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Abstract
Purpose of Review Obesity and diabetes are worldwide epidemics. There is also a growing body of evidence relating the gut
microbiome composition to insulin resistance. The purpose of this review is to delineate the studies linking gut microbiota to
obesity, metabolic syndrome, and diabetes.
Recent findings Animal studies as well as proof of concept studies using fecal transplantation demonstrate the pivotal role of the
gut microbiota in regulating insulin resistance states and inflammation.
Summary While we still need to standardize methodologies to study the microbiome, there is an abundance of evidence pointing
to the link between gut microbiome, inflammation, and insulin resistance, and future studies should be aimed at identifying
unifying mechanisms.
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Introduction

Obesity and type 2 diabetes (T2DM) have become worldwide
epidemics. In 2015, 30.3 million, representing 9.4% of
Americans, had diabetes [1, 2]. Every year, 1.5 million
Americans are diagnosed with diabetes. As per the latest sta-
tistics, diabetes remains the seventh leading cause of death in
the USA. Obesity is intertwined with the increasing incidence
of metabolic syndrome and T2DM. T2DM is associated with
increased incidence of micro- and macrovascular complica-
tions and thus places a huge burden on the health care system
as a whole. According to the American Diabetes
Association, the total cost of diagnosed diabetes in the
USA in 2017 is $327 billion.

Several studies have shown that the common underpinning
of obesity, metabolic syndrome, and T2DM is dysglycemia,
insulin resistance, and inflammation. In recent studies, much
attention has also been focused on the role of the gut micro-
biota in obesity, metabolic syndrome, and T2DM, and this
hypothesis forms the basis of this review [3–5].

The gut microbiota refers collectively to the microbial
composition in the gut and contains several diverse sets of
microorganisms such as bacteria, viruses, Archaea, fungi as
well as phages [6–9]. While it was thought that microbiota are
10-fold more abundant in the human body, recent data point
out that there is at least equal abundance of microbiota as the
total number of somatic and germ cells in a human [10].
Among all of the different bacterial species, the five most
abundant phyla include Firmicutes, Bacteriodetes,
Verrucomicrobia, Actinobacteria, and Proteobacteria [8].
Based on the pH gradient, different microbial communities
inhabit different parts of the GI tract; the proximal part has
an abundance of Firmicutes (Lactobacilli) as well as
Proteobacteria, while the distal part is concentrated with an-
aerobes such as Bacteriodetes, Verrucomicrobia, and
Akkermansia [11–14].

Gut Microbiome, Obesity, and Insulin Resistance

In the last decade, several experimental studies especially in
obese mouse models have demonstrated the role of the gut
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microbiome in obesity [6, 7, 15••, 16]. One of the first studies
conducted in animal models with controlled diet, environ-
ment, and genotype showed that in C57BL/6 mice, which
are genetically protected from developing obesity even after
consuming a high-fat/high-carbohydrate diet, colonizing them
with microbiota from obese mice resulted in a profound in-
crease (60%) in body fat, and subsequently these mice became
insulin resistant despite reduced food intake [3–5]. In addition,
when compared to leanmice, 16S rRNA profiling demonstrat-
ed that ob/ob mice had only half the abundance of
Bacteroidetes and a proportional increase in Firmicutes
[3–5]. The hypothesis was that microbiota from obese mice
were more efficient at extracting energy from diet than lean
counterparts. Using shotgun sequencing, the authors showed
that the genome of ob/ob mice predominantly had environ-
mental gene tags encoding glycoside hydrolase (which de-
grades dietary polysaccharides and starch), as well as ATP-
binding cassette transporters. Furthermore, the end products,
acetate and butyrate, were significantly enriched in ob/obmice
compared to lean mice, demonstrating that the gut
microbiome of these mice had an increased potential to har-
vest energy.

Proof of concept came from studies of fecal transplantation
into germ-free mice. Ridaura et al. [17••] showed that fecal
microbiota transplantation from female adult twin pairs that
were discordant for obesity into germ-free mice that were fed
low-fat mouse feed resulted in the set of mice that received a
transplant from the obese donor having increased total body
mass and fat mass, in addition to metabolic phenotypes that
were associated with obesity, while the other set that received
the lean twin’s microbiome prevented the development of in-
creased body mass and obesity-associated metabolic pheno-
types. They then fed them a saturated fat diet that also includ-
ed increased consumption of fruits and vegetables. Significant
differences in body composition were documented between
ob/ob and ln/ln mice consuming this diet. Thus, while the
donor phenotype can influence the microbiome of a recipient,
they demonstrated that diet continues to regulate whether
these mice developed a lean or obese phenotype.

