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Abstract
Purpose of Review This review focuses on the complex interactions between hyperglycemia and bone fragility and the effects of
antidiabetic medications on bone metabolism.
Recent Findings Type 2 diabetes (T2D) is associated with increased risk of bone fracture even in those with increased or normal
bone mineral density (BMD). The pathophysiology of diabetic bone disease is not completely understood, but it is thought to be
multifactorial and associated with complex cross talk among factors such as AGEs, IGF-1, enteric hormones, and pro-
inflammatory cytokines. Treatment for T2D may have an impact on bone metabolism.
Summary Diabetic bone disease should be considered a serious complication of long-standing T2D.
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Introduction

Type 2 diabetes mellitus (T2D) is a major health problem and
one of the most prevalent chronic diseases. In 2019, 463 mil-
lion people (9.3% of adults 20–79 years old) were living with
T2D worldwide. The estimated number of people (20–
79 years) living with T2D has increased by 62% over the past
10 years [1]. Moreover, the increasing prevalence of child-
hood obesity is a worldwide problem [2]. The prevalence of
T2D has more than doubled in children and adolescents in the
past 10 years [3].

Diabetes and its complications are a major cause of mor-
bidity and mortality and result in increased economic burden.
T2D can affect many different organ systems in the body and,
over time, can lead to serious complications including ne-
phropathy, neuropathy, retinopathy, and cardiovascular dis-
ease. Recently, the increased risk of fragility fractures has
been recognized as an important complication in diabetics;

although, paradoxically, the bone mineral density (BMD) in
those with T2D is higher than in non-diabetic subjects [4].

In this review, we described the complex interactions be-
tween hyperglycemia and bone and the effects of antidiabetic
medications on bone metabolism.

Bone Mineral Density and the Prevalence of Fractures
in Type 2 Diabetes

Although the prevalence of T2D in children and adolescents
has increased dramatically in past decades, there have been
few reports on bone metabolism in pediatric patients with
T2D. In a study by Lee et al. [5], the BMD of the lumbar spine
and total body in adolescents with new T2D was not different
compared to obese controls without T2D, but the BMD of the
femoral neck was significantly lower than in controls. In
adults, a meta-analysis reported that patients with T2D had
approximately 25–50% higher BMD in the lumbar spine and
hip, but not in the forearm compared to normal controls after
adjustment for BMI [6]. However, a recent review article re-
ported that thirteen studies in adults demonstrated decreased
BMD in those with T2D, while eight other studies found no
difference in BMD in those with T2D compared to normal
controls [7].

It has been observed that T2D negatively affects bone
strength despite increased or normal BMD. In the Rotterdam
Study, 6655 men and women with T2D (aged ≥ 55 years) had
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an increased risk of non-vertebral fractures compared with
subjects without T2D (HR 1.33), although they had a higher
BMD [8]. In the Health, Aging and Body Composition Study,
T2D was associated with accelerated bone loss at the hip, and
a high risk of fractures was observed (relative risk 1.64; 95%
CI 1.07–2.51) after adjustment for hip BMD and additional
risk factors for fracture [9]. A large meta-analysis of case-
control and cohort studies confirmed an increased relative risk
(RR) for hip fracture of 1.4- to 1.7-fold in both men and
women with T2D compared to subjects without diabetes
[10, 11]. In a recent meta-analysis of 21 independent observa-
tional studies involving 82,293 hip fracture events among
6,995,272 participants, subjects with T2D had an increased
risk of hip fractures (RR 1.34; 95% CI 1.19–1.51) [12].
Moreover, fractures of the wrist and foot were more prevalent
in patients with T2D than in subjects without it [8, 13].

Hip fractures are the most extensively studied fracture type
in patients with T2D, and most studies reported that patients
with T2D have a higher risk of hip fracture than subjects
without T2D. However, vertebral fractures are quite difficult
to evaluate in large observational studies and reports of the
association between T2D and vertebral fracture have been
contradictory. In a meta-analysis of 738,018 individuals, pa-
tients with T2D had a higher incidence of vertebral fracture
compared with subjects without T2D (OR 1.55, 95% CI 1.04–
2.31) [14]. Another study in an Asian population (982 post-
menopausal women aged 47–108 years, 18.9% with T2D)
reported that women with T2D were at similar risk for verte-
bral fractures compared with subjects without T2D (OR 0.74,
95% CI 0.32–1.74), after adjustment for age, BMI, BMD, and
previous fractures [15]. These discrepant observations may be
attributable to differences in study design, ethnicity, sample
size, and variable methods of vertebral fracture ascertainment.

