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Abstract
Purpose of Review A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors
during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and
other chronic conditions—a phenomenon termed “developmental programming.” A common phenotype in humans and animal
models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize
the recent literature linking prenatal factors to future body composition and explore contributing mechanisms.
Recent Findings Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity,
and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects
reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet,
breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function,
and mitochondrial metabolism.
Summary Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may
contribute to developmental programming of obesity and diabetes risk.
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Introduction

Environmental and nutritional exposures during prenatal and
early postnatal development can result in increased risk for
chronic diseases, a phenomenon known as “developmental
programming.” Thus, optimizing maternal and child health
during the “first 1000 days,” i.e., the critical period between
conception and age 2, has become a key focus of public health
efforts [1, 2]. With obesity, metabolic syndrome, and type 2
diabetes (T2D) reaching unprecedented levels in bothWestern

and developing societies [3–5], it is crucial to understand the
mechanisms by which suboptimal prenatal or early postnatal
environments contribute to future disease vulnerability.

Identifying mechanisms and mediators of developmental
programming has been an area of active research for the past
two decades. A number of experimental models have been
used, including rodents, large mammals, and primates, with a
variety of dietary paradigms (e.g., high-fat diet, Western diets,
low-protein diets, global caloric restriction, micronutrient re-
striction, etc.), surgical paradigms (e.g., uterine artery ligation),
chemical exposures, psychological stress, transgenic models,
and other systems [6–11]. Based on these experimental data,
developmental programming may be caused by a number of
overlapping and interacting factors, including epigenetic sig-
nals, mitochondrial inheritance, milk composition, the intestinal
microbiome, and features of the maternal metabolic environ-
ment, such as insulin resistance, fatty acids, and inflammation.
In many cases, the effects of the prenatal perturbations are ex-
acerbated by postnatal exposure to a high-calorie diet, acceler-
ated postnatal growth, stress, or other factors. While numerous
markers and mediators have been implicated (and are reviewed
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elsewhere [12–15]), a common phenotype is altered body com-
position, with reduced lean mass and increased fat mass. This
review summarizes recent publications on the prenatal determi-
nants of abnormal body composition, with an emphasis on
recent data in human populations published between 2012
and 2019. We will discuss evidence addressing mechanisms
by which diet and appetite regulation, epigenetic regulation,
differences in stem cell commitment and function, and
impaired mitochondrial metabolism may contribute to obesity
and diabetes risk.

Historical Observations

Early evidence for developmental programming came from
studying historical cohorts. Studies of individuals exposed to
the Dutch Famine during World War 2, in which a German
blockade of the Western Netherlands caused a severe famine in
a previously prosperous society, demonstrated that maternal ex-
posure to undernutrition during pregnancy led to multiple ad-
verse health outcomes for offspring, including fetal growth re-
striction [16, 17], and increased risk of visceral obesity, metabolic
syndrome, T2D and other chronic diseases [18–20]. Subsequent
work by David Barker, who discovered an association between
low weight at birth and future cardiometabolic disease [21], fur-
ther underscored the importance of early nutritional exposures as
determinants of adult chronic disease risk. Barker hypothesized
that stress experienced in utero—or during other critical devel-
opmental windows—induces compensatory responses in tissue
structure and function that may persist permanently. Such devel-
opmental programmingmay allow the organism to withstand the
stressor initially, but may create disease vulnerability in the fu-
ture. Initial observations in the field focused on the deleterious
effects of low birth weight and undernutrition during key devel-
opmental windows on future diabetes and obesity risk. A strong
effect of prenatal exposure to undernutrition and low birth
weight on T2D has been observed among ethnically di-
verse populations, in both historical and contemporary co-
horts, including survivors of the Chinese Famine (1959–
1961), the U.S. Nurses’ Health Study, a French cohort of
women born between 1925 and 1950, the Shanghai Men’s
and Women’s Health Studies, the Japanese Nurses’ Health
Study, and other international cohorts [22–26].

Subsequent work demonstrated that over-nutrition or nutri-
ent excess during critical developmental windows may also
contribute to long-term chronic disease risk. For example, in
utero exposure to maternal obesity can significantly increase
risk of obesity, metabolic syndrome, and T2D in offspring
[27–29]. Studies among siblings born before versus after ma-
ternal weight loss surgery (where the comparison of sibling
pairs reduces the influence of genetics) indicate that risk of
childhood obesity is increased by prenatal exposure to maternal
obesity [30]. Similarly, studies of siblings discordant for in

utero diabetes exposure (i.e., comparing siblings born before
vs. after maternal T2D diagnosis) demonstrate that prenatal
exposure to diabetes results in higher risk of obesity, hypergly-
cemia, dyslipidemia, and hypertension [31–33]. These effects
are not limited to maternal T2D: type 1 diabetes, monogenic
diabetes, gestational diabetes (GDM), and subclinical hypergly-
cemia not reaching the threshold for GDM are also linked to
adiposity and glucose intolerance in offspring [34, 35]. More
recently, there has been growing evidence for pollutants and
chemical exposures, including vehicle emissions, cigarette
smoke, endocrine-disrupting chemicals, and pesticides, as in-
ducers of developmental programming [36–45]. Thus, a diverse
range of prenatal exposures has been linked to obesity and
metabolic diseases in the offspring.

