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Abstract
Purpose of Review Newmore stable formulations of glucagon have recently become available, and these provide an opportunity
to expand the clinical roles of this hormone in the prevention and management of insulin-induced hypoglycemia. This is
applicable in type 1 diabetes, hyperinsulinism, and alimentary hypoglycemia. The aim of this review is to describe these new
formulations of glucagon and to provide an overview of current and future therapeutic opportunities that these may provide.
Recent Findings Four main categories of glucagon formulation have been studied: intranasal glucagon, biochaperone glucagon,
dasiglucagon, and non-aqueous soluble glucagon. All four have demonstrated similar glycemic responses to standard glucagon
formulations when administered during hypoglycemia. In addition, potential roles of these formulations in the management of
congenital hyperinsulinism, alimentary hypoglycemia, and exercise-induced hypoglycemia in type 1 diabetes have been
described.
Summary As our experience with newer glucagon preparations increases, the role of glucagon is likely to expand beyond the
emergency use that this medication has been limited to in the past. The innovations described in this review likely represent early
examples of a pending large repertoire of indications for stable glucagon.
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Abbreviations
T1D Type 1 diabetes
GLP-1 Glucagon-like peptide
HAAF Hypoglycemia-associated autonomic failure

Introduction

Glucagon is secreted by the pancreatic isletα cells in response
to hypoglycemia [1] and contributes to the correction of low
blood glucose predominantly through increasing glycogenol-
ysis and to a lesser extent through increasing gluconeogenesis.
This effect to increase endogenous (primarily hepatic) glucose
production plays a counter-regulatory role to insulin in main-
taining normal plasma glucose concentrations, and has an
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established clinical role in the emergency treatment of insulin-
induced hypoglycemia in type 1 diabetes (T1D) [2], hyperin-
sulinism [3•], and alimentary hypoglycemia [4]. The instabil-
ity of glucagon in aqueous solution has limited the expansion
of its clinical role outside of the emergency setting, as prompt
utilization after reconstitution has been required. Even in its
current role in the emergency management of insulin-induced
hypoglycemia, this reconstitution procedure can be challeng-
ing and associated with errors when performed in a stressful
environment by non-healthcare providers [5, 6].

New, more stable, formulations of glucagon have recently
become available, and these provide an opportunity to expand
the role of glucagon in the prevention and management of
hypoglycemia in T1D, hyperinsulinism, and other conditions
in which hypoglycemia occurs in the setting of excess circu-
lating insulin, such as post-gastric bypass hypoglycemia. The
aim of this review is to describe these new formulations of
glucagon and to provide an overview of current and future
therapeutic opportunities that these may provide.

Physiology of Glucose Homeostasis

Glucose is essential for brain metabolism, and numerous
physiological mechanisms work in concert to prevent the de-
velopment of hypoglycemia. In normal circumstances, β-cell
insulin secretion is suppressed as plasma glucose concentra-
tions fall below 80 mg/dL [1]. As glucose concentrations fall
further, counter-regulatory mechanisms are activated to mobi-
lize glucose from endogenous glycogen stores, as well as from
gluconeogenesis [7].

As plasma glucose concentrations approach 70 mg/dL, α-
cell glucagon secretion is activated and normally prevents the
development of hypoglycemia [1, 7]. As plasma glucose con-
centrations fall below 65 mg/dL, epinephrine levels begin to

rise as part of the sympathoadrenal response [1, 7]. Further
decline in plasma glucose levels to below 60 mg/dL is asso-
ciated with an increase in serum cortisol [1, 7, 8] and growth
hormone [1, 7, 9] concentrations as part of the pituitary-
adrenal response (Fig. 1). These hormonal responses are not
entirely independent of each other. Insulin inhibits glucagon
secretion, thus suppression of insulin secretion is required for
glucagon to be released [10]. Glucagon [11] and epinephrine
[12] also stimulate growth hormone release. These physiolog-
ical responses occur at thresholds that are higher than would
be generally associated with autonomic symptoms of hypo-
glycemia [1, 7].

