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Abstract
Purpose of Review We seek to characterize the impact of bariatric surgery on diabetes mellitus by recalling its history, examining
the clinical data, exploring the putative mechanisms of action, and anticipating its future.
Recent Findings Results of clinical trials reveal that bariatric surgery induces remission of diabetes in 33–90% of individuals at 1-
year post-treatment versus 0–39% of medically managed. Remission rates decrease over time but remain higher in surgically
treated individuals. Investigations have revealed numerous actions of surgery including effects on intestinal physiology, neuronal
signaling, incretin hormone secretion, bile acid metabolism, and microbiome changes.
Summary Bariatric surgery improves control of diabetes through both weight-dependent and weight-independent actions. These
various mechanisms help explain the difference between individuals treated surgically vs. medically. They also explain differing
effects of various bariatric surgery procedure types. Understanding how surgery affects diabetes will help optimize utilization of
the therapy for both disease prevention and treatment.
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Introduction

“Diabesity” was coined in 1973 to emphasize the pathophys-
iologic interconnection between the diseases of type 2 diabe-
tes and obesity [1, 2]. Since that time, the acceleration of
diabesity’s impact on health and economics has led Dr. Paul
Zimmet to state that it “is likely to be the biggest epidemic in
human history” [3]. Worldwide, 650 million individuals have
the disease of obesity and over 400 million individuals have

diabetes [4, 5]. The impact of these diseases on morbidity,
mortality, quality of life, and healthcare costs have been
well-described [6]. Treating individuals with diabetes and
obesity results in health improvements and long-term reduc-
tions in healthcare costs [7–9]. Unfortunately, significant
health improvements can be difficult to attain and/or maintain
even with the best available dietary, behavioral, and medica-
tion therapies available [2]. As an illustration of this point, the
results of a study examining the 2012 claims data from the 50
largest metropolitan areas in the USA revealed that 44% of
insured patients diagnosed with diabetes and receiving medi-
cation therapy were classified as having “uncontrolled” diabe-
tes [10]. Similarly, conventional, lifestyle-focused weight
management strategies face challenges in terms of degree of
weight loss, weight maintenance, and attrition [11, 12].
Furthermore, individuals with both obesity and diabetes tend
to lose less weight and have more difficulty maintaining a
reduced-weight state when compared to individuals without
diabetes [13, 14]. As such, there has been a pressing need for
therapeutic options beyond the traditional medical tools.
Bariatric surgery has emerged as the most effective treatment
for weight loss and maintenance. Unsurprisingly, it is also
being recognized as a highly effective treatment for type 2
diabetes [15]. Interestingly, the mechanisms by which surgery
impacts glucose homeostasis are much more extensive than
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originally expected and continue to be elucidated. In this re-
view, we will describe the clinical problem, the impact of
bariatric surgery on diabetes, the physiologic mechanisms
for the glycemic effects of surgery, and emerging policy
discussions.

Obesity and Diabetes

The connection between obesity and type 2 diabetes has long
been recognized [1]. Observationally, the rise in incidence and
prevalence of diabetes has mirrored the rise in obesity preva-
lence rates [16, 17]. However, even though 90% of individuals
with type 2 diabetes are obese, a substantially smaller fraction
of individuals with obesity develop diabetes [4]. Yet, obesity
is thought to be the strongest risk factor for development of
type 2 diabetes [18]. This observation can be explained
through an understanding of the biology of these diseases.
Obesity is associated with various pathophysiologic changes
that increase insulin resistance [19]. Despite the increase in
insulin demand and decrease in insulin sensitivity, the pancre-
as can normally compensate by increasing insulin production
to maintain glucose homeostasis. In contrast, when an indi-
vidual with the genetic predisposition for type 2 diabetes is
exposed to obesogenic environmental factors (increased fat/
carbohydrate/caloric intake; decreased physical activity), pan-
creatic beta-cell dysfunction, altered adipose tissue function,
and weight gain can occur [20]. The combination of progres-
sively declining insulin production capacity and rising insulin
resistance results in the inability of the body to maintain
euglycemia. Eventually, this can be detected as impaired glu-
cose tolerance and, later, clinical type 2 diabetes [19, 21].
Given the intersection between these processes, weight reduc-
tion has been the foundational treatment recommendation for
individuals diagnosed with both obesity and diabetes [22].
Unfortunately, conventional methods to facilitate weight loss
are unsuccessful for the majority of individuals [2].
Furthermore, many anti-diabetes medications such as insulin,
sulfonylureas, meglitinides, and thiazolidinediones are associ-
ated with weight gain [23, 24]. Consequently, many individ-
uals with diabetes remain in a vicious cycle where treatments
for hyperglycemia can complicate long-term care by exacer-
bating obesity. Fortunately, weight-negative anti-diabetes
treatment options such as glucagon-like peptide-1 receptor
agonists (GLP-1 RA) and sodium glucose transporter-2 inhib-
itors have become available [25]. Yet, the magnitude of the
weight loss seen with use of these medications is often insuf-
ficient to address severe obesity [26, 27].