Developmental Programming of Adiposity

Birth Weight and Future Adiposity

Prenatal exposure to a suboptimal in utero environment is as-
sociated with increased BMI, increased fat mass, and central/
abdominal fat distribution—body composition patterns linked
to T2D risk. Since prenatal growth is influenced by a wide
range of factors (e.g., maternal nutrition, placental insufficiency,
hypoxia, smoking, etc.), birth weight can be considered a bio-
marker for disruptions in the prenatal environment. Many
population-based studies indicate that both low and high birth
weight are associated with excess adiposity throughout the
lifespan; these studies are summarized in Table 1. Several
groups have documented associations between small for gesta-
tional age (SGA) birth weight and future risk of central or
visceral adiposity [85–87], but the literature has not been en-
tirely consistent, with several large studies failing to document
such associations [54, 62]. At the other end of the spectrum,
large for gestational age (LGA) infants are at increased risk for
increased fat mass and high BMI [86], so that the association
between birth weight and future adiposity has been described as
a “U-shaped” distribution [88]. Although the studies vary in
methodology and sample size, the effect of birth weight on
future BMI seems most reproducible for infants with high birth
weight, whereas increases in central adiposity (assessed by
MRI, DXA, or skinfold thickness) appear more reproducible
among those born SGA.

Some of the discordance in the literature may stem from
differences in statistical adjustment for confounders. A recent
analysis in the Danish National Birth Cohort indicated that
socioeconomic confounders including low maternal education
and household income were associated with both low birth
weight and high childhood BMI [89]; careful adjustment for
these factors is therefore essential. Adjusting for offspring BMI
may also introduce variability in study outcomes. For example,
Kramer et al. applied two statistical approaches to the same
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Table 1 Summary of recent studies in human populations examining associations of prenatal exposures with obesity or adiposity

Prenatal exposure Effect on adiposity Outcome measure Age Sample size Study population Reference

SGA ↓ DXA 0–3 y 95 Spain [46]

↑ BMI 4–18 m 23,871 China [47]

↓ BMI 9 m–5 y 11,134 Ireland [48]

↑ MRI 2–6 y 51 Spain [49]

↑ MRI 3–6 y 46 Spain [50]

↓ BMI 3.5–11 y 547 New Zealand [51]

↓ BMI, SF 3.5–7 y 380 Sweden [52]

– BMI 5 y 23,871 China [47]

– BMI 5–8 y 10,186 U.S. [53]

↓ BMI 6–12 y 2016 Canada [54]

– BMI 12.5 y 96 Netherlands [55]

↑ BMI 9–15 y 7194 China [56]

– BMI 10–11 y 3054 USA [57]

↓ BMI, SF 11.5 y 17,046 Belarus [58, 59]

– BMI 15–18 y 51,505 Germany [60]

↑ BMI, SF, BIA 22–30 y 851 France [61]

– BMI 29 y 165 Brazil [62]

ELBW ↑ MRI 34 y 46 Canada [63]

↑ DXA 31.8 y 100 Canada [64]

Decreased birth weight ↑ SF Birth 235 France [65]

↑ DXA Birth 311 Denmark [66]

Increased birth weight ↑ BMI 3–9 y 1759 Australia [67]

↑ BMI, SF 5–13 y 612 Brazil [68]

↑ DXA 22 y 1088 South Africa [69]

↑ Weight, WC 24–50 y 587 USA [70]

LGA ↑ DXA Birth 311 Denmark [66]

↑ BMI 9 m–5 y 11,134 Ireland [48]

↑ BMI 5–8 y 10,186 USA [53]

↑ BMI, SF 6–12 y 2016 Canada [54]

↑ BMI 9–15 y 7194 China [56]

↑ BMI 10–11 y 3054 USA [57]

↑ BMI 15–18 y 51,505 Germany [60]

Maternal BMI ↑ DXA Birth 311 Denmark [66]

↑ BMI, SF 4–5 y 6060 UK [71]

↑ BMI 5–6 y 1727 Netherlands [72]

↑ BMI, WC 16 y 4168 Finland [73]

↑ BMI 33 y 863 USA [29]

↑ BMI 62 y 2003 Finland [74]

Maternal glucose ↑ Weight, BMI 0–7 y 661 Denmark [75]

↑ Weight, BMI 0–3 y 937 Singapore [76]

↑ BMI 5–7 y 1320 Ireland [77]

↑ BMI, SS, WC 10–14 y 4832 Multi-national [78]

↑ Weight Birth 264 Denmark [79]
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dataset and showed that the association between SGA and
childhood body fat had the opposite directionality depending
on how the statistical models dealt with BMI. Adjustment for
the child’s current BMI indicated increased percent body fat
with SGA, but decreased body fat with SGA in an unadjusted
analysis. Notably, the association between SGA and increased
subscapular/triceps skinfold thickness was significant using
both statistical approaches [58•].

Genetic factors, too, can influence the relationship between
birth weight and future adiposity. For example, genetic varia-
tion at many SNPs linked to obesity and/or diabetes are also
linked to birth weight [90, 91]. However, a recent pooled anal-
ysis of 27 twin cohorts confirmed a strong influence of birth
weight on BMI, in both fraternal and monozygotic twin pairs,
suggesting that these effects are not fully explained by genetic
factors [92].

Maternal Obesity and Future Adiposity

Maternal pre-pregnancy BMI is among the strongest risk fac-
tors for childhood obesity and is estimated to account for 10–
20% of the population attributable risk of childhood obesity
[93–95]. Effects of maternal obesity on offspring adiposity
emerge early: higher maternal BMI is linked to higher birth
weight and greater newborn skinfold thickness, with differ-
ences in body weight detectable by 32 weeks’ gestation
[96–98]. Maternal obesity has been reproducibly associated
with offspring adiposity throughout the lifespan, as summarized
in Table 1. Maternal pre-pregnancy BMI is associated with
higher childhood BMI and with increased adiposity (percent
body fat and skinfold thicknesses) [71, 72]. Based on a meta-
analysis of data from 162,129 mothers and their children from
37 pregnancy and birth cohort studies from Europe, North
America, and Australia, maternal BMI has the strongest effect
in late childhood (age 10–18 years) [95], but effects remained
detectable into late adulthood [74]. Moreover, maternal obesity
has also been linked to acceleratedweight gain throughout early
and mid-adulthood [29].