Defective Counter-regulatory Response
to Hypoglycemia in Type 1 Diabetes

In T1D, autoimmune destruction of the pancreatic islet β
cell results in insulin deficiency. Exogenous insulin ad-
ministration is required to replace this deficient hormone
in the attempt to control hyperglycemia. Unlike the tightly
controlled glucose-dependent process for endogenous in-
sulin secretion, exogenous insulin, once administrated, ex-
e r t s i t s a c t i on acco rd ing to pha rmacok ine t i c /
pharmacodynamic properties and independently of the
plasma glucose concentration. Consequently, insulin
levels are not suppressed as plasma glucose concentra-
tions decline. This continued exposure of pancreatic islet
α cells to insulin, and absence of an intra-islet decrement
in β-cell insulin secretion that normally provides a para-
crine signal to the α cell necessary for activation, leads to
a defective glucagon response that permits the develop-
ment of hypoglycemia [10, 13].

In addition to the reduced glucagon response to hypo-
glycemia in T1D, the sympathoadrenal response may also
be attenuated. This can be seen following acute or
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recurrent episodes of hypoglycemia. When a single epi-
sode of hypoglycemia occurs in the afternoon, hypogly-
cemia the following morning is associated with reduced
symptoms of hypoglycemia as well as lower epinephrine
concentrations. This effect can be seen both in normal
subjects [14] and in patients with T1D [15]. Longer dura-
tion of hypoglycemia is associated with increased
blunting of the sympathoadrenal response [16]. The term
hypoglycemia-associated autonomic failure (HAAF) de-
scribes the combination of a blunted epinephrine response
to hypoglycemia and reduced autonomic symptoms of hy-
poglycemia leading to hypoglycemia unawareness [17].

The glucose threshold for glucagon secretion in normal
physiology is higher than that of the sympathoadrenal
response. Consequently, in addition to protecting against
hypoglycemia, glucagon protects against recurrent hypo-
glycemia by preserving the sympathoadrenal response and
preventing the development of HAAF.

Defective Counter-regulatory Response to Exercise
in Type 1 Diabetes

Exercise provides a significant challenge to glucose ho-
meostasis in patients with T1D. While exercise is a criti-
cal promoter of cardiovascular health in this patient pop-
ulation, there are a number of mechanisms through which
exercise increases the risk of hypoglycemia.

Muscle uptake of glucose increases during exercise,
and the normal physiological response is to reduce insulin
secretion and increase glucagon levels [18]. With the in-
trinsic α-cell defect present in T1D, glucagon secretion
fails to increase [19]. Consequently, increased carbohy-
drate intake and the sympathoadrenal system are required
to prevent hypoglycemia. Increased carbohydrate intake
prior to, or during, exercise can reduce the likelihood of
acute hypoglycemia. However, carbohydrate requirements
up to 1 g/min of exercise may be required [20], and this
can negate some of the positive effect of exercise on
weight management.

As previously mentioned, the epinephrine response to
hypoglycemia is blunted in patients with T1D who had
hypoglycemia on the previous day [21], and the magni-
tude of this effect is modified by the degree of hypogly-
cemia [22]. Exercise can have a similar effect, where re-
peated prolonged exercise of low intensity or moderate
exercise is associated with a reduced epinephrine response
to hypoglycemia on the same [23] or subsequent [24] day.
This effect of exercise or hypoglycemia on blunting the
sympathoadrenal response to falling blood glucose, in
combination with increased post-exercise muscle glucose
requirements [25], also increases the likelihood of
experiencing nocturnal hypoglycemia [26].

Defective Glucose Counter-regulation
in Hyperinsulinism

Congenital hyperinsulinism is a rare genetic condition charac-
terized by dysregulated insulin secretion and persistent hypo-
glycemia. Mutations in ten genes encoding key β-cell factors
that regulate insulin secretion have been described, but the
genetic etiology remains unknown in over half of infants with
this disease. Excess insulin secretion may originate in a pan-
creatic focus or diffusely affect all islets in the gland. In infants
with a focal pancreatic lesion, surgical resection is curative
[27]. In those with diffuse disease, medical management with
a combination of diazoxide, somatostatin analogs, or contin-
uous enteral dextrose can reduce hypoglycemia occurrence in
many infants. However, pancreatectomy may be required
when medical management fails. In an effort to avoid surgical
resection, treatment with a continuous subcutaneous glucagon
infusion [28, 29] has been attempted.