Overall, fracture risk is almost two times higher in patients
with T2D compared with subjects without T2D, even though
patients with T2D have an increased or normal BMD. In pe-
diatric patients, the BMD of the femoral neck is reduced com-
pared with normal obese controls. This might be the mecha-
nism underlying the association of T2DM with the risk of hip
fracture.

Pathogenesis of Bone Fragility in Type 2 Diabetes

Patients with T2D have normal or increased BMD, so this
increased risk is probably due to abnormalities in bone mate-
rial strength and biomechanical quality. Bone mass is deter-
mined by the balance between osteoblast and osteoclast activ-
ity, which is orchestrated by osteocytes in reaction to endo-
crine and mechanical stimuli. Bone marrow mesenchymal
stem cells are differentiated into osteoblasts, osteocytes, adi-
pocytes, and chondrocytes. Osteoblasts produce bone matrix
proteins, including type I collagen. Osteoblasts are involved in
cross talk with osteoclasts through cytokines and the

extracellular matrix. The interaction between osteoblast and
osteoclast activity leads to osteoclast formation, differentia-
tion, and apoptosis [16]. Recent studies demonstrated that
hyperglycemia may directly or indirectly influence osteoblasts
and osteoclasts as well as osteocytes [17]. The pathogenesis
underlying bone fragility in T2D are complex and multifacto-
rial, including accumulation of advanced glycation end prod-
ucts (AGEs) in the collagen fibers, insulin-like growth factor-
1 (IGF-1), incretin hormones like glucose-dependent
insulinotropic peptide (GIP), sclerostin, chronic inflammation
with increases in pro-inflammatory cytokines, and bone mi-
croangiopathy with reduction in vascular flow and increased
bone fragility [4].

Hyperglycemia and Advanced Glycation End Products

Hyperglycemia may act through non-enzymatic pathways and
induce the formation of AGEs [18]. The AGEs in patients
with T2D accumulate in bone as a result of hyperglycemia
and increased levels of oxidative stress [19]. AGEs not only
significantly inhibit osteoblast proliferation, but also induce
osteoblast apoptosis. Moreover, AGEs suppress osteoblastic
differentiation and mineralization, accompanied by enhanced
expression of the receptor for AGEs (RAGE) [20, 21]. AGEs
induce production of reactive oxygen species (ROS), which
plays an important role in many of the complications associ-
ated with T2D, and increased oxidative stress has a negative
impact on bone formation by modulating osteoblast differen-
tiation and survival [22]. The AGE-RAGE interaction medi-
ates generation of ROS and vascular inflammation results in
the development and progression of microangiopathy [23].
Microangiopathy leads to abnormal blood flow and may be
associated with altered bone remodeling due to changes in
vascular endothelial growth factor signaling or increased ac-
cumulation of AGEs [24].

Bone matrix consists of mainly type I collagen and min-
erals, and smaller quantities of non-collagenous proteins.
AGEs can contribute to reduced bone formation by inhibiting
the synthesis of type I collagen and results in reduced bone
strength. Tang et al. [25] reported that accumulation of AGEs
in human cancellous bone can increase the stiffness of the
collagen network and reduce its ductility.

Pentosidine, which is the most studied AGE, is increased in
patients with T2D compared to non-diabetic controls [26].
Elevation of serum pentosidine is associated with an increase
in prevalence of vertebral fracture in older adults (70–79 years)
and postmenopausal women with T2D, irrespective of BMD
[27, 28]. These studies supported the notion that accumulation
of AGEs in response to hyperglycemia plays a pivotal role in
both bonematerial properties and bone turnover, which results
in bone fragility in patients with T2D.

Apart from the indirect effects of hyperglycemia on osteo-
blastic differentiation and activity through the formation of
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AGEs, hyperglycemia directly affects the differentiation and
function of osteoblasts. Deng et al. [29] reported that hyper-
glycemia inhibits the differentiation of mesenchymal stem
cells (MSCs) to osteoblasts, and that the proliferation and os-
teogenic differentiation of MSCs are associated with glycemic
control. High glucose is associated with a shift in the differen-
tiation of MSCs toward adipogenesis, rather than toward oste-
oblasts [30]. This adipogenic conversion of MSCs is mediated
through ROS production [31]. The peroxisome proliferator-
activated receptor gamma (PPARγ), which consists of two
isoforms in humans (PPARγ1 and PPARγ2), is a master reg-
ulator of adipogenesis. In bone, PPARγ2 plays an important
role in regulating the differentiation of MSCs toward osteo-
blasts and adipocytes [32]. Levels of PPARγ were found to
be positively correlated with increased BMI in obese patients
[33]. Therefore, activation of PPARγ2 in patients with T2D
may disturb the delicate balance between bone marrow adipo-
cytes and osteoblasts and results in decreased osteogenesis by
inhibiting the differentiation of MSCs into osteoblasts [34].

