.8–4.5 mmHg) were observed in SURPASS 
trials [40••, 41–44]. SURPASS-CVOT (NCTLY3298176) 
is currently in progress, evaluating the hard cardiovascular 
endpoints with tirzepatide treatment in people with T2D 
against an active comparator (dulaglutide) and will be com-
pleted in 2024.

Tirzepatide may improve kidney and liver-related out-
comes as well as quality of life [45]. Meta-analysis of pub-
lished RCTs have suggested that tirzepatide significantly 
improves kidney specific outcomes (HR 0.55, 95% CI 
0.40–0.77) and worsening of albuminuria (HR 0.38, 95% 
CI 0.24–0.61) with a margin greater than other GLP-1RAs 
overall (HR 0.79 [95% CI 0.75–0.85] for kidney specific 
outcomes and HR 0.76 [95% CI 0.71–0.82] for progression 
of albuminuria). However, renal outcomes were not the pri-
mary endpoints in included studies [46]. A decrease in liver 
enzymes was demonstrated across phase 3 trials (reduced 
aspartate aminotransferase (AST) by 29–216% and alanine 
transaminase (ALT) by 222–232%) [43, 44, 47, 48]. SUR-
PASS-3 MRI, a sub-study of the SURPASS-3 trial, reported 
significant reductions in liver fat content (absolute reduction 
in liver fat content − 8·09% [SE 0·57] with tirzepatide 10 or 
15 mg per week Vs − 3·38% [SE 0·83] with insulin deglu-
dec, estimated treatment difference − 4·71% [95% CI − 6·72 
to − 2·70; p < 0·0001]) in participants with elevated liver fat 
content at baseline [47]. The potential role of tirzepatide in 
non-alcoholic steatohepatitis (NASH) will be further evalu-
ated in the phase 2 SYNERGY-NASH trial (NCT04166773), 
a 52-week RCT among people with NASH with fibrosis with 
or without diabetes comparing weekly tirzepatide 5, 10, and 
15 mg against placebo.

Series of other phase 3 trials are underway evaluating the 
role of tirzepatide at different stages of diabetes treatment 
(monotherapy as first line, add-on to metformin, add-on at 

oral treatment failure, switching from a GLP-1 receptor ago-
nist [NCT05536804, NCT05706506], high dose therapy for 
adults withT2D, and obesity [NCT06037252]), as well as for 
specific outcomes (NASH [NCT05751720], HFpEF in peo-
ple with obesity [NCT04847557], CKD [NCT05536804], 
coronary artery disease progression [NCT03482024]) and 
in specific populations (CKD [NCT03482024], lactating 
females [NCT05978713], and children [NCT05260021]).

GLP‑1/GCGR Dual Agonists

Cotadutide is a linear chimeric peptide with GLP-1/gluca-
gon receptor dual agonism, administered daily as a subcu-
taneous injection. A meta-analysis of nine RCTs concluded 
that among people with T2D, cotadutide achieved greater 
reductions in HbA1c (− 0.68 [− 0.58, − 0.79]%) and weight 
(− 3.31 [− 2.76, − 3.85]%) than placebo [49]. In a phase 2b 
RCT among adults with body mass index BMI ≥ 25 mg/
m2 and T2D inadequately controlled with metformin, at 
54-week follow-up, compared to liraglutide 1.8 mg/day, 
cotadutide 300 mcg/day achieved similar HBA1c reduction 
(cotadutide, − 1.19 [− 1.34, − 1.05]% vs. liraglutide, − 1.17 
[− 1.38, − 0.98]%; p = 0.871) and greater weight reduction 
(cotadutide, − 5.02 [− 5,78, − 4.26]% vs. liraglutide, − 3.33 
[− 4.25, − 2.21]%; p = 0.009) from baseline [50•]. Signifi-
cant improvements in fatty liver-related parameters (AST, 
ALT, FIB-4 index, NFS score, and Pro-C3 level) were seen 
with cotadutide 300 mcg/day compared to placebo. The 
improvements were not statistically significantly superior 
to liraglutide. Notably, semaglutide achieves greater reduc-
tions in HbA1c, weight, and fatty liver parameters compared 
to liraglutide [51]. Furthermore, liraglutide is licenced to be 
used in a higher dose (3 mg a day) for treatment of obesity. 
Cotadutide has not been compared head-to-head against 
semaglutide or high dose liraglutide in a clinical trial. Phase 
2b/3 study on cotadutide for the treatment of non-cirrhotic 
NASH with fibrosis (PROXYMO-ADV; NCT05364931) is 
still in progress. It is uncertain if cotadutide would progress 
to phase 3 trials for treatment of T2D.