Similar to T1D, insulin levels are not reduced in response
to falling blood glucose concentrations in infants with congen-
ital hyperinsulinism [30]. These infants have suppressed glu-
cagon levels during hypoglycemia when compared with in-
fants with non-hyperinsulinemic hypoglycemia [31]. During
hypoglycemia, glucagon levels are similarly suppressed in
infants with focal and with diffuse disease. In the absence of
hypoglycemia in the preceding 48 h, epinephrine levels during
hypoglycemia are similar in infants with hyperinsulinism
when c ompa r e d w i t h i n f a n t s who h av e n o n -
hyperinsulinemic hypoglycemia [31]. Although the mecha-
nisms of altered counter-regulatory responses to hypoglyce-
mia in infants with congenital hyperinsulinism have been less
extensively studied than in T1D, these findings are similar to
those seen in patients with T1D and suggest that both intrinsic
impairment of glucagon secretion and the development of
HAAF also contribute to hypoglycemia in congenital
hyperinsulinism.

In patients with congenital hyperinsulinism who have un-
dergone a total pancreatectomy, the subsequent development
of diabetes is expected. These children may be at even higher
risk of hypoglycemia due the surgical absence of α-cells and
inability to secrete glucagon in response to falling glucose
concentrations.

Defective Glucose Counter-regulation in Alimentary
Hypoglycemia

Postprandial hypoglycemia occurs in up to 75% of patients
following gastric bypass surgery [32], with severe hypoglyce-
mia occurring in approximately 1% [33]. In normal anatomy,
the incretin response to food intake includes intestinal
glucagon-like peptide 1 (GLP-1) secretion, and this augments
glucose-dependent insulin secretion, contributing to the regu-
lation of postprandial glucose homeostasis. Alimentary
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hypoglycemia develops following gastric bypass surgery as a
consequence of the Roux-en-Y gastrointestinal reconstruction
and is similar to other well-recognized forms of “late dumping
syndrome”where altered nutrient transit with rapid delivery to
the distal small intestine leads to more rapid glucose absorp-
tion and exaggerated GLP-1 and insulin responses [34, 35]
with dysregulated islet function that in some individuals leads
to late postprandial hypoglycemia [4, 34, 36–40].

Although there is an initial rise in postprandial serum glu-
cagon levels at 30 min in these patients, glucagon levels sub-
sequently fall despite hypoglycemia occurring after 60 to
120 min [41]. Such a defect in glucagon secretion despite
lower late post-prandial glucose concentrations may be ex-
plained by a combination of the paracrine effect of the in-
creased β-cell response on inhibiting α-cell function [42],
with additional contribution from the glucagonostatic effect
of exaggerated GLP-1 release [43, 44], and desensitization
of central mechanisms for responding to low blood glucose.
In fact, individuals studied before and after gastric bypass
surgery develop impaired glucagon and epinephrine responses
to insulin-induced hypoglycemia [45]. Because exposure to
even mild hypoglycemia leads to blunting of subsequent
sympathoadrenal responses to hypoglycemia, including sym-
pathetic nervous system augmentation of glucagon release as
well as activation of epinephrine secretion [14], it is possible
that induction of HAAF contributes to post-gastric bypass
hypoglycemia [4].

Formulations of Glucagon

Glucagon is unstable in aqueous solution and spontaneous
degradation leads to a loss of bioactivity [46]. The two
FDA-approved formulations of standard glucagon are the
GlucaGen HypoKit® (Novo Nordisk, Copenhagen,
Denmark) [47] and the Glucagon Emergency Kit (Eli Lilly,
Indianapolis, IN) [48]. Both formulations are structurally
identical to the 29-amino acid human glucagon and are sup-
plied as lyophilized white powder. GlucaGen is reconstituted
with sterile water [47], whereas the Glucagon Emergency Kit
is reconstituted with a diluent containing glycerin, water for
injection and hydrochloric acid [48]. The recommendation for
both formulations is that they are used immediately after re-
constitution and unused solution discarded. Both preparations
are approved for intramuscular, subcutaneous, and intrave-
nous administration.