In the above study, the authors also measured increased
levels of butyrate and propionate in mice that were colonized
with lean human gut microbiota when compared to the gut
microbiota from the obese [17••]. Additionally, they were able
to demonstrate that when they performed fecal microbiota
transplantation from lean human donors to obese human re-
cipients with metabolic syndrome, this resulted in significant
improvement in insulin sensitivity [18]. Furthermore, in a
double-blind, randomized trial of controlled intervention,
they showed that treatment with probiotics such as
Lactobacillus gasseri resulted in significant reduction in
body weight in both overweight and obese subjects [19].
These studies point to the role of the gut microbiome in
regulating body weight.

Gut Microbiome, Insulin Resistance, and Type 2
Diabetes

With regard to T2DM, one of the first studies came from the
group of Larsen et al. [20] who studied 18 lean and 18 over-
weight males with T2DM.While the bacterial abundance was
similar in both groups, the abundance of Firmicutes bacteria
was significantly increased in controls compared to partici-
pants with T2DM. There was a corresponding upregulation
in Bacteriodetes, but this was not statistically significant.
Also, the authors did not report on the confounding effect of
antidiabetic treatment on gut microbiome composition in this
study.

Qin et al. [21] performed an association case-control study
of metagenomes in a population of subjects with T2DM in
China. Among the intestinal bacteria, compared to the con-
trols, subjects with T2DM showed a decrease in Clostridum
species, Fecalibacteria and Roseburia, all butyrate-producing
bacteria of the Firmicutes phylum. There was a concomitant
increase in Bacteriodetes species and Escherichia coli.
Pathway analysis showed that in T2DM, there is increased
membrane sugar as well as branched-chain amino acid trans-
port and sulfate reduction. These results appear to suggest that
butyrate-producing pathogens afford protection against
T2DM [22, 23].

Similar to the study by Larsen et al. in males, Karlsson et al.
[24] studied the fecal microbiome of 145 older women, of
whom 53 had T2DM, 49 had impaired glucose tolerance,
and 43 were normal. They reported that in women with
T2DM, there was enrichment of four Lactobacillus species
and decreases in the abundance of five Clostridium species.
Furthermore, the abundance in Lactobacillus species correlat-
ed positively with glycated hemoglobin and glucose levels
while Clostridium species correlated negatively. They also
showed that Roseburia and Fecalibacterium prausnitzii,
which are known butyrate producers, were associated with
T2DM.

Factors that Contribute to Altered Microbial
Composition in Obesity and Diabetes

Insulin resistance states such as metabolic syndrome and
T2DM are associated with low-grade subclinical inflamma-
tion [25, 26]. While alterations in gut microbiome in the met-
abolic syndrome are reported, the relationship between in-
flammation, gut microbiome, and metabolic derangements is
not well studied. Mice that were fed a diet rich in fiber have
been shown to have increased levels of short-chain fatty acids
and developed less allergic lung inflammation than mice fed a
low fiber diet. Also, treatment with one of the short-chain fatty
acids, propionate, resulted in an abundance of macrophage
and dendritic cells.
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Inflammation plays a key role in metabolic disease involv-
ing insulin resistance such as obesity, metabolic syndrome and
T2DM [27–29]. In one of the pioneering studies, Cani et al.
[30••, 31, 32] demonstrated a link between the gut
microbiome and the pro-inflammatory state of the metabolic
syndrome. In mice fed high fat diet, there was increased
endotoxinemia, and this was associated with decreased abun-
dance of gram-negative Bacteriodes and gram-positive
Clostridia and bifidobacteria. In support of these preclinical
findings, the DESIR study examined the development and
pattern of metabolic syndrome and associated complications
and also reported dysbiosis of the gut microbiome, evidenced
by decreased bacterial DNA content and increased abundance
of Proteobacteria in those patients that progressed to have
cardiovascular events [33].

Two studies in humans provided further proof of concept.
In both of these studies [34, 35], the authors assessed the fecal
gut microbiome of 12 obese participants that enrolled in a
weight loss program for 1 year, and followed a low-calorie
diet that was either fat restricted or carbohydrate restricted.
They reported increased abundance of Firmicutes and de-
creased Bacteriodetes in obese compared to lean individuals
whose microbiome signature showed remarkable stability
over the year. Both diets caused weight loss and this correlated
to decreased content of Firmicutes as well as to increased
amounts of Bacteroidetes (3–15%). Thus, all of the studies
point to the gut microbiome as a contributing factor to obesity.
Kalliomäki et al., in a prospective study of children that were
followed from birth up to the age of 7 years [36], collected
fecal specimens at 6 and 12 months of age. They showed
inc r eased Bi f i dobac t e r ium t axa and dec reas ed
Staphylococcus aureus in normal weight compared to over-
weight or obese children.