While the association between maternal pre-pregnancy BMI
and offspring adiposity is strong and reproducible across

ethnically diverse populations, it is unclear whether the effect
is due to programming by the in utero environment, or by
confounders such as shared genetic, nutritional, or socioeco-
nomic risk factors. Studies of siblings born before versus after
maternal weight loss (e.g., following obesity surgery) show
increased childhood obesity risk for the sibling born before
maternal weight loss, supporting the concept that in utero ex-
posure to maternal obesity plays a pathogenic role [30, 99].
Moreover, recent studies using Mendelian randomization have
indicated that genetic variants linked to maternal BMI (e.g.,
rs3736485 in DMXL2) are associated with higher offspring
birth weight and childhood BMI, independent of offspring ge-
notype [100, 101], although a similar analysis in the ALSPAC
and Generation R cohorts found no effect of maternal BMI on
childhood BMI after adjusting for shared genetics [102]. Taken
together, these data support an important effect of prenatal ex-
posure to maternal obesity on offspring adiposity, although the
relative role of genetic versus epigenetic and environmental
factors remains unclear.

Maternal Hyperglycemia or Diabetes and Future
Adiposity

Prenatal exposure to maternal diabetes, or to hyperglycemia not
reaching diagnostic cut-offs for GDM, is associated with in-
creased adiposity in offspring. Some of the most compelling
evidence for this effect has come from the Hyperglycemia and
Adverse PregnancyOutcome (HAPO) Follow-up Study, a large
international cohort study designed to examine associations of
glucose levels during pregnancywithmultiple adverse perinatal
outcomes, in order to establish diagnostic cut-offs for GDM
[103]. In the HAPO Follow-up Study, maternal glucose levels
at 28 weeks’ gestation were found to be positively associated
with birth weight and newborn adiposity, and with childhood
BMI, skinfold thicknesses, waist circumference, and percent
body fat between 10 and 14 years of age [78, 104]. Similarly,
associations between higher maternal glucose during gestation
and childhood adiposity were reported in the Danish National
Birth Cohort, the US-based EPOCH Study, and other cohort
studies (Table 1) [79, 81].

Table 1 (continued)

Prenatal exposure Effect on adiposity Outcome measure Age Sample size Study population Reference

GDM ↑ DXA, WC 3–12 y 86 Canada [80]

↑ BMI, WHR 9–16 y 1158 Denmark [81]

↑ BMI, WC, SS 11.4 y 4832 Multi-national [82]

Maternal T1D ↑ DXA 16 y 581 Denmark [83]

↑ BMI, DXA 5–18 y 313 UK [84]

SGA small for gestational age, ELBW extremely low birth weight, GDM gestational diabetes, T1D type 1 diabetes mellitus, DXA dual-energy X-ray
absorptiometry, SF skinfold thickness,WC waist circumference, BIA bioimpedance analysis
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A longstanding controversy centers around whether mater-
nal hyperglycemia per se contributes to offspring obesity, inde-
pendent of maternal BMI, given that women with GDM are
more likely to be obese. However, in HAPO and many recent
studies, the effects of maternal GDM or hyperglycemia
persisted after adjustment for maternal pre-pregnancy BMI
[75••, 78, 79, 81, 82••]. Moreover, the EPOCH Study demon-
strated that effects of maternal GDM on offspring adiposity
were not explained by the child’s genetic risk score for obesity
[105]. Prenatal exposure to maternal type 1 diabetes has simi-
larly been linked to increased total body fat in offspring [83].
Together, these data support a strong effect of maternal hyper-
glycemia and diabetes on offspring adiposity, and raise the pos-
sibility that interventions to detect and treat gestational hyper-
glycemia might be a promising strategy for preventing child-
hood obesity.

Developmental Programming of Muscle Mass

Decreased muscle mass has been reported across several types
of in utero disruptions, spanning undernutrition, maternal di-
abetes, and prenatal stress. Paucity of muscle mass may be an
important contributor to diabetes risk: muscle is a crucial in-
sulin target tissue, and decreased muscle mass is linked to
insulin resistance due to reduced whole-body glucose uptake,
independent of BMI [106].

Effects of Birth Weight on Muscle Mass

Low birth weight infants have been reported to have re-
duced muscle mass throughout childhood, adolescence,
and young adulthood (reviewed in [65, 107]), and reduced
muscle strength both in later childhood [108] and in adult-
hood [109, 110]. These effects have been reported among
infants born low birth weight due to intrauterine growth
restriction, as well as those born premature. Among the
latter group, low birth weight is strongly correlated with
reduced lean mass in childhood [111]. Based on one of
the earliest cohorts of extremely low birth weight (ELBW,
< 1000 g, typically < 27 weeks’ gestation) infants born
between 1977 and 1982, ELBW infants have detectable
reductions in lean body mass into their fourth decade as
compared to normal birth weight infants [64]. Conversely,
infants born LGA have higher lean mass in later life [69,
70]. Recent studies linking birth weight to lean mass are
summarized in Table 2.

While the association between birth weight and lean
mass is strong and reproducible, it is unclear whether it
is driven by prenatal versus postnatal factors. For exam-
ple, decreased prenatal growth velocity (calculated as the
change in fetal weight percentiles between 22 weeks’ ges-
tational age and birth) is a strong predictor of reduced

lean mass at birth, independent of birth weight [65].
Moreover, low birth weight is often associated with post-
natal catch-up growth, a growth pattern characterized by
upward crossing of weight for age percentiles, and with
“catch-up fat,” or accelerated adipose tissue growth
outstripping the growth of lean mass [116]. Catch-up
weight gain following intrauterine growth restriction is
associated with higher fat mass and lower lean mass in
later life, independent of birth weight [117, 118].
Conversely, LGA infants have been reported to have ac-
celerated growth of lean mass during the early postnatal
period [119]. Thus the role of prenatal versus postnatal
factors in developmental programming of lean mass re-
mains an important question.

