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Abstract
Purpose of Review The purpose of this review is to provide a brief summary about the current state of knowledge regarding the
circadian rhythm in the regulation of normal renal function.
Recent Findings There is a lack of information regarding how the circadian clockmechanismsmay contribute to the development
of diabetic kidney disease. We discuss recent findings regarding mechanisms that are established in diabetic kidney disease and
are known to be linked to the circadian clock as possible connections between these two areas.
Summary Here, we hypothesize various mechanisms that may provide a link between the clock mechanism and kidney disease
in diabetes based on available data from humans and rodent models.
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Introduction

The circadian clock is a network of interconnected
transcription-translation feedback loops, in which trans-
lated circadian proteins inhibit their own mRNA tran-
scription to generate cell autonomous and self-
sustaining transcriptional circadian oscillations that con-
tribute to the regulation of most physiologic functions

[1, 2]. The core mechanism is comprised of several
transcription factors that participate in a transcription-
translation feedback loop (Fig. 1). In mammals, the
main feedback loop is activated by a heterodimeric tran-
scription activator brain and muscle ARNT-like 1
(BMAL1 or ARNTL) and the circadian locomotor out-
put cycles protein kaput (CLOCK). BMAL1-CLOCK
heterodimers trigger the transcription of a wide range
of circadian clock-controlled genes (CCGs), identified
as the “period” and “cryptochrome” families of genes
(PER1/PER2/PER3 and CRY1/CRY2 respectively).
PER/CRY heterodimers contribute to the inhibitory
feedback loop to decrease the activity of BMAL1-
CLOCK. An ancillary loop involving nuclear receptors
acts as an additional important feedback mechanism
controlling BMAL1 transcription. This complex network
is ubiquitously expressed within central nervous system
and peripheral tissues including the kidneys [3–5]. An
analytical study of transcriptomes of 12 adult mouse
organs showed approximately 43% of all protein coding
genes in the genome demonstrated circadian oscillations
in at least one of the organs tested [6]. Notably, kidney
was second only to the liver in terms of total number of
circadian transcripts (approximately 13% compared with
16%) supporting significant presence of circadian lock
activity in renal cells. Other studies also show that
many circadian target genes are organ-specific and are
related to tissue-specific functions [7, 8].
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Part I: Circadian Rhythms in Kidney Function

Circadian Rhythm and the Kidney Glomerulus

The primary functions of the glomerulus include the selective
ultrafiltration of plasma and clearance of small solutes, which
is measured by the glomerular filtration rate (GFR). Early
studies in human subjects maintained on bed rest, normal
sleep/wake as well as light/dark cycles, and identical standard-
ized meals every 3 h showed that there was a clear circadian
pattern to GFR [9]. The GFR measured using inulin clear-
ances was highest during the day (122 ml/min) and lowest at
night (86 ml/min). The variations in GFR likely reflect chang-
es in renal plasma flow since the clearance of p-amino-
hippurate showed a similar pattern and amplitude. Urinary
albumin and β2-microglobulin excretion were also noted to
have a circadian rhythm in-phase with the GFR rhythm.
Although very little is known about circadian dysrhythmia
leading to glomerular dysfunction, proteinuria in patients with
nephrotic syndrome has been observed to follow a circadian
rhythm [9, 10]. However, protein excretion is independent of
GFR rhythm with peak excretion around 4 pm and almost no
protein excretion around 3 am [11].

Circadian Rhythm and Renal Tubules

Following selective ultrafiltration through the glomerulus, re-
nal tubules have the important job of reabsorbing the essential
components of the filtrate, while augmenting elimination of
non-essential toxic and non-toxic waste products by actively
secreting these into the final urinary excreta. The proximal
tubule, the kidney power house in this regard, performs the
bulk of reabsorption, whereas the distal tubule, along with the
collecting tubule, does the fine tuning and finalizes the urine
composition. Most renal functional rhythms have similar ki-
netics with peaks and troughs corresponding to periods of
maximal and minimal behavioral activity, referred to as active
and inactive phases, respectively [12]. For humans, active
phase is generally during the daytime and the inactive phase
during nighttime, whereas the reverse is the case in the rodent
models used for biomedical research.