Low Turnover Marker

Most studies, but not all, reported that bone turnover markers
are reduced in patients with T2D compared to non-diabetic
controls [35, 36]. Osteocalcin, which is the most abundant
osteoblast-specific marker, is a key determinant of bone for-
mation [37]. Observational studies demonstrated that patients
with T2D have lower plasma osteocalcin levels compared to
non-diabetic individuals [38, 39]. A recent meta-analysis
based on 47 studies evaluating bone turnover markers in dia-
betes reported that osteocalcin, C-terminal telopeptide of type
I collagen (CTX), N-terminal telopeptide of type I collagen
(NTX), and procollagen type 1 amino-terminal propeptide
(P1NP) levels tended to be lower or significantly lower in
patients with diabetes than in controls [35]. Furthermore,
Wang et al. [40] reported that bone formation markers includ-
ing osteocalcin and P1NP were inversely correlated with
HbA1c.

Sclerostin is produced by osteocytes and is a potent inhib-
itor of bone formation through inhibition of theWnt/β-catenin
signaling pathway. Wnt/β-catenin signaling pathway activa-
tion promotes osteoblast cell lineages and suppresses osteo-
clastogenesis by inducing osteoprotegerin [41]. Gaudio et al.
[42] reported that elevated serum sclerostin level is associated
with a significant reduction in serum β-catenin levels. They
suggested that increased sclerostin has a causative effect in
impairing the functionality of Wnt signaling in patients with
T2D [42]. In a meta-analysis, sclerostin levels were higher in
patients with T2D than in healthy controls [43]. Furthermore,
sclerostin levels were negatively correlated with P1NP levels
in patients with T2D [44]. In a cross-sectional study, increased
sclerostin levels were associated with an increased risk of
vertebral fractures in patients with T2D after adjusting for

BMD [45]. Taken together, these findings suggest that low
bone turnover in patients with T2D is associated with bone
fragility, and may increase the risk of fracture.

Insulin-Like Growth Factor-1

IGF-1 is an anabolic hormone that directly influences bone
cells and potentially contributes to bone fragility. IGF-1 in-
creases osteoblast proliferation and inhibition of matrix colla-
gen degradation by decreasing collagenase 3 transcription
[46]. IGF-1-deficient mice exhibited delayed mineralization,
reduced chondrocyte proliferation, and increased chondrocyte
apoptosis [47]. IGF-1 levels were lower in postmenopausal
women with T2D compared to age-matched controls, and
decreased serum IGF-1 levels were inversely associated with
vertebral fractures in these patients [48]. Several experimental
studies demonstrated that the stimulatory actions of IGF-1 on
osteoblasts are blunted by increased AGEs [49, 50].
Therefore, reduced IGF-1 levels may be associated with bone
abnormalities.

Enteric Hormones: Glucose-Dependent Insulinotropic Peptide
and Glucagon-Like Peptide 1

GIP and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2)
are gastrointestinal hormones released by K cells in the duo-
denum and proximal jejunum and from L cells located in the
distal ileum and colon, respectively. The serumGIP and GLP-
1 levels start to rise after nutrient ingestion and reach a peak
after about an hour [51]. The bioactivity of both GIP and GLP-
1 is limited by rapid degradation and inactivation by the en-
zyme, dipeptidyl peptidase-4 (DPP-4) [52]. GLP-1 increases
the number of osteoblasts and promotes the expression of
genes related to bone formation such as Runx2 [53, 54].
Patients with T2D have a decreased incretin response with
impaired GLP-1 production after nutrient ingestion [55].
GLP-1 receptors are also expressed on bone marrow stromal
cells and osteoblastic precursor cells [56]. Therefore, incretins
may be associated with control of bonemass and bone quality,
so impaired GIP and GLP-1 could contribute to bone fragility
in T2D [57]. However, further studies are needed to investi-
gate the role of incretins in bone health.