In utero exposure to hyperglycemia is also linked to
reductions in lean body mass, similar to prenatal under-
nutrition and low birth weight, which is paradoxical given
that maternal hyperglycemia tends to increase birth
weight. Effects of maternal GDM on lean mass have been
reported in early childhood and in adolescence [80, 81].
Prenatal exposure to nutrient excess has been linked to
impaired myogenesis in offspring rodents and pigs
[120], but it is unclear whether similar mechanisms are
at play in humans.

Developmental Programming of Bone Mass

Bone density is known to influence osteoporosis and fracture
risk, and is linked to healthy aging. Recent studies have
highlighted connections between bone density, marrow adipo-
cytes, and systemic metabolism, leading some to propose that
osteoporosis should be viewed as “obesity of bone” [121].
Loss of bone density is usually accompanied by increases in
bone marrow adipocyte populations. Osteocytes and marrow
adipocytes are derived from common precursors, mesenchy-
mal stem cells. Although they were historically viewed as
“filler,” bone marrow adipocytes are increasingly recognized
as playing an important role in bone health and metabolic
disease. For example, leptin and other adipokines can stimu-
late osteocyte development [122], and marrow adipocytes can
influence bone metabolism and hematopoiesis [123]. Thus,
effects of prenatal exposures on bone density may have broad
implications for healthy aging and metabolism.

Birth Weight and Future Bone Mass

Nutritional exposures during early development can significant-
ly impact future skeletal health, bone mineral density, and os-
teoporosis risk. Bone mineral density accrues fastest during the
third trimester of pregnancy, but continues to increase postna-
tally and peaks in young adulthood [124]. Thus, periods of
suboptimal nutrition, or other stressors (e.g., inflammation,
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chronic disease, glucocorticoid treatment, etc.) during early life
can impair peak bone mass, increase osteoporosis risk, and
“program” future bone health (available data summarized in

Table 3). For example, birth weight is predictive of child-
hood bone mineral density: individuals with lower birth
weight (< 10th percentile) had lower forearm cortical bone

Table 3 Summary of recent
studies in human populations
examining associations of
prenatal exposures with bone
mass

Prenatal exposure Effect on bone
mass

Age Sample
size

Study
population

Reference

Decreased birth
weight

↓ Adolescence 961 Norway [125]

↓ 25 y 1061 Sweden [112]

VLBW (< 1500 g) ↓ 25–28 y 134 Norway [126]

LBW ↓ 5–19 y 284 Germany [127]

SGA ↓ Term 42 Japan [113]

↓ 6 y 123 Netherlands [128]

↓ 11 y 91 Italy [129]

↓ 25–28 y 134 Norway [126]

LGA ↑ 6 y 123 Netherlands [128]

Macrosomia ↓ Birth 40 Israel [130]

Maternal BMI ↑ 9.9 y 7121 UK [131]

GDM – Birth 40 Israel [130]

↓ Birth 37 Israel [132]

↑ Birth 40 France [130, 133]

Maternal T1D ↑ 5–18 y 313 UK [84]

Table 2 Summary of recent
studies in human populations
examining associations of
prenatal exposures with lean mass

Prenatal exposure Effect on lean
mass

Age Sample
size

Study
population

Reference

Decreased birth
weight

↓ Birth 235 France [65]

↓ 5 and 9 y 61 Germany [111]

↓ 9 y 574 India [108]

↓ 25 y 1061 Sweden [112]

↓ 30 y 3701 Brazil [110]

ELBW ↓ 31.8 y 100 Canada [64]

SGA ↓ Term 42 Japan [113]

↓ 3.5 and 7 y 380 Sweden [52]

↓ 6.7 y 67 Chile [114]

↓ 22 y 1088 South Africa [69]

Increased birth weight ↑ 22 y 1088 South Africa [69]

↑ 24–50 y 587 USA [70]

↑ 60–64 y 1558 UK [115]

GDM ↓ 3–12 y 86 Canada [80]

↓ 9–16 y 1158 Denmark [81]

60 Page 6 of 20 Curr Diab Rep (2019) 19: 60



mineral density [127], whereas whole-body bone mineral
density and content are positively associated with birth
weight [134]. Intrauterine growth indices, too, may be
predictive of childhood bone density, with increases in
fetal abdominal circumference between 19 and 34 weeks’
gestation positively associated with greater bone mineral
density at age 4 years [135]. Meta-analyses and systemat-
ic literature reviews support a role for prenatal growth on
future skeletal health: higher birth weight has been repro-
ducibly associated with higher bone mineral content in
childhood and adulthood [136, 137]. However, there is
some heterogeneity between studies: some groups have
demonstrated only sex-specific effects or have only noted
effects on certain bone indices (e.g., bone mineral content
vs. density) [112]; moreover, effects of birth weight on
bone mass may be stronger in childhood and adolescence
than in later life [126, 137, 138]. These effects are reca-
pitulated in animal models: Wallace et al. reported that
prenatal growth restricted lambs had lower bone mineral
density (as compared to normal birth weight lambs)
throughout the lifespan [139], whereas Devlin et al. re-
ported increased trabecular bone volume in female off-
spring of high-fat diet fed mouse dams [140].

Maternal Diabetes and Offspring Bone Mass

Despite positive associations between LGA and higher
bone mass, some reports have suggested that infants of
mothers with GDM have decreased bone strength [132]
and bone mineral density, with more severe defects in
offspring of mothers with uncontrolled diabetes (reviewed
in [141]). However, other studies have found no effect, or
a higher bone density, in offspring of mothers with diabe-
tes [84, 130, 133]. Thus, further analyses are needed to
better define the net effect of maternal hyperglycemia and
diabetes on offspring bone health.

