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Abstract
Purpose of review Insulin resistance (IR) is recognized to play an important role in the pathogenesis of dyslipidemia. This review
summarizes the complex interplay between IR and dyslipidemia in people with and without diabetes.
Recent findings IR impacts the metabolism of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipopro-
tein cholesterol (LDL-C), and very low-density lipoprotein cholesterol (VLDL-C) by several mechanisms. Trials with insulin
sensitizing therapies, including biguanides and thiazolidinediones, have provided inconsistent results on lipid lowering in people
with and without diabetes. In this review, we focus on the pathophysiological interplay between IR and dyslipidemia and
recapitulate lipid and lipoprotein data from insulin-sensitizing trials.
Summary Further research elucidating the reciprocal relationship between IR and dyslipidemia is needed to better target these
important risk factors for cardiovascular disease.
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Introduction

Insulin resistance (IR) is an important metabolic component of
obesity, metabolic syndrome, type 2 diabetes (T2DM), and
even type 1 (T1DM) and is associated with elevated risk for
micro- and macrovascular complications. Whereas hypergly-
cemia, hypertension, kidney disease, and dyslipidemia are
considered the traditional risk factors of cardiovascular

disease (CVD) in diabetes, there is an increasingly recognized
relationship between IR and CVD even in the absence of
diabetes [1–3].

Despite the substantial link between IR and CVD, the
mechanism underlying this relationship remains insufficiently
understood. IR is associated with changes in lipid and lipopro-
tein metabolism which result in atherogenic dyslipidemia and
has been proposed to contribute to an increased risk of CVD
[4]. Beyond changes in lipid and lipoprotein metabolism, IR is
also associated with changes in mean particle size for lipopro-
teins. For example, nuclear magnetic resonance analysis has
demonstrated larger mean particle size for VLDL and smaller
size for LDL and HDL in IR individuals as compared to their
insulin sensitive counterparts [5]. Despite abundant data
supporting strong relationships between IR and dyslipidemia,
it remains unclear whether IR leads to dyslipidemia or vice
versa. The sequence of this relationship is further complicated
by the notion that clinical and metabolic phenotypes of IR
may differ by diabetes status. For example, the clinical and
metabolic features of IR in people with T1DM are quite dif-
ferent from those characteristics in obese people with T2DM
and/or metabolic syndrome.

To better understand the relationship between IR and dys-
lipidemia, we must define the effects of IR on lipids, lipopro-
teins, and related enzymes, and vice versa, i.e., whether dys-
lipidemia impacts insulin sensitivity or vice versa.
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Pathogenesis of IR and Lipid Metabolism

VLDL and TG Metabolism

IR plays an important role in VLDL metabolism, including
effects to increase hepatic VLDL triglyceride (TG) synthesis
[6, 7] (Table 1). The increased VLDL TG synthesis is then
variably linked to increased hepatic apo B-100 production [6,
7, 26]. Collectively, this results in hypertriglyceridemia, vari-
able increases in particle number reflected by VLDL apo
B-100, and lower HDL-C concentrations [26]. IR is also asso-
ciated with increases in hepatic triglyceride lipase (HTGL)
which may result in accelerated clearance of HDL and reduc-
tions in HDL-C [27]. Furthermore, HTGL activity has recently
been proposed to be an important regulator of insulin clearance
[8]. A major factor in the mechanism of both IR and increased
VLDL-TG production is an accelerated rate of lipolysis of
stored TG-derived free fatty acids (FFA) from adipose tissue
with resultant increases in FFA flux to the liver [9]. Moreover,
although insulin is an important stimulator of adipose tissue
lipoprotein lipase (ATLPL) [10, 11••], a pathway that reflects
the provision of TG-rich lipoprotein (VLDL, chylomicron)-de-
rived FFA for adipose tissue uptake and storage, there is a shift
to the right in the insulin (ATLPL) dose response curves in IR
states [28]. Accordingly, IR may reduce VLDL breakdown and
consequently increase hypertriglyceridemia. Moreover, de-
creases in skeletal muscle LPL in T2DM may also contribute
to reductions in TG-rich lipoprotein TG clearance [29]. In fact,
the LPL gene has been proposed to be a candidate gene for IR
[30], and overexpression of LPL has been shown to increase
whole-body insulin sensitivity in animal models [31]. Low cir-
culating adiponectin concentrations, which may also contribute
to IR, are also associated with increased VLDL production and
HDL catabolism [32, 33]; however, these effects may occur
independent of IR [32–34].