After years of observing that shortened guts were associat-
ed with weight loss, surgeons in the 1950s started to develop
surgical procedures to treat obesity [15]. Over the ensuing
decades, surgical options have evolved in pursuit of the goal

of optimizing both safety and efficacy. The types of bariatric
surgery are reviewed in Table 1 [28–30].

As of 2019, the most commonly performed surgeries are
sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB),
laparoscopic adjustable gastric band (LAGB), and
biliopancreatic diversion with duodenal switch (BPD/DS)
[28]. As the techniques have changed and matured, the under-
standing of the mechanisms by which surgery facilitates
weight loss and maintenance of a reduced-weight state has
also evolved. At first, weight loss was thought to occur pri-
marily through caloric restriction and/or malabsorption and
surgical procedures were categorized based on these pre-
sumed mechanisms of action. It is now recognized that most
of the current, commonly performed surgeries improve both
obesity and its comorbidities (including type 2 diabetes)
through pleiotropic effects on intestinal physiology, transcrip-
tional programs in intestinal differentiation programs, neuro-
nal signaling, incretin hormone secretion, bile acid metabo-
lism, lipid regulation, microbiome changes, and glucose ho-
meostasis. For this reason, many prefer to describe these pro-
cedures as types of “metabolic surgery” [31, 32]. These ob-
servations have led to intensified efforts to assess the impact of
surgery on type 2 diabetes and better understand the mecha-
nisms behind its effects.

Impact of Surgery on Type 2 Diabetes

Given the long-recognized association of type 2 diabetes and
obesity, it was expected that glycemic control would improve
as a result of surgically facilitated weight loss. However, the
surprising observation of immediate, post-surgical glycemic
improvement suggested short-term mechanisms of action that
were distinct from (but complementary to) long-term mecha-
nisms. These provocative anecdotal accounts and ensuing
case reports paved the way for several cohort studies pub-
lished in the 1980s that helped explore the impact of bariatric
surgery on type 2 diabetes in both the short and long term. For
example, one study of insulin-treated patients with type 2
diabetes recorded an improvement in glycated hemoglobin
(HbA1c) from 11.8 to 7.9% following gastric bypass surgery
and another study noted 139 of 141 patients were able to
discontinue anti-diabetes medications by 4-month post-sur-
gery [33, 34].

These early studies stimulated efforts to quantify the impact
of bariatric surgery on type 2 diabetes. Consequently, metrics
were needed as part of the assessment process. The chief met-
ric that has emerged is the rate of inducing “diabetes remis-
sion.” Unfortunately, there has not been consensus on the
definition of the term and the ensuing variations complicate
review of the data. For example, some early cohort studies
defined remission as medication-free euglycemia (i.e., normal
range fasting blood sugar and/or HbA1c) while others allowed
for continued monotherapy with metformin [35–37]. In 2009,
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the American Diabetes Association (ADA) published a con-
sensus statement defining complete diabetes remission as
demonstrating normal fasting blood glucose levels and/or
HbA1c without the use of anti-diabetes medications for at
least 1 year. Partial remission was defined as HbA1c < 6.5%
and fasting blood glucose less than 126 mg/dL without med-
ications for 1 year [38]. Since then, many of recent studies
have used similar definitions [39–42•]. Of note, at the time of
manuscript submission, the upcoming revised ADA consen-
sus statement on diabetes remission was still under
development.