These lyophilized glucagon preparations have been admin-
istered off-label by continuous subcutaneous infusion via insu-
lin pumps [28, 29]. They have also been used effectively as a
continuous intravenous infusion in infants with congenital hy-
perinsulinism [3]. However, glucagon has a propensity to form
fibrils in solution [49, 50], and this can lead to problematic
catheter occlusion [29]. Frequent reconstitution with a new

catheter three times per day has been described, but this ap-
proach is burdensome and has limited its clinical utility [28].

New Glucagon Formulations

Increasing success in bihormonal insulin pump technology
has generated a need for more stable glucagon preparations
[51], and numerous pharmacological approaches have been
taken to achieve this goal. This section will summarize the
biochemical modifications made to the currently available
preparations, and the pharmacodynamic profiles of each.

Dasiglucagon (Zealand Pharma A/S, Copenhagen, Denmark)

Dasiglucagon is a human glucagon analog that also consists of
29 amino acids, but seven of these have been substituted when
compared with native glucagon. This results in an improved
stability and reduced the tendency to form fibrils when dis-
solved in aqueous solution [52].

A dose-dependent increase in plasma glucose is seen fol-
lowing administration in patients with T1D who have plasma
glucose levels of ~ 55 mg/dL. The time taken to increase glu-
cose concentration to above 70 mg/dL was 6 min with doses
of 0.3 mg and 0.6 mg of dasiglucagon, which is comparable to
GlucaGen at doses of 0.5 mg and 1 mg. Dasiglucagon does
have a longer half-life of approximately 30 min. Peak glucose
concentration is seen 35 min after administration, later than
the peakwith GlucaGen which occurs at 20min [52] (Fig. 2a).

Biochaperone Glucagon (Adocia, Lyon, France)

Biochaperones are polymers, oligomers, and organic com-
pounds that can form a complex with glucagon and improve
stability in aqueous solution. Through forming these com-
plexes, biochaperones can protect against degradation and fi-
bril formation. They can also play a role in modifying phar-
macokinetic and pharmacodynamic properties [53, 57, 58].

Early studies with these formulations have demonstrated
similar early glycemic increases when administered to patients
with T1D and hypoglycemia when compared with GlucaGen
[53, 59]. More detailed pharmacokinetic and pharmacody-
namic studies of two biochaperone glucagon formulations
are ongoing [60] (Fig. 2b).

Non-aqueous Soluble Glucagon (Xeris Pharmaceuticals,
Chicago, IL, USA)

G-Pump™ or G-Pen Mini™ glucagon are identical formula-
tions that utilize an aprotic solvent strategy to reduce the in-
stability of glucagon in solution and suppress the fibrillation
that occurs in aqueous solvents. This approach uses unmodi-
fied human glucagon dissolved in dimethylsulfoxide, an apro-
tic solvent, creating a non-aqueous solution. Concentrations of
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up to 5 mg/ml in a pre-filled syringe have been described with
stability up to 2 years in solution [61, 62].

Non-aqueous soluble (NAS) glucagon and GlucaGen show
similar glucose responses following administration at doses of
0.3, 1.2, and 2 mcg/kg in patients with T1D. However, NAS
glucagon was associated with more injection site erythema,
edema, and discomfort [54] (Fig. 2c).

AMG504–1 Intranasal Glucagon/LY900018 (Locemia
Solutions, Montreal, Canada)

This preparation of intranasal glucagon comprises 1-mg glu-
cagon per 10-mg dry powder. This powder also contains a
phospholipid to enhance absorption and cyclodextrin, a
bulking agent [63]. Absorption of the powder occurs across
the nasal mucosa and is not affected by nasal congestion. A
dose of 3-mg glucagon appears to have the maximal effect,
most likely due to saturation of absorption across the nasal

mucosa [64] (Fig. 2d). This formulation of glucagon is now
FDA-approved under the trade name baqsimiTM (Eli Lilly,
Indianapolis, IN) [65].