The data reviewed in the preceding paragraph suggest that IR
impacts TGmetabolism in amajor way, but there are also studies
supporting the reciprocal, i.e., that lipid accumulation results in
IR. For example, there is evidence linking hepatic TG accumu-
lation with hepatic IR [35]. Moreover, increased plasma FFA are

associated with IR [36, 37] through intramyocellular and
intrahepatic accumulation of TG and other metabolites [38•].
TG is not considered a signaling lipid, and thus, it is thought to
be more likely that diacylglycerol, the synthetic precursor of TG,
ceramide, and other lipids are implicated in the pathogenesis of
hepatic IR through several mechanisms including reduced insu-
lin receptor tyrosine kinase activity, insulin receptor destabiliza-
tion, and reduced insulin-stimulated glycogen synthase activity
[39–42]. FFA may also mediate IR through pro-inflammatory
effects [12, 43].

Chylomicron Metabolism

Chylomicrons synthesized and released by the intestine allow
transport of diet-derived TG to other tissues in the postpran-
dial state. Whereas VLDL contains apo B-100, apo B-48, a
truncated form of the holoprotein, is the exclusive apo B in
chylomicrons [13, 14]. In the vasculature, chylomicrons are
hydrolyzed by LPL releasing their fatty acids to peripheral
cells. IR-related reduction in LPL activity also influences hy-
drolysis of chylomicron TGs [15]. This is particularly evident
if excessive hepatic VLDL saturates all available LPL binding
sites in the endothelium [16, 17]. Adults with T2DM who
demonstrate a reduced level of ATLPL activity have an exag-
gerated postprandial chylomicron response [18]. An addition-
al consideration is the physiological role of glucagon-like pep-
tides in chylomicron processing and postprandial chylomicron
excursion [19].

HDL Metabolism

Insulin has important effects on HDL metabolism, and low con-
centrations of HDL-C are commonly observed in IR states [17,
20]. IR is thought to contribute to lowHDL-C concentrations by
several mechanisms. First, IR is associated with increased ex-
change of TG from chylomicrons and VLDL for cholesterol
esters from HDL particles, thus reducing HDL-C, a process reg-
ulated by cholesteryl ester transfer protein (CETP) [21]. Second,
decreased LPL activity results in reduced hydrolysis of TG from
chylomicrons and VLDL which may further limit the

Table 1 Impact of IR on lipids and lipoproteins

Change in lipids in IR Proposed mechanisms Ref.

VLDL-C and TG ↑ VLDL-C and TG ↑ Hepatic VLDLTG synthesis
↑ HTGL
↓ LPL

[8–11]

Chylomicron ↑ Chylomicrons (especially postprandial) ↓ LPL [12–16]

HDL-C ↓ HDL-C ↑ Exchange of TG from chylomicrons and VLDL for
cholesterol esters from HDL particles

↑ HTGL
↓ LPL

[17–21]

LDL-C ↑ LDL-C ↓ LDL-receptor activity [22–25]
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contribution of TG-rich lipoprotein-derived HDL particles [17,
20]. Third, increased HTGL activity in IR states is associated
with enhanced HDL clearance and therefore lower concentra-
tions of HDL-C [17, 20]. Fourth, low concentrations of HDL-C
may also be due to reduced synthesis and secretion of apo A-I
from liver and intestine [22].

LDL Metabolism

Compared to VLDL metabolism, IR appears to have a more
modest effect on LDL metabolism. Insulin is known to upreg-
ulate LDL receptor activity [23], and administration of insulin
may increase the catabolism of LDL-C with a small reduction
in LDL-C, as observed in people with T1DM [24]. IR may
also play an important role in the metabolism of the athero-
genic small dense LDL particles [25], considered but unprov-
en to be independent biomarkers for atherosclerosis [25, 44].

IR and Dyslipidemia in Obesity, T2DM,
and Metabolic Syndrome

Dyslipidemia in obese individuals with T2DM and/or metabol-
ic syndrome is characterized by elevation of TG, reduction in
HDL-C, increases in apo B-100, non-HDL-C, and small dense
LDL and HDL. In the European Group for the Study of Insulin
Resistance (EGIR), insulin sensitivity quantified by
hyperinsulinemic-euglycemic clamp technique strongly corre-
lated with TG concentrations [45]. In particular, hypertriglyc-
eridemia and low HDL-C are characteristic of metabolic syn-
drome, and in fact, the ratio of TG/HDL-C has been used as a
surrogate of IR [46–48]. LowHDL-C and hypertriglyceridemia
are thought to occur in up to at least 1/3 of people with meta-
bolic syndrome [49]. It is also important to appreciate that early
dyslipidemia may not be evident in the fasting state. For exam-
ple, people with T2DM who have a normal fasting TG and
optimal glycemic control experience a greater postprandial rise
in VLDL, apo B-48, apo B-100, cholesterol, and TG concen-
trations compared with their non-diabetic peers [50].