Regardless of the definitions used, clinical studies have
repeatedly demonstrated the significant ability of surgery to
improve glucose homeostasis and induce remission. Several
large cohort studies comparing bariatric surgery to conven-
tional obesity management have confirmed that bariatric sur-
gery patients are able to achieve diabetes remission more fre-
quently than those who use conventional obesity therapy
alone [35–37, 43•, 44•]. For example, in the Swedish
Obesity Study (SOS), of 343 patients that underwent bariatric
surgery (VBG, LAGB, and RYGB), 72.4% achieved diabetes
remission at 2 years, compared to only 16.4% of control pa-
tients [35]. Similarly, in a 2019 study that included 1111 pa-
tients with diabetes who underwent RYGB, 74% of patients
had diabetes remission at 1 year [44•].

While cohort studies provide evidence that bariatric sur-
gery can induce diabetes remission, they may be confounded
by factors inherent to the patients that choose bariatric surgery
over medical therapy. Additionally, some cohort studies use

conventional obesity therapy, which may not include a rigor-
ous, validated weight loss program as the control group
[35, 44•], leading to under-estimation of the effectiveness of
medical therapy and inflation of the efficacy of bariatric sur-
gery. To address these concerns and improve scientific under-
standing, randomized controlled trials (RCTs) were conduct-
ed. These have been designed to compare the effectiveness of
bariatric surgery and lifestyle/medical management to induce
diabetes remission. The results of significant trials (cohort and
RCT) are summarized in Table 2.

As seen by the studies summarized, there is a wide range of
remission rates reported after surgical therapy. The heteroge-
neity is likely due to the diversity of surgical procedures in-
cluded, the varied populations studied, and the different defi-
nitions of diabetes remission used. Additionally, studies can
vary with respect to reporting cumulative remission (counted
as any individual who ever achieved remission) and/or prev-
alent remission (counted as only individuals who were in re-
mission at the time of measurement). Furthermore, some stud-
ies correct for attrition while others do not [54]. Despite this
variability, the RCTs consistently demonstrate that bariatric
surgery has a superior diabetes remission rate when compared
to medical therapy. For example, after 1 year of treatment,
diabetes remits in a substantial proportion (33–90%) of surgi-
cally managed individuals but only in a small minority (0–
39%) of medically managed individuals (Table 2). As further
evidence of this, a meta-analysis of clinical trials available
through 2013 (with follow-up ranging from 40 weeks to
2 years) concluded that the relative risk of attaining diabetes

Table 1 Types of bariatric surgery procedures

Surgery type Description Time introduced Estimated % of total
bariatric cases performed
from 2011 to 2017

Jejunoileal bypass (JIB) Bypass of most of the intestines with gastric preservation 1950s 0 (no longer performed)

Roux-en-Y gastric bypass
(RYGB)

Gastric pouch creation with bypass of the remaining stomach
and first segment of small intestine

Open: 1960s
Laparoscopic: 1994

17.8

Mini-gastric bypass (MGB) Similar to RYGB but with a longer gastric pouch and a longer
biliary limb

1997 a

Biliopancreatic diversion
(BPD) and duodenal switch
(DS); (BPD/DS)

BPD: Distal gastrectomy (later: vertical sleeve gastrectomy)
with creation of a gastrointestinal anastomosis involving a
biliopancreatic bypass

DS: BPD modification involving vertical gastrectomy, some
duodenal preservation, and duodenal-intestinal anastomosis
involving biliopancreatic bypass

BPD: 1979
DS: 1986

0.7

Vertical banded gastroplasty
(VBG)

Partition of the stomach using staples and placement of a
polypropylene mesh band or ring around the outlet of the
pouch

1982 a

Gastric banding (GB) and
laparoscopic adjustable
gastric banding (LAGB)

Gastric partitioning with a ring to create a small upper pouch
and the rest of the stomach.

Later modified to an inflatable balloon ring

GB: 1978
LAGB: 1986

2.77

Sleeve gastrectomy (SG) Resection of 80% of the stomach leaving a tube-shaped gastric
pouch.