Urine volume, electrolyte excretion, and blood pressure all
exhibit circadian variation. A normal circadian blood pressure
pattern is associated with a 10–15% decrease in blood pres-
sures at night called a “dipping” pattern. We have shown that
the α subunit of the epithelial sodium channel (αENaC) ex-
hibits a circadian pattern of expression and Period 1-deficient
mice have altered expression of αENaC and develop salt-sen-
sitive, non-dipping hypertension [13, 14]. We have also
shown that Period 1 regulates the expression of other sodium
handling genes in the kidney [15–17]. Transcriptome-wide
studies and targeted gene-specific analyses have revealed
rhythmic expression of other genes important in salt and water
balance including aquaporins, urea transporters and potassium
channels [18–21]. Consistent with a critical role for the circa-
dian clock in the regulation of renal gene expression, genetic
inactivation of the Clock gene leads to notable changes in the
kidney transcriptome [22, 23].

The most abundant protein in human urine is uromodulin
(also known as the Tamm-Horsfall protein). Uromodulin has
been identified as a susceptibility gene for a number of kidney
diseases and it has been specifically linked to diabetic kidney
disease [24, 25]. Uromodulin is produced in the thick ascend-
ing limb and appears to play a role in regulating renal sodium
handling, sodium-sensitivity, and forming a protective coating
in the thick ascending limb of the loop of Henle [26]. It is not
clear if uromodulin excretion displays a circadian rhythm, but
its urinary levels are observed to correlate with urine volume
[27] which exhibits a clear circadian rhythm. Uromodulin was
recently identified as a BMAL1-target gene exhibiting differ-
ences in expression between 10 am and 10 pm in male mice
(see Supplemental Table 4 in Ref [28]).

Circadian Rhythm and Renal Interstitium

Advanced DKD is characterized by interstitial inflammation
and fibrosis. CLOCK may play a role in prevention of renal
fibrosis and parenchymal damage. Following unilateral ure-
teral obstruction in a CLOCK-null mouse, increased renal
parenchymal damage and fibrosis were observed, suggesting
that the circadian clock plays a role in regulating renal fibrosis
[29] possibly by inhibiting transforming growth factor-β-
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cyclooxygenase 2 (TGF-β-COX2) pro-fibrotic axis in the
kidney.

Circadian Rhythm and Renal Neuro-hormonal System

External cues, including light, food intake, and circulating
hormones, determine the periodicity of (i.e., “entrain”) the
circadian oscillations in the kidney. Aldosterone, a mineralo-
corticoid hormone secreted by the adrenal glands, plays a
significant role in the maintenance of extracellular sodium
homeostasis and control of blood pressure in part by regulat-
ing the epithelial sodium channel (ENaC), the principal sodi-
um channel present on the apical side of the principal cells of
the renal collecting duct [30]. Plasma aldosterone levels peak
in the first half of the active phase, in parallel with GFR
rhythms and filtered sodium load [31]. Plasma aldosterone is
significantly increased, and circadian aldosterone oscillations
significantly reduced, in mice deficient in CRY1 and CRY2.
Analysis of the circadian transcriptome in the adrenal glands
of these mice detected an increase in expression of the aldo-
s terone biosynthet ic enzyme 3β -hydroxysteroid
dehydrogenase/delta 5-to-4 isomerase type 6 (HSD3B6).
Functional defects in CRY1/2 knockout mice included signif-
icantly elevated plasma aldosterone levels coupled with salt-
sensitive hypertension and non-dipping pattern of arterial
blood pressure [32].

PER1, one of the core clock components, has been demon-
strated to positively regulate aldosterone synthesis in an adre-
nal cell line and plasma aldosterone levels in vivo in the 129/
sv strain of mice [33]. PER1-null mice on a C57Bl/6 back-
ground, under high salt and mineralocorticoid treatment con-
ditions, develop a non-dipping form of hypertension [13, 14].
PER1 has also been shown to control the transcription of the
genes encoding several key proteins involved in sodium reab-
sorption along the nephron (including αENaC, NCC, kinases
WNK1 & WNK4, NHE3, SGLT1) as well as several compo-
nents of the endothelin axis [17, 34–37].