Youth-onset T2DM is increasing in prevalence and inci-
dence worldwide and becoming a major public health burden
[51•]. Further, youth-onset T2DM is considered a more ag-
gressive disease than adult-onset T2DM with more rapid de-
terioration in β cell function and a greater lifetime risk for
comorbidities and complications independent of diabetes du-
ration [52, 53]. Furthermore, the recently completed Restoring
Insulin Secretion (RISE) Study demonstrated that youth with
impaired glucose tolerance or recently diagnosed T2DM have
lower insulin sensitivity and reduced insulin clearance com-
pared with adults [54]. Consistent with worse IR, dyslipid-
emia is also more prevalent in youth-onset T2DM. In fact,
the prevalence of dyslipidemia was reported to be 82% in
1340 people with youth-onset T2DM, which included 41%

with hypercholesterolemia, 53% hypertriglyceridemia, 59%
low HDL-C, and 65% high LDL-C [55].

Combined Hyperlipidemia

Combined hyperlipidemia is a disorder related to increases in
total cholesterol and TG, and generally associated with IR. In
the MESA study, the adjusted odds of combined hyperlipid-
emia was greater than 2-fold higher in participants with over-
weight and obesity compared with normal weight individuals
and greater than 4-fold higher in quartiles 2 through 4 of IR
compared to quartile 1 [56].Moreover, in 26 Japanese patients
with apo E2/E2 and familial dysbetalipoproteinemia, mean
total cholesterol was 256 mg/dl, TG 374 mg/dl, and remnant
cholesterol 49 mg/dL, respectively. Because patients with apo
E2/E2 who manifest the familial dysbetalipoproteinemia lipid
phenotype also have other etiologies of overproduction of
VLDL and TG, it is not surprising that 54% of this cohort
had T2DM, 66% metabolic syndrome, and 42% coronary
heart disease [57].

IR and Dyslipidemia in T1DM

Using gold standard techniques, we and others have clearly dem-
onstrated that IR is a prominent feature of T1DM in adolescents
[58••, 59] and adults [60••] with T1DM.This IR in T1DMoccurs
irrespective of obesity and metabolic syndrome features [58••,
59–63]. Moreover, IR confers higher risk for a more atherogenic
lipoprotein profile [64, 65] and micro- and macrovascular com-
plications in T1DM youth [66] and adults [67, 68].

The classic diabetic dyslipidemia characterized by elevated
TG, small dense LDL, and low HDL-C [69] is seldom ob-
served in modern cohorts of adults with T1DM. In fact, adults
with T1DMhave lipid values typically similar to or better than
their non-diabetic peers, with lower total cholesterol, LDL-C,
TG, and even higher levels of HDL-C [70]. However, data in
youth with T1DM demonstrate higher prevalence of dyslipid-
emia [71]. For example, the Diabetes-Patienten-
Verlaufsdokumentation (DPV) registry reported hypercholes-
terolemia in 29% of youth with T1DM [72, 73], and T1DM
Exchange data demonstrated elevated LDL-C in 28% of youth
with T1DM with suboptimal glycemic control [74]. The
higher prevalence of dyslipidemia in youth compared to adults
with T1DM is likely attributable to worse glycemic control,
higher rates of obesity [75], and lower insulin sensitivity in
adolescents [76, 77].

Despite having lipid concentrations comparable to adults
without diabetes, people with T1DM are afflicted by increased
risk of atherosclerotic CVD (ASCVD) [78–83], which is at
least partially attributed to an increased atherogenic lipid pro-
file, independent of LDL-C concentration [81, 84, 85].
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Possible mechanisms for the increased atherogenic lipid pro-
file of T1DM include differences in lipoprotein particle size,
lipoprotein subfraction cholesterol distribution, LDL-C oxida-
tion, COX2 expression, inflammatory response to lipids, and
increased transvascular and macrophage lipid transport, in ad-
dition to variably greater concentrations of lipoprotein(a)
(Lp(a)), apo B-100, and non-HDL-C in patients with T1DM
[65, 86–89].