Open: 1988
Laparoscopic: 1999

59.39

a All other procedures comprise under 2.5% of total cases
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remission was at least 5 times higher in surgically treated
individuals versus non-surgical groups and possibly as much
as 22 times higher [55].

Diabetes and Bariatric Surgery: Mechanisms

As the results of the numerous clinical studies have accumu-
lated, many clinical and scientific questions have arisen. The
most fundamental of these is: why does diabetes improve after
surgery? In keeping with expectations, some degree of glyce-
mic improvement after bariatric surgery is associated with
weight loss. Indeed, 75% of patients who did not achieve
diabetes remission had weight regain [47]. Insulin sensitivity,
a crucial component of diabetes pathogenesis, improves in
patients following bariatric surgery to a similar degree as in
patients who have lost an equivalent amount of weight using
caloric restriction [57, 59, 61]. The weight-dependence of im-
proved insulin sensitivity is further supported in studies com-
paring SG and RYGB, which have differing effects on gut
physiology. In patients that achieved 20% weight loss, both
SG patients and RYGB patients achieved similar improve-
ments in insulin sensitivity [62].

Somewhat less expected has been the discovery that the
microbiome may contribute to improvement in glucose ho-
meostasis following bariatric surgery. While it is unclear if
changes in the gut microbiome cause metabolic improvement,
or occur because of metabolic improvement, the gut
microbiome is markedly altered following bariatric surgery
with increased microbiome diversity within 3 months
[63–66] in both RYGB and VBG. In rodents, fecal transplant
from either mice or humans that have undergone RYGB into
germ-free rats fed a high-fat diet results in weight loss and
improvement in glycemic parameters, suggesting that, regard-
less of what causes the microbiome to change, the post-RYGB
microbiome improves glycemic control [67, 68].

A striking feature of bariatric surgery is the rapid improve-
ment in glycemic control that precedes weight loss. In some of
the earliest case reports, authors remarked that some patients
were insulin-free at the time of discharge despite having pre-
surgical insulin requirements of hundreds of units [34]. What
are the mechanisms that drive these rapid, weight-independent
improvements in glucose homeostasis? The answer to this
question is rather complex but starts with alterations in gut
hormones which are worth reviewing here.

Glucagon-like peptide 1 (GLP-1) is a gut hormone secreted
from intestinal neuroendocrine L cells which induces the
“incretin effect” of increasing insulin secretion and glucose
clearance in response to oral glucose. Following bariatric sur-
gery, post-prandial GLP-1 levels are increased, leading to im-
proved beta-cell glucose sensitivity and lower post-prandial
blood glucose [69–72]. In mice lacking the GLP-1 receptor
(GLP-1R KO mice), continued improvements in glucose ho-
meostasis following SG and RYGB are observed [73–75], as

occurs in patients treated with a GLP-1 receptor antagonist
following bariatric surgery [76].

Other gut hormones that may contribute to improved glu-
cose homeostasis include PYY and oxyntomodulin, both of
which are increased following bariatric surgery. Indeed, a re-
cent clinical trial of subcutaneous GLP-1, PYY, and
oxyntomodulin combination therapy for 4 weeks demonstrat-
ed improved post-prandial glycemic control similar to that of
RYGB patients [77].

As practice patterns evolved and as SG has superseded
RYGB as the most commonly performed bariatric surgery
[28], most recent studies have focused on comparisons be-
tween these two procedures. Based on these studies, it appears
that patients who undergo “more” rearrangement of their GI
tract have a small, but reproducible, improvement in long-
term glycemic control compared to patients undergoing less
drastic procedures. This is demonstrated by a recent meta-
analysis that reviewed 16 RCTs comparing glycemic out-
comes in patients who underwent SG versus RYGB and found
that patients who underwent RYGB had lower fasting blood
sugar and lower A1c at 3 years following surgery [78•]. In
further support of this hypothesis, the lowest remission rate is
reported for LAGB, which does not alter the gut anatomy,
with a 1-year diabetes remission rate of 33% [79].

Why do some procedure types affect glycemic control
more than others? Historically, two competing (but not
mutually exclusive) hypotheses have emerged to explain
how gut rearrangement leads to improvements in glyce-
mic control: the hindgut hypothesis and the foregut-
exclusion hypothesis.