SAR425899 is another GLP-1/GCGR dual agonist which 
progressed into a phase 2 trial. Among adults with T2D and 
overweight/obesity (BMI 25–45 kg/m2) on lifestyle modi-
fication with or without metformin, treatment with daily 
subcutaneous injection of SAR425899 at 0.12 mg, 0.16 mg, 
and 0.20 mg daily for 26 weeks achieved superior HbA1c 
reduction (− 1.52 [SE 0.14]%, − 1.62 [SE 0.13]%, − 1.56 
[SE 0.13]%, respectively), compared to placebo (− 0.66 
[SE 0.17]%), and greater weight reduction (− 4.28 [SE 
0.56] kg, − 5.33 [SE 0.55] kg, − 4.41 [0.56] kg, respec-
tively) compared to placebo (− 1.76 [SE 0.73] kg) [52]. In 
the same study, individuals randomized to liraglutide 1.8 mg 
a day achieved HbA1c reduction of − 1.31 [SE 0.12]% and 
weight reduction of − 4.59 [SE 0.52] kg (comparison with 
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SAR425899 treatment not reported). The trial to evaluate 
SAR425899 in the treatment of NASH (NCT03437720) 
has been withdrawn (due to reasons not related to safety 
concerns).

A phase 2 study investigating BI456906, a GLP-1/GCGR 
dual agonist, in adults with T2D inadequately treated with 
metformin showed that at 16 weeks follow-up, compared to 
placebo, BI456906 1.8 mg twice a week subcutaneous injec-
tion achieved significantly greater HbA1c reduction (1.79 
[SD 0.76]% vs. 0.23 [SD 0.81]%, p < 0.0001) and relative 
weight reduction from baseline (8.95 [SD 5.33]% vs. 1.20 
[SD 3.52]%, p < 0.0001). In the same study, semaglutide 
achieved HbA1c reduction by 1.50 [SD 0.84]% and relative 
weight reduction of 5.4 [SD 4.33]% (statistics for BI456906 
and semaglutide comparison not reported).

Unlike GLP-1 or GIP receptors, glucagon receptors are 
expressed in abundance in the liver. Therefore, there is 
greater focus on the fatty liver related benefits with gluca-
gon-based therapies. An improvement in fatty liver disease 
with a comparable glucose improvement to other incretin 
agents will be of value in clinical practice.

Other Dual Agonists

CagriSema is a novel dual agonist that combines a GLP-
1RA (semaglutide) with a long-acting amylin analogue 
(cagrilintide). In a phase 2 study among adults with T2D 
and BMI > 27 kg/m2, treatment with CagriSema (semaglu-
tide 2.4 mg/cagrilintide 2.4 mg) once a week subcutaneous 
injection over 32 weeks resulted in greater HbA1c reduc-
tion (− 2.2 [SE 1.5]%) compared to cagrilintide monother-
apy (0.9 [SE 0.15]%) (estimated treatment difference 1.3%, 
p < 0.0001) and greater weight reduction from baseline 
compared to both active controls (CagriSema, − 15.6 [SE 
1.26]%; semaglutide, − 5.1 [SE 1.26]%; cagrilintide, − 8·1 
[SE 1·23]%) [53]. However, participants randomized to 
CagriSema treatment had shorter duration of diabetes which 
may have influenced the results. CagriSema has now entered 
series of phase 3 trials (REDEFINE program). REDE-
FINE-2 is evaluating its use in people with overweight/obe-
sity and T2D with primary outcome being weight reduction 
and one of the secondary outcomes being HbA1c reduction 
(NCT05394519).