Other Discontinued or New Products

ZP Glucagon (Zosano Pharma Corp, Freemont, CA, USA)

A transdermal approach has been developed for delivering
glucagon [66], and a safety and efficacy study has been com-
pleted [67]. However, details on this formulation and the re-
sults of this study are not available, and the development of
this product has been discontinued [58].

SAR438544 (Sanofi, Paris, France)

This glucagon agonist was also developed for subcutaneous
delivery. Escalating doses showed a dose-dependent increase

a b

c d

Fig. 2 Comparison of the glycemic effect of a dasiglucagon, b
biochaperone glucagon, c NAS glucagon, and d intranasal glucagon
when compared with standard formulations of glucagon (GlucaGen
Hypokit). Mean glucose concentrations at each time-point are
represented following administration at t = 0. a Includes 58 patients
aged 18 to 50 years with T1D. Hypoglycemia (55 mg/dL + 10%) was
induced by insulin prior to glucagon administration. (adapted from
Hovelman et al. [52], with permission from American Diabetes
Association). b Includes 27 patients with T1D who received 1 mg of
two different biochaperone glucagon formulations when plasma glucose
was less than 60 mg/dL. Hypoglycemia was induced by intravenous
insulin infusion. (adapted from Glezer et al. [53], with permission from

American Diabetes Association). c Black points include 19 adult patients
aged 18 to 65 years with T1D. Hypoglycemia was not routinely induced
prior to glucagon administration in this study (adapted from Castle et al.
[54], with permission from SAGE Publications). Gray points show 62
events of hypoglycemia in 16 adult patients with T1D. In this study, mini-
dose (150 mcg) glucagon was used to treat mild hypoglycemia (50 to
69 mg/dL) detected by continuous glucose monitor. (adapted from
Haymond et al. [55], with permission from Oxford University Press). d
Includes 75 adults with T1D. Hypoglycemia (48 ± 8 mg/dL) was induced
by insulin prior to glucagon administration. (adapted from Rickels et al.
[56•], with permission from American Diabetes Association)
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in blood glucose when compared with placebo [68], but this
medication is no longer under development [69].

BIOD-961 (Albireo Pharma Inc., Boston, MA, USA)

This is a lyophilized glucagon formulation that does require
reconstitution, and an auto-reconstitution device has been de-
veloped. Profiles of this formulation are similar to standard
glucagon preparations [70].

Published Studies Evaluating Roles for New
Formulations of Glucagon

In the preceding sections of this review, we have described
three conditions where hyperinsulinemic hypoglycemia is as-
sociated with impaired glucagon secretion. We have also
discussed that recurrent hypoglycemia in the context of im-
pairment of the glucagon defense mechanism can lead to re-
curring hypoglycemia with development of HAAF. Increasing
availability of glucagon formulations that are more stable and/
or more easily administeredmay expand its clinical role. Here,
we will review studies that have explored the use of new
glucagon formulations in these conditions.

Mini-Dose Glucagon in Type 1 Diabetes

Mini-dose glucagon administered subcutaneously can be used
to prevent hypoglycemia in patients with T1D during periods
of reduced oral intake, including episodes of gastroenteritis
[71•]. Doses of 10 mcg per year of age in children with a
minimum dose of 20 mcg have been described [71•]. When
standard glucagon was used to provide mini-dose glucagon,
reconstitution and use within 24 h was required. Although this
approach has been effective, the stability of this reconstituted
glucagon over 24 h is not known.