Emerging Concepts in Circadian Renal Function

In addition to the classic transcriptional mechanism of the
circadian clock, translation occurs in a rhythmic fashion as
has recently been described [38]. In the mouse liver, peak
ribosome biogenesis and polysome formation occurred in
the middle of the active phase, presumably because the circa-
dian clock coordinates the energy-consuming process of pro-
tein synthesis with energy production in these cells [39, 40].
Ribosomes from murine kidneys have been profiled to iden-
tify rhythmically translated mRNAs in the kidney. This com-
pelling study demonstrated that nearly 10% of all detected
transcripts were translated in a circadian pattern [38]. These
findings demonstrate that circadian rhythms in function likely

relate to rhythmic changes in mRNA levels, translation, and
protein expression.

When correlating circadian translation with functional cir-
cadian oscillations in renal function, another level of complex-
ity to consider is the effect of post-translational modifications.
Such modifications can affect protein stability, subcellular lo-
calization, protein-protein interactions and protein function.
The total levels of a NaCl cotransporter (NCC, encoded by
the SLC12A3 gene), which controls sodium reabsorption in
the distal convoluted tubule (DCT), do not appear to exhibit
circadian oscillations but the active phosphorylated form does
[41, 42]. Recent global analysis of the circadian
phosphorylome and acetylome in the mouse liver revealed
approximately 20,000 phosphorylation sites within 4400 liver
proteins, with approximately 25% being regulated in a circa-
dian manner. Of the 1000 acetylation sites found in the liver
proteome, approximately 13% demonstrate circadian oscilla-
tions, particularly those involved in the urea and the tricarbox-
ylic acid cycles in the metabolism of amino acids and lipids
[43••]. It remains to be seen whether post-translational modi-
fication of proteins plays a similar role in circadian oscillations
of renal function.

Another emerging area concerns the role of circadian
rhythms in systemic and renal oxygen levels. In mice, renal
oxygen levels can affect the intrinsic renal circadian clock by
inducing circadian oscillations in the levels of hypoxia-
inducible factor 1-α (HIF1-α) [44]. The nuclear levels of
HIF1-α in the kidney oscillated, with a peak in the first half
of the active phase. The mechanism appears to be suppression
of mTORC1 signaling by the acid load (e.g., lactate) generat-
ed during hypoxia [45].

Part II: Potential Role for Circadian Rhythm
Dysregulation in DKD

Evidence From Rodent Models and Humans

Accumulating evidence from rodent and human studies indi-
cates that circadian disruption is prevalent in diabetes [46].
This topic has been reviewed in-depth recently [47]. One ex-
ample is that altered circadian expression of clock genes in the
kidney has been shown in a rat model of diabetes induced by
streptozotocin [48]. Single nucleotide polymorphisms in
BMAL1 and CLOCK have been linked to type 2 diabetes in
humans [49, 50]. Shift work and chronic circadian disruption
appears to cause increased risk for diabetes and other cardio-
metabolic disorders [51•]. Consistent with these genome-wide
association and epidemiological studies, mechanistic evidence
from circadian mutant mouse models supports a connection
between the molecular circadian clock and diabetic disorders.
Bass and colleagues demonstrated that BMAL1 and Clock
mutant mice both develop a diabetic phenotype and that
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specific disruption of the pancreatic β-cell circadian clock
leads to diabetes [52]. The connection between the clock and
diabetes is bidirectional, as has been demonstrated by the
work of Gong and colleagues using the db/db mouse model
[53••, 54••, 55••]. The db/db mice exhibit circadian dysfunc-
tion in the form of non-dipping hypertension as well as dys-
regulated rhythms at the level of individual peripheral clocks.

Diabetic Kidney Disease

Diabetic kidney disease (DKD), a major microvascular com-
plication of both type 1 and type 2 diabetes mellitus, continues
to be a leading cause of end-stage renal disease in Western
nations. Classic diabetic nephropathy is characterized by nod-
ular glomerulosclerosis on histopathology and clinically by
progressive decline in renal function often preceded by albu-
minuria. DKD is associated with an increase in morbidity and
mortality, in large part due to an increase in cardiovascular
disease. Traditionally, DKD was thought to result from inter-
actions between hemodynamic and metabolic factors resulting
in increased intra-glomerular pressures and modification of
molecules under hyperglycemic conditions [56]. However,
growing evidence indicates that the extent of renal damage
in patients with DKD is not completely explained by these
factors and the pathogenesis is likely multifactorial, with ge-
netic and environmental factors triggering a complex series of
pathophysiological events [57, 58]. Inflammation is thought
to be one of the key pathophysiological mechanisms respon-
sible for DKD. The components of the diabetic milieu act on
the kidneys to activate diverse intracellular downstream sig-
naling cascades, leading to activation of several inflammatory
pathways to drive mesangial hypertrophy and deposition of
collagen IV and fibronectin. Activation of these signaling
pathways results in infiltration by circulating inflammatory
cells, thus amplifying and perpetuating the inflammatory pro-
cess in the kidney. Hypertension, present in almost 65% of the
diabetic population [59], provokes additional injury resulting
in the perfect storm of accelerated progressive kidney disease
[60, 61].