Several other dual agonists are in the pipeline. Maride-
bart-cafraglutide (AMG133) is an antibody–drug conjugate. 
It has an IgG immunoglobulin which inactivates GIPR and 
two GLP-1 analogue moieties. Interestingly, unlike GLP-1/
GIPR dual agonists, maridebart-cafraglutide produces 
GIPR antagnosim and GLP-1 agonism. Preclinical studies 
had shown promising effects in improving glycaemia and 
weight [54]. A phase 2 clinical trial is currently underway 
evaluating its role in the treatment of adults with obesity, 
with or without T2D and is expected to be completed by 

2025 (NCT05669599). Developing on potential for weight 
loss and glucose control with amylin and calcitonin, dual 
amylin calcitonin receptor agonists (DACRA) have been 
studied in the treatment of T2D. LY3541105, a DACRA 
with an amylin backbone, is likely to enter human studies 
soon. Another group of DACRAs with a salmon calcitonin 
backbone (known as KBPs) have shown strong weight and 
glucose reducing effects in animal models with obesity and 
diabetes either alone or in combination with GLP-1 receptor 
agonists [55]. HEC88473 is an Injectable GLP-1/FGF21 co-
agonist hybrid peptide. It has completed phase 1 trials for the 
treatment of T2D and overweight/obesity (NCT05943886) 
as well as of NASH (NCT04829123).

GLP‑1/GIP/GCGR Triagonists

Retatrutide is the first triagonist that entered clinical tri-
als. In a phase 2 RCT among adults with T2D and BMI 
over 25 kg/m2, retatrutide (4, 8, or 12 mg once weekly sub-
cutaneously) achieved dose-dependent HbA1c reduction 
by up to 2.02 [SE 0.11]%, which was superior to placebo 
and dulaglutide 1.5 mg once weekly (1.41, [SE 0.12]%) at 
36 weeks of follow-up [56•]. Similarly, retatrutide yielded 
a dose dependent weight reduction by up to 16.94 [SE 
1.30]% which was superior to that achieved with dulaglu-
tide 1.5 mg once a week (2.02, [SE 0.72]%). It is noteworthy 
that, like other GLP-1RAs and dual agonists, retatrutide-
induced weight loss is less among people living with T2D 
compared to those without. For instance, in a phase 2 trial 
investigating retatrutride for obesity without T2D, weight 
loss from baseline by 48 weeks in the group treated with 
retatrutide 12 mg once a week was 24.2% (95% CI, − 26.6 
to − 21.8) [57]. Furthermore, higher dose dulaglutide (up to 
4.5 mg once a week), semaglutide and tirzepatide can yield 
greater HbA1c and weight reduction than dulaglutide 1.5 mg 
weekly and head-to-head comparisons against those agents 
have not been made. A series of phase 3 clinical trials are 
on-going investigating retatrutide in the treatment of adults 
with type 2 diabetes and overweight/obesity adults (TRI-
UMPH 2 [NCT05929079]), obesity and obstructive sleep 
apnoea (without diabetes) (TRIUMPH 1 [NCT05929066]), 
class III/IV obesity with cardiovascular disease (TRIUMPH 
3 [NCT05882045]), and obesity with knee osteoarthritis 
(TRIUMPH 4 [NCT05931367]). Other triagonists in devel-
opment are summarized in Table 1.

Safety

Gastrointestinal effects are the commonest adverse events 
noticed with incretin-based therapies: nausea (15–30%), 
vomiting (10–15%), and diarrhea (5–10%) [58]. These 
are dose-dependent, manifest during treatment initiation 
or escalation, and often dissipate over time. Incidence 