A dose-finding study of NAS glucagon in adult patients
demonstrated a dose-dependent rise in glucose concentrations
within 20 min of administration, and recommended a dose of
150 mcg due to inconsistent responses to 75 mcg and in-
creased incidence of nausea at a higher dose of 300 mcg
[72]. When compared with 16 g glucose tablets, 150 mcg
mini-dose glucagon had similar efficacy in the prevention
and correction of hypoglycemia (defined as glucose concen-
tration in the 40–70 mg/dL range) in patients with T1D. Mini-
dose glucagon resulted in lower maximum glucose concentra-
tions following treatment (102 vs 116 mg/dL, p = 0.01) [55],
and so might help to prevent the post-correction hyperglyce-
mia that is common with ad lib use of oral carbohydrate to
treat hypoglycemia. A similar approach to using mini-dose
NAS glucagon has been used to prevent exercise-induced hy-
poglycemia and will be described below [73•].

Low-dose dasiglucagon has been studied under similar set-
tings in patients with T1D [74]. Doses of 30, 80, 200, and
600 mcg dasiglucagon were compared with the same doses
of standard glucagon (Eli Lilly). An increase in glucose con-
centration by 20 mcg/dL was seen within 20 min of 30 mcg
dasiglucagon doses, and the time taken for similar increases in
glucose concentration ranged from 9 to 15 min at higher doses
[74]. As has been previously described [52], peak glycemic
response to dasiglucagon occurred later than with standard
glucagon formulations.

The flexibility of stable glucagons, without the need for
reconstitution or prompt use, offers new opportunities to in-
clude mini-dose glucagon in the standard care for T1D. The
development of glucagon pens, for example, may allow for a
more predictable response to mild hypoglycemia in T1D in
settings where this may be preferable to carbohydrate intake.

Exercise in Type 1 Diabetes

Exogenous glucagon may have a preventative, and therapeu-
tic role in the management of exercise-associated hypoglyce-
mia. In patients with T1D, low-dose glucagon (200 mcg) ad-
ministration prior to exercise can reduce the decline in blood
glucose seen during exercise, and the glycemic response to
glucagon administration after exercise is higher than the re-
sponse at rest [75].

A role for the mini-dose NAS glucagon in the prevention of
exercise-associated hypoglycemia has been studied in adults
with T1D. A dose of 150 mcg was administered 5 min prior
to 45-min aerobic exercise, and this was compared with a 50%
reduction in basal insulin and to 40 g oral glucose intake. In this
study, mini-dose glucagon completely prevented hypoglycemia
that still occurred with reduced insulin intake, and was associ-
ated with less post-exercise hyperglycemia than seen with glu-
cose intake [73•]. In addition to the effect on hypoglycemia
reduction, this approach removes the requirement for extra ca-
loric intake prior to exercise in the patients with T1D.

Emergency Management of Hypoglycemia in Type 1
Diabetes

The required reconstitution of currently available glucagon
limits its utility in an emergency situation. Over two-thirds
of parents have difficulties during the procedure including
opening the pack and mixing the formula, and some may
even erroneously inject air or water without glucagon [6].
Comparatively, intranasal glucagon is administered more
quickly with almost universal success. In a simulation
study, caregivers were significantly more likely to success-
fully administer the required dose of intranasal glucagon
when compared with the Glucagon Emergency Kit (94%
vs 13%), and this was completed in a much shorter time
(0.3 vs 1.9 min) [76].
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When compared with standard glucagon formulations, in-
tranasal glucagon is also similarly efficacious in the emergen-
cy management of hypoglycemia. In a study comparing 3 mg
intranasal glucagon with 1 mg GlucaGen in adults with T1D
during insulin-induced hypoglycemia (plasma glucose con-
centration ~ 48 mg/dL), there was a similar plasma glucose
response with both preparations but the effect of nasal gluca-
gon was delayed by approximately 3 min [56•] (Fig. 2d). A
companion study in children demonstrated similar efficacy
and tolerability of 2 mg and 3 mg nasal glucagon, which were
as effective as weight-based administration of GlucaGen in
increasing plasma glucose by 25 mg/dL from levels <
80 mg/dL without a delay [77]. Children also appeared to
tolerate intranasal glucagon better than adults; whereas a mi-
nority of adults more often reported head/facial discomfort
with intranasal than intramuscular glucagon and a similar mi-
nority experienced nausea with both preparations [56•], chil-
dren did not report any more head/facial discomfort with in-
tranasal than intramuscular glucagon and experienced less
nausea when glucagon was given intranasally [77].