Potential Effect of Circadian Dysrhythmia on Diabetic
Kidney Disease

A non-dipping blood pressure pattern is prevalent in both type
1 [62] and type 2 [63] diabetics and corresponds to increased
albuminuria [64]. Administration of at least one antihyperten-
sive medication at night restores dipping status and improves
clinical outcomes in patients with diabetes [65]. While these
observations provide some support for dysfunction of the cir-
cadian rhythm inDKD, the molecular mechanisms underlying
these defects remains to be elucidated. Below, we speculate as
to possible mechanisms involving BMAL1/CLOCK, select

clock target genes, and hypoxia signaling that may contribute
to the clock dysfunction in DKD.

BMAL1 has been described as the main indispensable
component of the core clock machinery [66]. BMAL1-null
mice have a multitude of mild-to-severe metabolic alterations
including impaired metabolism of glucose [67] and fatty acids
[68]. Potential effect of circadian dysfunction from BMAL1
deficiency or malfunction might pave the way for impairment
of glucose metabolism, a significant substrate contributor to
the complex processes leading to DKD development. As
discussed earlier, an optimally functioning CLOCK-driven
circadian rhythm prevents renal parenchymal damage and fi-
brosis [29]. Thus, CLOCK deficiency or dysfunction may
lower the threshold for development of microvascular disease
and fibrosis or accelerate the progression of DKD.

There are potential effects of circadian dysrhythmia in
DKD that may be associated with hypoxia-inducible factors
(HIF). The connection between hypoxia signaling, HIF1-α,
and the circadian clock is well-established (see [69] for re-
view). Likewise, growing evidence supports a role for HIF
signaling in diabetic kidney disease [70–72]. Indeed, as shown
in Fig. 2, HIF1-α is a clear example of a clock-controlled gene
in the kidney (data derived from CircaDB [73]). It is therefore
tempting to speculate that loss or dysregulation of clock-
mediated control of HIF1-α function may be related to devel-
opment of DKD.

We queried whether other genes, which were linked to
DKD via genome-wide association studies, are themselves
circadian clock target genes, similar to HIF1-α. Based on
recent evidence [74, 75], we selected several DKD genes
and queried CircaDB as well as available transcriptomic data
[17, 22, 28], to look for evidence of circadian rhythmicity.
Several genes met these criteria; as discussed above,
uromodulin fits in this category since it is a BMAL1 target
gene [28] and is also associated with kidney disease in type 1
[76] and type 2 diabetes [24]. Angiotensin-converting enzyme
(ACE) is a well-established circadian clock target gene
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Fig. 2 HIF1a expression in the kidney exhibits a circadian rhythm. Data
derived from CircaDB [73]
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(CircaDB) and polymorphisms in this gene are associated
with DKD development in type 2 diabetes [77]. Another in-
teresting link between circadian rhythms and DKD suscepti-
bility genes is Slc12a3, encoding the NaCl cotransporter,
which has been linked to DKD [75] and the clock [17, 41, 42].

Summary and Future Directions

It is clear that the circadian clock, both extrinsic and intrinsic
to the kidney, is a key regulator of renal function. Thousands
of genes and proteins are under the regulation of the molecular
clock mechanism and this likely underlies the known circadi-
an variation to several aspects of renal function. It is less clear
what happens to the circadian clock within and outside the
kidney in pathophysiological states. Available evidence dem-
onstrates that glucose homeostasis, pro-fibrotic mechanisms,
and hypoxia signaling are all subject to regulation by the cir-
cadian clock, making these likely suspects for mediating a
possible link between circadian rhythm dysregulation and
DKD. Future work should be aimed at understanding whether
the clock can be manipulated by pharmacologic or behavioral
means in order to improve outcomes in DKD.
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