Mechanisms

From a mechanistic standpoint, developmentally programmed
differences in body composition may be caused by numerous
factors, including: diet or lifestyle, reduced numbers and/or
function of muscle progenitors, increased numbers and/or
function of adipose progenitors, adipocyte hypertrophy and
lipogenesis, altered nutrient uptake by lean versus adipose
tissues, altered signaling through pathways regulating muscle
growth (e.g., GH, IGF1, myostatin [119]), genetics, and/or by
persistent changes in epigenetic marks. Based on recent data
in experimental models and in translational studies of human
tissues, each of these potential pathways has been implicated
in developmental programming of body composition (Fig. 1).
We review the evidence supporting each of these possibilities
in this section, with an emphasis on mechanistic studies in
humans.

Maternal Diet and Metabolites

Maternal diet is a key potential mediator of the association
between prenatal exposures and postnatal body composition.
Maternal intake of macronutrients or micronutrients may cre-
ate a metabolic milieu that modulates infant growth. For ex-
ample, higher maternal carbohydrate intake during pregnancy
is associated with higher fat mass in childhood [142]; con-
versely, high-protein/low-carbohydrate intake during preg-
nancy is associated with lower abdominal adiposity in the
newborn period [143]. Associations have also been reported
between offspring waist circumference and maternal adher-
ence to the Mediterranean diet during pregnancy [144], and
between neonatal adiposity and maternal intake of pro-
inflammatory foods (positively correlated) [145] and maternal
diet quality (inversely correlated) [146].

Maternal intake of micronutrients has also been linked to
offspring obesity and altered body composition. For example,
lower maternal intake of vitamin D has been linked to reduced
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Fig. 1 Overview of mechanisms
linking prenatal exposures to
body composition in later life
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adiposity at birth, but higher fat mass at ages 1, 4, and 6 years
[147, 148]. Although the association was not detected in a
population with a low prevalence of vitamin D deficiency
[149], a large meta-analysis (35,032 mother–infant pairs) con-
firmed associations between low prenatal maternal vitamin D
and low birth weight, and with increased infant weight at
9 months (unadjusted for birth weight) [150].

Maternal diabetes and obesity may influence levels of spe-
cific metabolites that influence fetal growth or metabolism.
For example, a metabolomic analysis in women with GDM
identified increased levels of the furan fatty acid metabolite
CMPF (derived from the diet/microbiome), which, when ad-
ministered to mice, induced beta cell dysfunction and im-
paired mitochondrial metabolism [151].Moreover, higher ma-
ternal intake and cord blood concentrations of the long-chain
fatty acids DHA and EPA, and a higher ratio of cord plasma n-
6:n-3 PUFAs, were associated with higher infant skinfold
thicknesses and increased odds of obesity [152]. In this same
cohort, cord blood levels of metabolites related to tryptophan
and the one-carbon methyl donor pathway were associated
with more rapid infancy weight gain and higher childhood
BMI [153]. Moreover, higher maternal levels of the choline
metabolite and methyl donor betaine have been associated
with lower infant birth weight and abdominal fat [154].

Although maternal diet is a modifiable risk factor and an
attractive target for interventions to prevent childhood obesity,
dietary interventions during pregnancy among obese women
have largely been unsuccessful. For example, a randomized
controlled intervention to reduce the omega-6 to omega-3
PUFA ratio throughout pregnancy and lactation yielded no
detectable effects on childhood body composition, assessed
by MRI at age 5–6 years [155], nor did a trial of maternal
DHA supplementation result in any differences in adiposity
measures in offspring [156]. Further studies will be essential
to identify effective nutritional strategies during gestation to
prevent childhood obesity and adiposity.

Breast Feeding and Milk Composition

The mode of infant feeding and milk composition are impor-
tant contributors to childhood obesity and body composition.
Formula feeding is associated with more rapid postnatal
weight gain, higher childhood BMI, and greater acquisition
of lean mass, as compared to breast feeding [157, 158].
However, obesity risk is increased by maternal obesity even
in exclusively breastfed infants [159], raising the possibility
that differences in human milk composition could contribute
to mother–child transmission of obesity risk. Consistent with
this, several groups have identified differences in bioactive
compounds in milk from obese versus lean mothers, including
increased insulin, leptin, adiponectin, ghrelin, IL-6, TNF-al-
pha, and lower omega-3 fatty acids (reviewed in [160] and
[161]). However, for many of these compounds, there is a

positive association with maternal BMI and a negative asso-
ciation with infant adiposity (notably insulin, adiponectin and
IL-6), or no association, so that it is unclear whether milk
composition differences play a pathogenic role in infant
adiposity.

Recent data suggest that milk content of fructose and
human milk oligosaccharides are linked to body compo-
sition in exclusively breastfed infants [162, 163]; howev-
er, these were not significantly associated with maternal
BMI. A recent metabolomics analysis of human milk in
obese versus lean mothers found associations between the
abundance of several milk metabolites and infant fat
mass, assessed by DXA. Although there was only mini-
mal overlap between metabolites associated with maternal
and infant adiposity, some intermediates of nucleotide me-
tabolism were linked to both maternal BMI and infant fat
mass, raising the possibility that these metabolites might
play a mechanistic role in mother–child transmission of
obesity [164]. Further evidence for milk composition as
contributor to childhood obesity has come from experi-
mental studies. For example, in mice, cross-fostering ex-
periments indicate that lactational exposure to maternal
obesity confers obesity in the offspring [165]. Moreover,
in a rat model, maternal HFD was associated with reduced
prolactin receptor expression and prolactin content in
milk, and normalizing milk prolactin levels reduced vis-
ceral adiposity and normalized insulin sensitivity [166].
Together, these data provide strong support for the role
of milk in shaping childhood body composition.