Pro-Inflammatory Cytokines

Chronic inflammation may be a link between bone abnormal-
ities and fracture risk in T2D. Serum pro-inflammatory cyto-
kines including interleukin 6 (IL-6), tumor necrosis factor-α
(TNF-α), and high-sensitivity C-reactive protein are upregu-
lated in T2D patients with bone fractures, which are associated
with reduced osteoblast viability [58, 59]. Moreover, TNF-α
promotes the apoptosis of osteoblast cells in the presence of
high glucose and stimulates osteoclastogenesis [59, 60].
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Another study showed that pro-inflammatory cytokines stim-
ulate the production of ROS, which affects differentiation and
survival of osteoclasts and osteoblasts [61].

Effects of Antidiabetic Drugs on Bone Metabolism

Many antidiabetic medications have recently become
available for patients with T2D. Many studies have report-
ed that these antidiabetic drugs, including insulin, metfor-
min, and thiazolidinediones, can have positive, negative,
and neutral effects on fracture risk [62]. All of these studies
were conducted in adults with T2D, and to date, there have
been no studies conducted in children and adolescents with
T2D.

Insulin

Insulin has an anabolic effect on bone regeneration by stimu-
lating osteoblast proliferation and differentiation based on ex-
perimental studies [63, 64]. However, in human observational
studies, insulin treatment was associated with increased frac-
ture risk in patients with T2D [65, 66]. Losada-Grande et al.
[67] reported that insulin treatment is associated with an in-
creased risk of fracture (hazard ratio 1.38, 95% CI 1.06–1.80)
patients with early-stage T2D. However, insulin is often the
last option for treatment in those with T2D. Thus, patients
who initiate insulin treatment are more likely to already have
greater complications such asmicrovascular disease or periph-
eral neuropathy as well as a more severe disease progression.
Insulin treatment could affect fracture incidence due to in-
creased risk of hypoglycemia, which may lead to falls.

Metformin

Metformin is a first-line drug in the treatment of T2D and is
thought to improve insulin sensitivity. Metformin has been
found to affect bone metabolism by activation of AMP-
activated protein kinase in bone marrow progenitor cells and
osteoblasts in vitro [68, 69]. In a recent meta-analysis, metfor-
min treatment in patients with T2D was associated with a
reduced risk of fracture (RR 0.86, 95% CI 0.75, 0.99) [70].
In A Diabetes Outcome Progression Trial (ADOPT), patients
treated with metformin had a lower incidence of fracture than
those treated with thiazolidinedione (TZD) [71]. Interestingly,
there were no differences in the incidence of fractures in men
with T2D taking different antidiabetic medications in the
ADOPT study. Clinical studies assessing the association be-
tween different antidiabetic drugs and fracture risk have
shown that metformin use has a positive or neutral effect on
bone health [72–74].

Thiazolidinedione

Thiazolidinedione (TZD) improves insulin sensitivity and its
action primarily activates PPARγ. In an experimental study,
TZD had a detrimental effect on bone metabolism by sup-
pressing bone formation and stimulating bone resorption
[75]. Treatment with TZDs such as rosiglitazone and pioglit-
azone was associated with a 45% increased risk of fractures in
ten randomized controlled trials [76]. A recent meta-analysis
included 22 randomized controlled trials (RCT) with over
25,000 patients. This meta-analysis demonstrated that women
treated with TZD had significantly increased risk of fractures
(OR = 1.94; 95% CI: 1.60–2.35), but there was no effect in
men (OR = 1.02; 95% CI: 0.83–1.27) [77]. For women, both
rosiglitazone and pioglitazone were associated with increased
fracture risk. TZD treatment was also associated with reduced
BMD in the lumbar spine and femoral neck and hip. However,
there was no significant difference in fracture risk based on
TZD treatment duration [77]. These findings suggest that TZD
treatment has a negative effect on bonemetabolism, and wom-
en with T2D treated with these medications have an increased
risk of fracture. TZD use should be avoided in women, espe-
cially after menopause.

Sulfonylureas

Sulfonylureas increase insulin secretion by binding to an
adenosine triphosphate (ATP)–dependent K+ channel on the
cell membrane of pancreatic beta cells. In an experimental
study, glimepiride, which is a second-generation sulfonylurea,
enhanced osteoblastic differentiation under hyperglycemic
conditions through the phosphoinositide 3-kinase (PI3K)/
Akt/eNOS pathway [78]. However, there have been relatively
few studies on the effect of sulfonylureas on bone metabolism
in patients with T2D. In the ADOPT study, patients taking a
sulfonylurea (glyburide) had a similar incidence of fracture
compared to those taking metformin, but a lower incidence
than those taking rosiglitazone [71]. Sulfonylurea treatment
was associated with an increased risk of fracture in a meta-
analysis of 11 studies evaluating the effect of sulfonylureas on
fracture risk (OR 1.14; 95% CI, 1.08–1.19) [79]. However,
this may be due to the fact that sulfonylurea-induced hypogly-
cemia increases the risk of falls.