8	 Current Diabetes Reports (2024) 24:1–12

1 3

varies with background treatment (higher with met-
formin and insulin) and therefore not necessarily com-
parable across studies. Compared to placebo, GLP-1RA 
are 2.5–3.8 times more likely to be discontinued due to 
gastrointestinal adverse events [59]. Nausea and vomiting 
are more likely related to the direct effects on brainstem, 
than to delay in gastric emptying [8••]. In a meta-analy-
sis of published randomized controlled trials, incidence 
of nausea (13.9–22.6%), vomiting (5.4–10.2%), diar-
rhea (13.3–19.2%), and treatment discontinuation due to 
adverse events (7.3–10.2%) was greater with all doses of 
tirzepatide compared to placebo and was dose-dependent 
[60]. In phase 2 studies, tirzepatide 15 mg once a week and 
retatrutide 12 mg once a week had comparable gastroin-
testinal adverse event profile to their active comparators, 
semaglutide 1 mg once a week and dulaglutide 1.5 mg 
once a week, respectively. In contrast, cotadutide 300 mcg 
once a day, CagriSema (2.4 mg/2.4 mg) once a week and 
BI456906 1.8 mg twice a week caused more gastrointesti-
nal adverse events than liraglutide 1.8 mg once a day and 
semaglutide 1 mg once a week and semaglutide 1 mg once 
a week, respectively (Table 2). A significant risk of gall-
stones, cholecystitis, or pancreatitis was not observed with 
tirzepatide, retatrutide or BI456906 and was not reported 
with cotadutide. It should be noted that all poylagonists 
achieved superior HbA1c and weight improvements com-
pared to GLP-1RA comparators.

Injection site reactions (itching, rash, erythema) have 
been reported with all GLP-1RAs, affecting 1–20% of the 
patients, often mild and transient, commoner with long-
acting preparations, and with more immunogenic agents 
[61, 62]. However, the incidence was relatively low with 
polyagonists (e.g., retatrutide [2–4%], tirzepatide [3–4%]) 
[56•, 63]. An increased risk of worsening diabetic retin-
opathy was noted in SUSTAIN-6 trial, the cardiovascular 
outcome study with injectable semaglutide (OR 1.75, 95% 
CI 1.10–2.78), but not with any other GLP-1RAs [64]. 
Similar risk has not been observed with tirzepatide [65], 
and outcomes have not been reported with other polyag-
onists thus far. An increase in heart rate (1.86 beats per 
minute [95% CI 0.85–2.87]) has been reported with GLP-
1RA [61], but without an increase in risk of atrial fibrilla-
tion [66]. Similar observations were made with tirzepatide 
[41] and retatrutide [56•], and their clinical significance 
remains unclear.

Reassuringly, in any of the studies, serious adverse 
events with polyagonists were not greater than placebo or 
active comparators. No new safety signals have been iden-
tified. Overall, the gain in superior glycaemic and weight 
improvements appear to outweigh the rise in adverse 
effects. However, all these safety data on polyagonists are 
from relatively short-term studies while longer-term stud-
ies are awaited.

Future Perspectives

Impact and Challenges

A decade ago, weight and glucose improvements achieved 
by bariatric surgery were far superior to any pharmacologi-
cal intervention. However, polyagonists have substantially 
narrowed this gap [57]. It is noteworthy that weight loss 
achieved with incretin-based pharmacotherapies has been 
lower among people with T2D compared to those without, 
and this stands true for polyagonists as well. Reason for 
this observation is not fully understood. Polyagonists have 
surpassed the weight reduction benefits of all pre-existing 
diabetes therapies with superior or non-inferior glucose 
improvements. Importantly, these were achieved with no 
serious adverse events or new safety signals. Improvements 
in liver, kidney, and cardiovascular co-morbidities are the 
other advantages.