The hindgut hypothesis states that bypassing the proxi-
mal small bowel causes rapid transit of nutrients into the
distal bowel, increasing secretion of gut hormones such as
GLP-1 and PYY. This is supported by rodent studies in
which anastomosing the ileum to the proximal bowel in-
creases gut transit time [80], while post-surgical GLP-1
levels are higher in rats that underwent RYGB than in
those that underwent SG [81].

The foregut-exclusion hypothesis posits that exclusion of
nutrients from the duodenum and proximal jejunum decreases
secretion of an as-yet unidentified signal that increases insulin
resistance. This hypothesis has been tested in rodent studies as
well. Rats received either duodenojejunal bypass, which
completely excludes nutrients from the duodenum and proxi-
mal jejunum, or gastrojejunostomy, in which nutrients are able
to rapidly reach the distal jejunum, but still have access to the
duodenum. Rats that underwent duodenal-jejunal bypass had
a significant improvement in their glucose tolerance, while the
gastrojejunostomy rats did not, leading to the proposal of “an-
ti-incretin” factors secreted from the duodenum [82]. Based
on these findings, less invasive metabolic surgeries are now
under investigation that simply ablates the duodenal mucosa,
known as duodenal mucosal resurfacing [83].

Curr Diab Rep (2019) 19: 156 Page 5 of 10 156



Another metabolic pathway that is altered following rear-
rangement of the gut is bile acid signaling. Serum bile acid
concentrations and composition change following RYGB and
SG, but not following LAGB. Bile acids act as hormones that
bind to the hormone receptor FXR and lead to improvements
in glucose tolerance [84–89]. In rodent studies, improvements
in glucose tolerance following VSG are reduced in mice lack-
ing FXR or its binding partner TGR5 [88, 89]. However,
pharmacologic studies in rodents have also shown that both
inhibition and activation of FXR result in improved metabolic
phenotypes accompanied by weight loss, thus the specific
effect of activating FXR-signaling is unclear.

Failure to Achieve Diabetes Remission and Relapse
of Diabetes

While bariatric surgery clearly demonstrates a high ability to
induce remission of type 2 diabetes, the clinical trial data also
reveal that remission is not attained in all individuals.
Understanding the factors that predict glycemic response to
surgery is critical in determining which patients are most like-
ly to achieve diabetes remission. Several studies have ad-
dressed this question and the factors that are most associ-
ated with diabetes remission include shorter duration of
diabetes prior to surgery (< 4 years), higher C-peptide,
younger age, and use of only oral agents or diet to control
diabetes [90–93]. While these collective data demonstrate
the short-term efficacy of bariatric surgery, the durability
of diabetes remission remains a pressing clinical question.
Even though the majority of individuals will have long-
term improvements in diabetes metrics (i.e., HbA1c <
7%, reduction in anti-diabetes medications, and reduction
in complication rates), sustained remission is experienced
by only a minority. Studies evaluating long-term outcomes
have demonstrated an almost 50% relapse rate for patients
who achieve diabetes remission [39, 44•, 47, 48, 50]. For
example, 15-year follow-up data from the SOS revealed
that rates of diabetes remission (defined as blood glucose
levels under 110 mg/dL without anti-diabetes medication
use) drop from 72.4% at 2 years post-surgery to 38.1% at
10 years and further to 30.4% at 15 years [60]. This is
replicated in RCTs, as well. In a 2015 study conducted
by Mingrone and colleagues in which individuals were
randomized to medical therapy (n = 20), RYGB (n = 20),
or BPD (n = 20), ADA partial remission was achieved at
2 years in 0, 75%, and 95% of individuals in these respec-
tive groups. By 5 years, the rates were 0, 37%, and 63%
[47]. The factors that predict remission also contribute to
achieving sustained remission. Predictors of relapse in-
clude insulin use and a longer duration of diabetes prior
to surgery, with an HR of 1.13 for every additional prior
year of having a diabetes diagnosis [39].