The administration of antibiotics has an opposite effect on
gut microbiome [37]. Toll-like receptors (TLRs) are a family
of key pattern recognition receptors that aid cells in recogniz-
ing ligands such as endotoxin and mediating inflammation
and immunity. We and others have shown increased expres-
sion and activity of TLRs that are present on cell surfaces in
patients with obesity, diabetes, and metabolic syndrome
[38–40]. Recently, studies have focused on the role of the
gut microbiome in regulating TLR-mediated insulin resis-
tance. TLR5-deficient mice are hyperphagic and develop obe-
sity, insulin resistance, and features of the metabolic syn-
drome, a process that is associated with dysregulation of in-
terleukin-1β signaling [41]. When gut microbiota of these
mice are transplanted into wild-type TLR5 mice, the recipient
mice also influence the gut microbiome in a way that predis-
poses to the metabolic syndrome. Similarly, TLR2-deficient
mice are reported to have increased Firmicutes and decreased
Actinobacteriai, and they subsequently develop insulin resis-
tance, obesity, and metabolic syndrome. Treatment with anti-
biotics decreased the abundance of Firmicutes and eventually

improved insulin action and sensitivity. Furthermore, since
Bifidobacterium can result in increased gut permeability, it is
possible that a dysregulated microbiome could lead to a leaky
gut, thereby yielding increased metabolic endotoxemia and
increased TLR activity, begetting more inflammation. We
have previously shown that both TLR2 and TLR levels and
activity are increased in monocytes of patients with metabolic
syndrome and diabetes. Furthermore, when either TLR2 or
TLR is deficient, there is decreased preponderance of diabetic
complications such as diabetic nephropathy [42–48]. Thus,
the gut microbiome may also contribute to insulin resistance
and associated diabetic vasculopathies, and this area will be a
key area of future investigation.

Inflammasomes also regulate inflammation by sensing en-
dogenous or exogenous damage-associated molecular pat-
terns referred to as DAMPs [49, 50]. These proteins exist as
multiprotein complexes and convert pro-inflammatory cyto-
kines such as interleukin (IL)-1β and IL-18 to their active
forms in response to “alarm” signals. In NLRP6 deficiency
[49, 51], there are decreased IL-18 levels and altered fecal
microbiota, characterized by increased abundance of
Bacteroidetes (Prevotellaceae). We have recently shown that
NLRP3 inflammasome activation in the diabetic milieu in-
creases monocyte activation and alters gut microbiota
resulting in gut dysbiosis, all of which are eliminated via
knockout of the inflammasome pathway [51].

Anti-Diabetic Therapy and Gut Microbiome

There are several therapies that are used to treat insulin resis-
tance and diabetes, one of the most popular of these and used
as first-line therapy is metformin. Some of the beneficial ef-
fects of metformin could be attributed to alteration in gut mi-
crobiota [52, 53, 54•, 55]. Metformin therapy, in addition to
improving the glycemic profile of mice fed a high-fat diet, also
increases abundance of Akkermansia, a mucin-degrading bac-
terium, when compared to controls fed a high-fat diet without
metformin. Human studies from Danish, Swedish, and
Chinese participants with T2DM on metformin therapy have
corroborated these findings [52, 53, 54•, 55]. Multivariate
analysis has shown that there are significant differences in
gut composition between metformin-untreated participants
with T2DM vs controls and significant increases in
Escherichia species and decrease in Intestinibacter after met-
formin therapy.

Morbid obesity can be improved by gastric bypass or bar-
iatric surgery. Diet-induced obese (DIO) C57BL/6 J mice that
were fed a high-fat diet underwent Roux-en-Y gastric bypass
(RYGB) surgery, sham surgery, or sham surgery along with
caloric restriction [56–58]. RYGB altered gut microbial com-
position as early as 1 week post-surgery and stabilized after
5 weeks. Mainly, RYGB produced enrichment of
Bacteroidetes, Verrucomicrobia, and Proteobacteria. In a set
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of provocative experiments, when the authors inoculated lean,
germ-free mice from RYGB donors, there was a significant
reduction in body weight, improved insulin sensitivity, and
decreased triglycerides [56–58]. Whether other widely used
antidiabetic drugs such as glucagon-like peptide 1 (GLP-1)
receptor agonists and GLP-1 degradation inhibitors [59–62]
act via altering microbiota awaits results of large trials.

Conclusions

The last few decades have shed light on the role of the gut
microbiome in linking inflammation and insulin resistance.
We are just at the tip of the iceberg of understanding host-
microbiome interactions and specific mechanisms of mod-
ulation. Methodologies to identify gut microbial composi-
tion and function need to be standardized to allow the per-
formance of meta-analyses, and facilitate the understand-
ing of the role of mechanistic pathways involving short-
chain fatty acids, propionate, butyrate, bile acids, lipopoly-
saccharide, TLRs, and NLRP inflammasomes in the path-
ogenesis of complications of obesity, metabolic syndrome,
and diabetes.
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