GLP-1 Receptor Agonists and DPP-4 Inhibitors

GLP-1 receptor agonists comprise a new class of incretin-
based therapy. GLP-1 receptor agonists reduce hyperglycemia
by increasing insulin secretion and decreasing glucagon secre-
tion, with a low risk of hypoglycemia [80]. Data on the effect
of GLP-1 receptor agonists and fracture risk in humans is
sparse. Mabilleau et al. [81] reported that GLP-1 receptor
agonist treatment was not associated with fracture risk
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compared with the use of other antidiabetic medications in a
meta-analysis. However, a network meta-analysis of 54 RCTs
with 49,602 participants indicated that GLP-1 receptor ago-
nists were associated with a decreased risk of fractures com-
pared with other antidiabetic treatments or no treatment in
patients with T2D [82]. Data from these studies should be
interpreted carefully because most studies were short in
duration.

DPP-4 inhibitors increase active incretin hormone levels by
inhibiting plasma DPP-4 activity. Clinical evidence
supporting the effects of DPP-4 inhibitors on fracture risk is
also conflicting. A meta-analysis of 28 RCTs with a duration
of at least 6 months demonstrated that DPP-4 inhibitors re-
duced the risk of bone fracture by 40% compared with con-
trols or other antidiabetic drugs [83]. In a retrospective study
from Germany, the use of DPP-4 inhibitors was associated
with a significant decrease in fracture risk in both men and
women (HR 0.67; 95% CI 0.54–0.84) [84]. However, a recent
UK cohort study reported that the long-term use of DPP-4
inhibitors (duration; 4.0–8.5 years) was not associated with
increased fracture risk compared with other antidiabetic treat-
ments (HR 0.99; 95% CI 0.93–1.06) [85]. An analysis of 62
RCTs showed that the risk of fracture was not different be-
tween patients taking DPP-4 inhibitors and controls (RR 0.95;
95% CI, 0.83–1.10) [86].

Taken together, these findings suggest that GLP-1 receptor
agonists and DPP-4 inhibitors seem to have a positive or neu-
tral effect on bone health, but further RCTs with a longer
treatment duration are required to further evaluate the effects
of these drugs.

Sodium-Glucose Cotransporter-2 Inhibitors

Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the
latest class of oral medications for T2D and improve glycemic
control by inhibiting proximal renal tubular reabsorption of
glucose [87]. Canagliflozin, empagliflozin and dapagliflozin
have been approved by the US Food and Drug Administration
(FDA). SGLT2 inhibitors may have negative effects on bone
metabolism by altering calcium and phosphate homeostasis
[88]. Blau et al. [89] reported that serum phosphate, fibroblast
growth factor 23 (FGF23), and parathyroid hormone (PTH)
levels increase, whereas active vitamin D level decreases after
canagliflozin administration in healthy adults. These results
suggest that SGLT2 inhibitors may lead to increased risk of
bone fracture. In the Canagliflozin Cardiovascular
Assessment Study (CANVAS) trial, the rate of all fractures
was higher in patients taking canagliflozin compared with
controls (HR 1.26; 95% CI, 1.04 to 1.52) [90]. However, in
a recent meta-analysis of 30 RCTs including 23,372 patients
with T2D, the incidence of bone fractures was not significant-
ly different between patients taking SGLT2 inhibitors and
those taking a placebo (OR 0.86; 95% CI 0.70–1.06) [91].

Clinical data for SGLT2 inhibitors is limited, and further stud-
ies are needed to clarify the bone effects of these medications.

Conclusion

Patients with T2D are at increased risk of bone fracture, even
those with increased or normal BMD. Diabetic bone disease
should be considered a serious complication of long-standing
T2D. The pathophysiology of diabetic bone disease is not
completely understood, but is apparently multifactorial, asso-
ciated with complex cross talk among factors such as AGEs,
IGF-1, enteric hormones, and pro-inflammatory cytokines.
Antidiabetic treatment may have an impact on bone metabo-
lism. In particular, adolescence is a critical period of peak
bone mass, so T2D may affect bone density and increase
susceptibility to fractures in adolescents. However, there have
been few reports on the effects of hyperglycemia on bone
development and homeostasis in children and adolescents.
Further research on the mechanisms underlying diabetic bone
disease and the effects of antidiabetic medications on bone
metabolism is necessary.
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