Postnatal Diet and Appetite Regulation

Postnatal diet is another potential mechanism for developmen-
tally programmed effects on body composition. For example,
the nutritional environment that may have contributed to sub-
optimal (or excessive) prenatal growth could also affect post-
natal phenotypes. Consistent with this, in a study from rural
Southern India, LBW individuals had lower average daily
protein intake at age 20 years, in association with significantly
reduced lean mass and trends for reduced bone mineral con-
tent [167]. Moreover, in Western societies, dietary patterns
associated with higher maternal BMI are also associated with
childhood obesity, e.g., sugar-sweetened beverages, highly
processed snack foods, food insecurity, etc. Thus, it can be
challenging to disentangle effects of prenatal nutrition versus
postnatal diet on offspring body composition.

Prenatal perturbations may also affect appetite regulation
and eating behaviors. For example, children with higher birth
weight had differences in eating behavior survey measures,
such as Sa t i e ty Respons iveness ( lower ) , Food
Responsiveness (higher), and Enjoyment of Food (higher) in
early childhood [168]. Similarly, prenatal exposure to hyper-
glycemia or GDM was associated with altered eating
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behavior; adolescent offspring were more likely to score high-
ly on the Eating in the Absence of Hunger in Children and
Adolescents questionnaire [169, 170]. Mechanistic studies of
appetite regulation are challenging in humans. However,
based on experimental animal models, maternal HFD may
alter the formation of satiety regulating hypothalamic neuro-
nal projections in offspring, via insulin signaling and endo-
plasmic reticulum (ER) stress pathways [171, 172]. The sati-
ety hormone leptin also may shape appetite pathways during
the perinatal period, based on experimental studies in which
postnatal leptin administration reversed developmental pro-
gramming by prenatal undernutrition [173, 174].

Postnatal Lifestyle

Body composition can be influenced by physical activity
and exercise, and these too may be associated with prena-
tal exposures. For example, reductions in lean mass in
individuals with a history of LBW may be due in part to
differences in postnatal exercise patterns. Several studies
have reported that a history of very low birth weight (birth
weight < 1500 g) was associated with reduced levels of
leisure time physical activity in young adulthood [175,
176]. Postnatal physical activity and fitness may also me-
diate the association between maternal BMI and childhood
adiposity: for example, higher maternal BMI was associ-
ated with lower physical fitness measures in preschool-
aged children [177]. These data suggest that postnatal ex-
ercise interventions might mitigate the effects of prenatal
exposures on postnatal body composition. Consistent with
this, data from two observational studies indicate that
physical activity may reverse the adverse effects of LBW
on body composition and insulin resistance [178].

Endocrine Factors

Several endocrine factors and signaling pathways have been
implicated in developmental programming of body composi-
tion. For example, maternal adipokines including leptin and
adiponectin have been linked to offspring adiposity in infancy
[179, 180], while cytokines including IL4, IL5, and IL13 have
been linked to decreased risk of early childhood adiposity
[181]. Differences in growth hormone and its effectors have
been reported in several human studies and experimental par-
adigms of prenatal perturbation. In a longitudinal study of
VLBW and SGA infants over the first 2 years of life, IGF1
levels at 1 week and 3 months post partum were positively
correlated with lean mass at 24 months [182]. Children with a
history of SGA birth weight are sometimes treated with re-
combinant human growth hormone (GH) for short stature; GH
treatment is associated with a reduction in fat mass and an
increase in lean mass [183, 184]. However, it is not clear that
such changes persist into adulthood [185, 186]. Recent studies

have also implicated myostatin (an inhibitor of myogenesis)
and the fibroblast growth factor family members FGF19 and
FGF21 in differences in body composition between SGA and
LGA offspring [119, 187].

Adipose Tissue Growth

Growth of adipose tissue depots occurs through two main
processes: adipogenesis, i.e., commitment of precursor stem
cells toward the adipocyte lineage, and hypertrophy, i.e.,
growth of existing adipocytes through lipid uptake and lipo-
genesis. Both processes have been implicated in the develop-
mental programming of adiposity. For example, expression of
Pref-1, a key inhibitor of adipogenesis, was reduced in placen-
ta from SGA versus AGA infants and inversely correlated
with total fat mass at 4 and 12 months post partum [188].
Adipose expression of Pref-1 was also reduced in a mouse
model of prenatal calorie restriction and low birth weight
[189]. In a rat model of maternal gestational obesity, offspring
developed visceral adiposity with adipocyte hypertrophy and
upregulation of lipogenesis genes (Srebp1, Fas), together with
decreased expression and epigenetic silencing of adipogenesis
genes [190]. Other groups have reported that gestational ex-
posure to maternal obesity is associated with increased adipo-
cyte commitment and differentiation [191].

Epigenetic Mechanisms

The dominant mechanistic model for developmental pro-
gramming of body composition (and other phenotypes) is
that exposure to an adverse prenatal environment induces
lasting changes in epigenetic regulation; such changes
may include hyper- or hypomethylation of DNA, changes
in chromatin marks, and/or expression of large and small
noncoding RNA [13]. There is now a robust body of data
supporting such epigenetic mechanisms in human obesity.
Based on epigenome-wide association studies in a consor-
tium of cohort studies, adult BMI is associated with wide-
spread changes in DNA methylation, with enrichment of
loci near genes involved in lipid and lipoprotein metabo-
lism and inflammation. However, analysis of genetic var-
iants suggested that the changes in DNA methylation
were largely the consequence of BMI rather than the
cause [192]. In another adult population, DNA methyla-
tion within or near genes related to ER function was as-
sociated with BMI and percent fat mass, which is intrigu-
ing in light of evidence linking nutrient-mediated ER
stress to the pathogenesis of insulin resistance and obesity
[193]. Epigenome-wide studies have also identified asso-
ciations between DNA methylation and lean muscle mass
[194].