As shown in Fig. 2, the effect of other stable glucagon
formulations on glucose concentrations in adults with T1D
during insulin-induced hypoglycemia has also been studied.
Dasiglucagon [52, 74], biochaperone glucagon [59], and NAS
glucagon [54] all have comparable effects on glucose concen-
trations in this setting.

Bihormonal Insulin Pump Therapy in Type 1 Diabetes

Algorithms including the integration of continuous glucose
monitoring with subcutaneous insulin infusion have led to
the development of artificial pancreas systems for the man-
agement of T1D. In dual-hormone artificial pancreas systems,
glucagon is used in combination with insulin to maintain glu-
cose in a target range. Both single- and dual-hormone ap-
proaches have been shown to improve glycemic control, when
compared with conventional therapy [78]. A significant limi-
tation of the dual-hormone approach has been the instability of
glucagon in solution and this can be associated with infusion
set blockages [29]. Newer glucagon formulations may have
less risk of this complication and dasiglucagon is currently
being investigated for a possible role [79]. Finally, glucagon
may be pumped independently from insulin administration in
a continuous fashion [80] or in response to glucose declining
below a threshold or when hypoglycemia is predicted by con-
tinuous glucose monitoring as is already done with automated
suspension of insulin delivery.

Hyperinsulinemic Hypoglycemia

Intravenous glucagon has an established role in the stabiliza-
tion of infants with hyperinsulinemic hypoglycemia and is
effective in reducing the requirement for continuous glucose

infusion to prevent hypoglycemia [3•]. In a study including
four infants treated with continuous subcutaneous NAS glu-
cagon at 5 to 15 mg/kg/h over 3 days, glucose infusion rate
reduced from 10.8 ± 4.9 mg/kg/min to an average of 4.9 ±
1.2 mg/kg/min without any observed blockages of the pump
infusion set [81].

Studies are ongoing to determine the efficacy of new glu-
cagon preparations administered subcutaneously in this pa-
tient population. A randomized controlled trial to evaluate
the effect of 10 mcg/h subcutaneous dasiglucagon aiming to
recruit 32 patients is ongoing [82]. A phase 2 multicenter trial
is also underway to evaluate the effect of subcutaneous NAS
glucagon administered at 5 mcg/kg/h for 48 h on glucose
infusion requirement in similar infants [83].

Alimentary Hypoglycemia

As previously described, there is a suboptimal glucagon re-
sponse to falling glucose levels in patients with post-prandial
hypoglycemia [41]. As hypoglycemia in this setting is trig-
gered by an exaggerated GLP-1 response to carbohydrate in-
take, excess carbohydrate intake in response to hypoglycemia
can potentially exacerbate the problem. The timely adminis-
tration of subcutaneous glucagon has the potential to offset the
hypoglycemia-inducing effect of this GLP-1 excess. Using a
continuous glucose monitor to detect glucose trends and de-
termine optimal timing for NAS glucagon administration in
patients with postprandial hypoglycemia, Laguna Sanz et al.
were able to reduce the duration of plasma glucose concentra-
tion less than 75 mg/dL in 7 adult patients with postprandial
hypoglycemia [84].

Conclusions

Until now, the therapeutic use of glucagon has been limited by
its instability in solution, but new formulations are more stable
and have demonstrated similar pharmacodynamic properties.
As our experience with newer glucagon preparations increases,
the role of glucagon is likely to expand beyond the emergency
use that this medication has been limited to in the past.
Glucagon is likely to play a role in the implementation of
bihormonal insulin pump therapy in patients with T1D, and
will also allow for innovation in hypoglycemia management
in other settings. In this review, we have discussed potential
roles for these glucagon formulations in patients with T1D,
hyperinsulinemic hypoglycemia, and alimentary hypoglyce-
mia. These innovations likely represent the early examples of
a pending large repertoire of indications for stable glucagon.
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