Development of polyagonists is not without chal-
lenges. Firstly, heterogeneity between animal models and 
humans in the physiology and pathophysiology of these 
hormones makes it challenging to forecast pharmacody-
namics, pharmacokinetics, efficacy, and safety of these 
agents in humans. For an example, unexpected adverse 
events (tachycardia and reticulocytopaenia) due to off-
target toxicity led to discontinuation of GLP-1/GCGR 
dual agonist NN1177 development [67]. Secondly, pep-
tide-based therapies being macromolecules can be immu-
nogenic; a phenomenon observed with exenatide. This is 
likely due to less homology to human GLP-1 sequence. 
In fact, antibody formation against other GLP-1RA has 
been much rarer. Nevertheless, it does not seem to affect 
efficacy even among those with high antibody titres [68]. 
In the phase 2b RCT, 60.8% of the individuals exposed 
to cotadutide developed anti-drug antibodies, but it did 
not impact the efficacy. Seroconverted individuals had a 
higher incidence of injection site reactions, but the sever-
ity was not any worse [50•]. Treatment emergent anti-
body development was much less common with retatru-
tide (8.1%) [56•]. Thirdly, structural homology of some 
peptides and overlapping receptor repertoire (e.g., GLP-1 
and GIP), poses further challenges in balancing agonistic 
effects to optimize synergistic benefits [69]. For exam-
ple, [DA2]GIP-Oxm and [DA2] GLP-1/GcG significantly 
decreased body weight but YAG-glucagon did not [14]. 
This is possibly because the latter had more affinity to 
GIP receptor. Benefits of polyagonist as monotherapy, 
first-line therapy, and add-on treatment, their safety and 
efficacy in special populations (people with kidney/liver/
heart disease), global accessibility, and cost-effectiveness 
compared to other existing pharmacological and surgical 
interventions are some of the other barriers to overcome.
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Precision Medicine

Advances in genetic epidemiology (to identify patients at 
risk), pharmacogenomics (to identify patients’ likelihood 
of responding to treatment), and biomarker discovery (to 
predict future disease risk and monitor progression) hold 
the future of precision medicine.

Availability of diverse treatment options, heterogeneity in 
treatment response, and predictors of response to treatment are 
fundamental requirements for its application. Although there 
are several classes of medication for glucose lowering, hetero-
geneity in glycaemic response is only modest [70]. However, 
GLP-1RA group showed significant intra-class heterogeneity 
in glycaemic response. Effect of liraglutide on cardiovascular 
and renal risk factors is also heterogeneous [71]. Several gene 
mutations [72, 73•], mRNA signatures [74] and gut microbial 
signatures [75] have shown to predict differences in glycae-
mic and weight response to liraglutide. The genes involved, 
often code for GLP-1 receptor or proteins involved in post-
receptor signalling mechanism, beta cell function or tissue 
insulin sensitivity. In observational studies, several clinical 
and biochemical markers (largely reflecting residual beta 
cell function) proved to be predictive of greater glycaemic 
response to GLP-1RAs [76, 77]. It is noteworthy that there 
has been no uniform definition of “response to treatment” 
[78] and comparison of two arbitrarily defined responder and 
non-responder groups is not without caveats [79].

Increasing number of polyagonists are in development 
and these appear to have heterogeneous effects on improv-
ing glucose, weight, fatty liver, etc. Genetic risk predictors 
of fatty liver disease [80], atherosclerosis [81], and diabetic 
kidney disease [82] have been described. Clinical and bio-
marker defined phenotypes that predict specific complica-
tions have been reported [83]. Higher fasting GIP levels were 
associated with increased risk of cardiovascular disease [84]. 
It will be relevant to explore if specific polyagonists have 
unique advantages in primary and secondary prevention of 
these complications among patient with T2D who also pos-
sess genetic signatures predictive of such diseases. Clinical 
trials are increasingly being designed to determine efficacy 
of medications in specific sub-populations and these should 
inform the decision-making in matching the right medica-
tion to the right patient [85]. Individualizing the treatment 
strategy should also take in to account the patient’s prefer-
ences (choice of oral vs injectable preparations, frequency 
of injections, etc.), co-morbidities, and affordability.

Conclusions

Development of polyagonists targeting multiple pathogenic 
mechanisms of T2D and co-morbidities is a rapidly evolv-
ing field. They have the potential to match the benefits of 

bariatric surgery. While several polyagonists have entered 
phase 3 studies and cardiovascular outcome trials, novel 
polyagonists, enteral preparations, and non-peptide agonists 
of peptide hormone receptors are the potential new develop-
ments in the pipeline. Availability of diverse agents and their 
unique efficacy/safety profiles necessitates the clinician to 
carefully individualize the treatment.
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