While people with T1DM and T2DM are at greater risk of
ASCVDevents and death fromASCVDcompared to the general
population, it is important to acknowledge that the pathophysiol-
ogy underlying ASCVDmay differ in T1DM vs T2DM. In fact,
the atherosclerotic plaques in T1DMare thought to have different
features than those found in T2DM, including softer, less lipid-
laden, and more concentric plaques associated with greater cal-
cification and inflammation [90–95].

Insulin Sensitizers and Dyslipidemia

Insulin sensitizers are proposed to improve lipid and lipopro-
tein metabolism by several potential mechanisms including
inhibition of both intestinal and hepatic sterol regulatory
element-binding protein-1c (SREBP-1c), thereby decreasing
the synthesis of TG-rich lipoproteins [96–100]. While effects
of metformin on lipid metabolism are generally modest, mul-
tiple mechanisms may contribute; these include metformin-
mediated changes in the microbiome associated with reduced
lipid absorption [101, 102], inhibition of bile acid absorption
with resultant increases in LDL receptor-mediated LDL clear-
ance [103, 104], and reduced phosphorylation of 3-hydroxy-
3-methyl-glutaryl-coenzyme A reductase (HMGCR) via
AMPK activation [105, 106].

Insulin Sensitizers and Dyslipidemia in T1DM

There have been a few trials of insulin sensitizers in youth and
adults with T1DMwith lipid lowering as secondary outcomes.
The REducing with MetfOrmin Vascular Adverse Lesions in
T1DM (REMOVAL) study of adults with T1DM did not
show reduction in LDL-C following 3 years of metformin
therapy [107]. A randomized controlled trial in youth with
T1DM (8–18 years) by Anderson et al. found no significant
effect of 12 months of metformin therapy on LDL-C, HDL-C,
total cholesterol, TG, or adiponectin [108]. Another random-
ized control trial in overweight/obese youth with T1DM dem-
onstrated no change in LDL-C, HDL-C VLDL-C, TG, and
total cholesterol with 26 weeks of metformin therapy in youth
with T1DM [109•, 110]. Consistently with these data, we
recently demonstrated in the Effects of MEtformin on
CardiovasculaR Function in AdoLescents with Type 1
Diabetes (EMERALD) Study that 3 months of metformin

therapy did not change LDL-C, HDL-C, TG, and total cho-
lesterol in youth with T1DM [111].

Insulin Sensitizers and Dyslipidemia in T2DM

The Treatment Options for Type 2 Diabetes in Adolescents
and Youth (TODAY) study, a multicenter randomized con-
trolled trial in youth-onset T2DM, did not report significant
changes in total cholesterol, LDL-C, HDL-C, or TG across
three treatment arms: metformin, metformin + rosiglitazone
or metformin, and lifestyle [112••]. In contrast, in a more
recent clinical trial in newly diagnosed adults with T2DM,
participants were classified into two groups following
3 months of metformin therapy: responders (HbA1c reduction
≥ 1% from baseline) and non-responders. All participants re-
ceived atorvastatin, gemfibrozil or atorvastatin, and gemfibro-
zil daily. Responders experienced a greater decrease in LDL-C
toHDL-C ratio and total cholesterol to HDL-C ratio compared
to non-responders, which may suggest that response to met-
formin therapy may influence therapeutic outcomes of atorva-
statin on atherogenic lipid markers [113]. Finally, a metabolic
analysis in the population-based KORA cohort demonstrated
that metformin therapy was associated with lower concentra-
tions of three acyl-alkyl PCs and LDL-C, likely due to AMPK
activation [114].

Conclusion

IR adversely affects lipid and lipoprotein metabolism and is
strongly associated with dyslipidemia. The mechanisms by
which IR influences lipid metabolism are complex and may
depend on the disease state associated with the IR, i.e., obesi-
ty, metabolic syndrome, T2DM, and T1DM. The relationship
between IR and dyslipidemia is likely reciprocal and the di-
rection of the causality remains incompletely defined. Data
suggest that there are different phenotypes of IR in T1DM
vs. T2DM, and an understanding of how these metabolic phe-
notypes influence lipid metabolism is needed to better target
diabetic dyslipidemia and prevent ASCVD. Accordingly,
carefully designed mechanistic human studies are needed to
advance our understanding of how different phenotypes of IR
impact dyslipidemia and ASCVD risk.
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