Impact of Bariatric Surgery
on Diabetes-Related Complications
and Prevention

While diabetes remission rates are an important metric for
assessing bariatric surgery’s impact on type 2 diabetes, health
benefits are not exclusively conferred to individuals attaining
remission. Multiple cohort studies and RCTs demonstrate that
patients who undergo bariatric surgery experience a signifi-
cant reduction in the use of both oral anti-diabetic medications
and insulin. In one study, there was an 87% reduction in oral
medication use and a 79% reduction in patients who continue
to require insulin [36, 41, 47, 49•]. Our own data from a real
world setting suggest 68.7% vs 56.0% reduction in diabetes
medication usage after GB versus SG [52•]. Moreover, the
years spent in good control are known to have a legacy effect
for the subsequent decade in terms of fewer diabetes compli-
cations. Therefore, it is not surprising that bariatric surgery is
also associated with a decreased incidence rate of both
diabetes-related microvascular and macrovascular complica-
tions and decreased mortality. In the 15-year follow-up of the
SOS, microvascular complications were 20.6 per 1000
person-years in the surgical patients as compared to 41.8 per
1000 person-years in controls (HR of 0.44 for the surgical
patients). Additionally, macrovascular complications were al-
so lower in the surgical group (31.7 per 1000 person-years) as
compared to the control group (44.2 per 1000 person-years)
with an HR of 0.68 for surgical patients. Perhaps most impor-
tantly, this study and several others have also shown decreased
long-term mortality in surgical patients [60, 94, 95].

Studies have also examined the effect of bariatric surgery
on prevention of diabetes development. In the SOS trial, bar-
iatric surgery reduced the risk of developing diabetes by 96%
at 2 years post-intervention and 78% at 15 years [60, 96].
Given the data on complications and prevention, bariatric sur-
gery is being recognized as a valuable tool for disease and
complication prevention, not just treatment [97].

Bariatric Surgery: Diabetes Treatment Guidelines

Globally, consideration for bariatric surgery generally oc-
curs for individuals that meet the 1991 National Institutes
of Health (NIH) criteria [98]. Qualifying individuals must
have a body mass index (BMI) ≥ 40 kg/m2 or BMI ≥ 35
with a serious weight-related comorbid health condition
(such as diabetes). Yet, studies such as the STAMPEDE
trial have included participants with lower BMIs than the
NIH criteria and provided evidence of benefit for these
patients [49•].

Based on the growing body of evidence and the ex-
panded understanding of the mechanisms of actions of
metabolic surgeries, there has been a growing movement
to expand the eligibility criteria for surgery. In 2016, the
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2nd Diabetes Surgery Summit (DSS-II) was convened
which led to a consensus statement for the use of surgery
as a primary treatment method for type 2 diabetes. A joint
statement of the partner societies (including the ADA, the
International Diabetes Federation, Diabetes UK, the
Chinese Diabetes Society, and Diabetes India) was re-
leased and called for bariatric surgery to be “considered
in patients with class I obesity (BMI 30.0–34.9) and in-
adequately controlled hyperglycemia despite optimal
medical treatment by either oral or injectable medications
(including insulin)” [99]. This statement falls short of ac-
knowledging the racial and ethnic differences of adiposity
and the resulting metabolic complications across popula-
tions of the world. It will be interesting to see if the
improved understanding of these differences will lead to
recommendations for surgical interventions at lower adi-
posity ranges in populations where metabolic conse-
quences of increased adiposity are noted at much lower
BMI levels.

Conclusion

Diabetes and obesity pose individual and global health
challenges to a scale that is unprecedented. While many
conventional medical therapeutic options are available,
they are not universally effective due to myriad physiolog-
ical, behavioral, and financial barriers. Bariatric surgery
has emerged as the single most effective treatment option
for type 2 diabetes and obesity. It must be acknowledged
that surgery does not address the fundamental problem of
overabundance of energy availability. Yet, though not a
panacea for the environmental challenges, or a cure for
these diseases, surgery significantly decreases their burden
through weight-dependent and weight-independent mech-
anisms. Furthermore, elucidating these mechanisms im-
proves the understanding of the diseases, themselves.
Consequently, bariatric surgery serves as both an illumi-
nating scientific model and an effective treatment tool to
address the diabesity crisis.
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