In contrast to studies in adult populations, where epige-
netic changes may occur as a consequence of obesity,
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studies in early childhood indicate that changes in DNA
methylation precede and predict childhood body composi-
tion. For example, analysis of DNA methylation patterns in
dried blood spots in neonates identified associations be-
tween methylation at 69 genomic regions and BMI z-
score at age 5, and 27 genomic regions were associated
with percent body fat at age 5 [195]. Moreover, DNA
methylation at retinoid X receptor alpha (RXRA) in um-
bilical cord tissue was associated with total and percent fat
mass at age 9 years [196], as well as with childhood bone
mineral content [197, 198]. Additional epigenome-wide
association studies in European and US-based populations
have similarly uncovered associations between DNA
methylation in whole blood in early childhood, and body
composition [199, 200].

Birth Weight and Body Composition: Epigenetic Mediators
Recent studies have suggested that DNA methylation
changes in placenta and cord blood may mediate the as-
sociation between birth weight and body composition. In
a small study of term infants born appropriate-for-
gestational-age (AGA) or small-for-gestational-age
(SGA), hypermethylation near ATG2B, NKX6.1, and
SLC13A5, and hypomethylation of GPR120, in placenta
and cord blood from SGA newborns was linked to chang-
es in gene expression levels (opposite to methylation sta-
tus), and total and abdominal fat at age 2 weeks [201].
Moreover, in a prospective pregnancy cohort, umbilical
cord DNA methylation at six loci was linked to birth
weight, offspring size, and adiposity in early childhood
[202].

Maternal Obesity and Offspring Body Composition:
Epigenetic Mediators In the ALSPAC study (N = 1018), off-
spring epigenome-wide DNA methylation was analyzed
in relation to maternal and offspring adiposity. In total,
28 and 1621 CpG sites were differentially methylated in
offspring of obese and underweight mothers, respectively,
compared with offspring of normal weight mothers [203].
Lower methylation at the SLC6A4 locus in umbilical cord
was associated with higher maternal gestational weight
gain and with higher adiposity in early childhood (total
fat mass and % fat mass between 4 and 7 years); more-
over, adipose tissue methylation and expression of
SLC6A4 was lower in obese compared with lean individ-
uals [204]. SLC6A4 encodes a serotonin transporter which
may play a role in energy balance.

Maternal Diabetes and Offspring Body Composition:
Epigenetic Mediators In the setting of maternal diabetes, anal-
ysis of genome-wide DNAmethylation patterns has identified
strong effects on the epigenome of placenta [205], cord blood,
and peripheral leukocytes throughout childhood and early

adulthood [206]. Mechanistically, DNA methylation differ-
ences in placenta may affect nutrient transfer: for example,
GDM is associated with increased methylation at CpG2 of
placental lipoprotein lipase, decreased mRNA expression,
and abundance of lipids in the neonatal circulation [207].
Interestingly, a subset of genomic loci for which cord blood
DNAmethylation levels have been linked to maternal glucose
exposure (Hyperglycemia and Adverse Pregnancy Outcome
(HAPO) study) overlaps with loci linked to birth weight in the
Cambridge Baby Growth Study and to maternal prenatal un-
dernutrition in a Gambian population; these loci (TERF2IP,
SUSD1, C6orf96, and ACYP2) may be especially sensitive to
nutritional status during development [208].

Taken together, these data provide strong support for
the concept that epigenetic regulation mediates the asso-
ciation between prenatal exposures and offspring body
composition. However, it remains uncertain whether epi-
genetic marks play a causal role or alternatively reflect
alterations in transcriptional activity at these loci, in turn
mediated by additional pathway-specific or generalized
chromatin modulating mechanisms. While more experi-
mentally challenging than methylation analyses, these
studies will be critical to determine causal relationships.

Stem Cells as Mediators of Developmentally
Programmed Phenotypes

Stem cell populations are established in utero and may
carry an “epigenetic memory” of nutritional or other in-
sults during development. Thus, they have been proposed
as potential mediators of developmental programming of
obesity and body composition [209, 210]. Consistent with
this, our group has described reductions in the number
and regenerative capacity of skeletal muscle stem cells
in a mouse model of late gestation undernutrition and
low birth weight [211]. A leading hypothesis posits that
developmental exposures may alter commitment of mes-
enchymal cells toward the adipocyte lineage. Adipose-
derived stem cells (ADSCs) from a small study of young
adults born either LBW or normal weight showed signif-
icant differences in gene expression and in genome-wide
DNA methylation patterns. Interestingly, such differences
were more pronounced in ADSC than in mature differen-
tiated adipocytes, suggesting that stem cells may carry an
epigenetic memory of prenatal disruptions [212].

In the past, studying stem cell function in human in-
fants was complicated by the unavailability of relevant
cells for analysis. However, the discovery of fetal mesen-
chymal stem cells—a precursor cell able to differentiate
into adipocytes, myocytes, cartilage, and bone—in peri-
natal tissues such as amniotic membranes and in umbili-
cal cord Wharton’s jelly has allowed new insights into
stem cell biology and developmental programming
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[213–215]. How closely such perinatal stem cells recapit-
ulate the biology of adipose tissue-derived precursor cells
is unclear. Still, data from such translational model sys-
tems support an effect of prenatal exposures on infant
stem cell fate and function. For example, umbilical
Wharton’s jelly mesenchymal stem cells from SGA in-
fants exhibit increased proliferation capacity, impaired
oxidative metabolism, and increased expression of the
lipid synthesis gene fatty acid elongase ELOVL2 [216,
217]. Adipocytes derived from MSC of SGA infants
showed increased expression of acyl-coenzyme A synthe-
tase 1 (ACSL1), which in turn was noted to regulate cel-
lular lipid uptake and adipogenesis [218].

Maternal obesity, too, has been reported to alter mes-
enchymal stem cell function. For example, one human
study reported increased adipogenic capacity in amniotic
membrane stem cells from offspring of obese women
[219]. Another group has reported that prenatal expo-
sure to maternal obesity results in increased adipogenic
capacity and reduced myogenesis in infant mesenchymal
stem cells isolated from umbilical cord, and that in vitro
adipogenic capacity of such MSC was correlated with
postnatal weight gain and accelerated adipose tissue
growth from birth to 5 months [220••, 221–223].
Higher adiposity at age 5 months was associated with
higher acylcarnitine levels, higher expression of genes
involved in lipid metabolism, and markers of oxidative
stress in MSC [221]. Together, these data suggest that
mesenchymal stem cells from infants exposed to abnor-
mal prenatal environments can be used to model devel-
opmentally programmed changes in body composition
and may shed new insights into pathophysiology and
treatment.

Mitochondrial Metabolism

Multiple lines of evidence suggest that disruptions to the
prena ta l envi ronment—both undernut r i t ion and
overnutrition—can result in impaired mitochondrial func-
tion in offspring tissue. For example, umbilical mesenchy-
mal stem cells from SGA infants have decreased mito-
chondrial oxygen consumption rates [217]. Similar im-
pairments in mitochondrial metabolism in skeletal muscle
[224], cardiac muscle [225], adipose tissue [226], and
liver have also been described in rodent models of intra-
uterine growth restriction and LBW. Moreover, such mi-
tochondrial perturbations can be exacerbated by postnatal
diet. For example, in a study of LBW versus normal birth
weight (NBW) young men, overfeeding via high-fat diet
increased adipose tissue DNA methylation of PPARGC1A,
a critical regulator of mitochondrial biogenesis and oxida-
tive metabolism, in LBW, but not NBW, young men, sug-
gesting that prenatal factors may alter the postnatal

adipose response to nutrient excess [227]. However, the
data are not homogeneous: some groups have reported
normal mitochondrial function in skeletal muscle of
LBW young men [228] or increased skeletal muscle mi-
tochondrial content and function following prenatal un-
dernutrition in rodents [229, 230].

By contrast, prenatal overnutrition and maternal obesi-
ty have been more consistently associated with impaired
offspring mitochondrial metabolism. Both mitochondrial
biogenesis and function are reduced in placenta of obese
women [231]. Similarly, transcriptomic analysis in human
umbilical vein endothelial cells, umbilical mesenchymal
stem cells, and skin fibroblasts showed reductions in
OXPHOS gene expression and altered mitochondrial
function in infants of obese mothers [219, 232, 233]. In
animal models, maternal high-fat diet has been linked to
reduced mitochondrial biogenesis and impaired mitochon-
drial metabolism in oocytes (both F0 mothers’ and F1
daughters’) [234–237], placenta [238], and in offspring
skeletal muscle [239, 240], cardiac muscle [241], adipose
tissue, liver [242], and hypothalamus [243].

Resting Energy Expenditure and Thermogenesis

Reductions in resting energy expenditure can contribute to
weight gain and adiposity, and energy expenditure in turn
is strongly influenced by body composition. The main
contributor to resting energy expenditure is muscle, which
expends energy through physical activity and shivering,
but mitochondria-rich brown and beige adipose tissue
may also contribute through thermogenesis, or heat pro-
duction. Brown adipose tissue (BAT) was once thought to
be present only in small mammals and babies, but BAT
depots have recently been discovered in adult humans,
and their size and activity have been linked to obesity
and metabolic outcomes. Emerging data suggest that pre-
natal growth restriction is linked to altered BAT function.
In a study of BAT activation in prepubertal SGA versus
AGA children, Malpique et al. reported that BAT activity
was associated with smaller visceral fat mass and im-
proved metabolism [244]. Prenatal growth restriction
may be associated with long-term changes in resting en-
ergy expenditure. For example, birth weight was positive-
ly associated with lean mass and resting metabolic rate in
adult women [245]. However, these effects have not been
consistently reported, perhaps due to differences in how
energy expenditure was normalized. In studies in which
resting energy expenditure was normalized to lean mass,
adults with history of prematurity and very low birth
weight may even have higher resting energy expenditure
per unit lean body mass [246]. Moreover, diet may cause
differences in energy expenditure: when challenged with a
5-day high-fat overfeeding challenge, energy expenditure
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and fat oxidation were significantly higher among young
men with a history of LBW as compared with NBW con-
trols [247]. These data highlight the interaction of prenatal
stress with postnatal nutrition.

Cellular Aging/Senescence

In an interesting translational study, De Zegher et al. recently
reported that birth weight was directly correlated with leuko-
cyte telomere length at birth, and that telomere length in turn
predicted lean mass at age 12 months [248]. Similarly, prena-
tal exposure to GDM has also been linked to reduced telomere
length in childhood (age 9–16 years) [249]. These data raise
the possibility that prenatal stressors may activate cellular ag-
ing and senescence pathways.

Conclusion

With advances in “-omics” techniques and increased interest
in the prenatal environment as a determinant of chronic health
and disease, the last decade has brought a greater understand-
ing of the developmental programming of offspring body
composition. Birth weight (which can be viewed as a bio-
marker for the adequacy of the prenatal environment), mater-
nal obesity, and gestational diabetes are each linked to in-
creased adiposity in childhood and later life. Birth weight is
also robustly linked tomuscle mass and bone density later life.
On the other hand, associations between prenatal exposure to
diabetes and offspring lean mass and bone density differ be-
tween populations. Mechanistically, programming of body
composition may arise via differences in nutrients or metabo-
lites, postnatal lifestyle factors, epigenetic regulation, im-
pairedmitochondrial metabolism, and/or increasedmesenchy-
mal stem cell commitment to the adipose lineage. The hope is
that an improved mechanistic understanding will allow the
development of early markers of future risk, to facilitate
targeted nutritional, metabolite-based, or other therapeutic in-
terventions that might curb the ongoing epidemics of obesity
and diabetes.
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