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Abstract
Purpose of Review Herein, we review the role of FXR and TGR5 in the regulation of hepatic bile acid metabolism, with a focus
on how our understanding of bile acid metabolic regulation by these receptors has evolved in recent years and how this improved
understanding may facilitate targeting bile acids for type 2 diabetes treatment.
Recent Findings Bile acid profile is a key regulator of metabolic homeostasis. Inhibition of expression of the enzyme that is
required for cholic acid synthesis and thus determines bile acid profile, Cyp8b1, may be an effective target for type 2 diabetes
treatment. FXR and, more recently, TGR5 have been shown to regulate bile acid metabolism and Cyp8b1 expression and,
therefore, may provide a mechanism with which to target bile acid profile for type 2 diabetes treatment.
Summary Inhibition of Cyp8b1 expression is a promising therapeutic modality for type 2 diabetes; however, further work is
needed to fully understand the pathways regulating Cyp8b1 expression.
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Introduction

Bile acids are amphipathic steroid molecules synthesized in
the liver from cholesterol. Bile acids were originally thought
to simply aid in the digestion and absorption of dietary lipid in
the small intestine [1]; however, work over the past several
decades demonstrates that bile acid metabolism and signaling
are key contributors to metabolic regulation and thus are
promising therapeutic targets for metabolic diseases [2]. This
review will summarize our current understanding of the role
of bile acid metabolism and signaling in glucose regulation
and will identify the knowledge gaps that need to be addressed
to enable successful targeting of bile acid signaling and me-
tabolism for diabetes treatment.

Changes in circulating bile acid profile have been implicat-
ed in the pathogenesis of insulin resistance and type 2 diabetes
(T2D) [3]. Different bile acid subtypes exhibit varying degrees
of hydrophobicity which is determined by factors such as state
of ionization and by the number, position, and orientation of
hydroxyl groups [4]. The relative amounts of hydrophobic
versus hydrophilic bile acids determine the overall hydropho-
bicity of the bile acid pool [4]. T2D is associated with an
increase in the hydrophobicity of the circulating bile acid pool
in humans [3]. Consistent with this, hydrophilic bile acid sub-
types, such as tauroursodeoxycholic acid (TUDCA), have
been shown to protect against inflammation and improve in-
sulin sensitivity in rodent models and patients with T2D [5–7].
In contrast, hydrophobic bile acid subtypes, such as
deoxycholic acid (DCA), have been shown to promote inflam-
mation and endoplasmic reticulum stress that are associated
with impaired glucose regulation [8–10]. These data suggest
that altering bile acid profiles may be an effective approach for
the treatment of T2D.

Sterol 12-α-hydroxylase (CYP8B1) is a bile acid synthetic
enzyme expressed primarily in hepatocytes [1]. CYP8B1 is
required for the synthesis of 12-α-hydroxylated bile acids and
thereby determines systemic bile acid profiles [1]. Genetic
ablation of Cyp8b1 decreases bile acid profile hydrophobicity
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and protects against several metabolic diseases, including obe-
sity and T2D, in mice [11–15]. Furthermore, genetic ablation
of Cyp8b1 in ApoE−/− mice reduces development of athero-
sclerotic plaque [14]. Moreover, diabetic cholesterol-fed
Cyp8b1−/− mice are protected against hypercholesterolemia
and cholelithiasis [15]. Finally, Cyp8b1 null mice are resistant
to fatty liver development [13]. These findings suggest that
Cyp8b1 may be an effective target for the treatment of T2D
and many of its associated comorbidities.

Several different bile acid receptors have been implicated
in metabolic regulation, including the nuclear receptor
farnesoid X receptor (FXR) and the transmembrane G
protein-coupled receptor, TGR5. Activation of these receptors
regulates bile acid, cholesterol, lipid, and glucose metabolism
and plays a role in various pathological processes, including
inflammation, fibrosis, and carcinogenesis. While the mecha-
nisms by which these receptors regulate metabolic homeosta-
sis are incompletely understood, the impact of FXR and
TGR5 is likely mediated, at least in part, via bile acid metab-
olism [16•, 17•, 18].

Key Steps in Bile Acid Metabolism

Primary bile acids are synthesized in the liver and then con-
verted into secondary bile acids through interactions with the
gut microbiota. The biosynthesis of primary bile acids in the
liver involves a series of enzymatic reactions in which the
cholesterol ring is modified; the side chain is shortened and
conjugated [19] with either glycine or taurine [20]. Bile
acids are stored in the gallbladder and secreted into the gas-
trointestinal tract in response to feeding. Primary bile acids
are deconjugated and dehydroxylated in the distal intestinal
lumen by gut microbes to generate the secondary bile acids,
deoxycholic acid (DCA) and lithocholic acid (LCA) [21].
The most abundant primary bile acids in humans are cholic
acid (CA) and chenodeoxycholic acid (CDCA). In rodents,
the majority of CDCA is converted to muricholic acid
(MCA) [22]. While a primary bile acid subtype in bears
[23], UDCA is derived from CDCA in humans and rodents
through gut microbial modifications [24, 25]. Detailed de-
scriptions of the enzymes and intermediates involved in bile
acid metabolism can be found in several excellent review
articles [1, 19]. We provide a summary of this complex
process below.

Bile acid synthesis can occur through two pathways: the
classic (neutral) and alternative (acidic) pathways. The classic
pathway, which occurs in the liver, accounts for the majority
of bile acid synthesis [26]. Cholesterol 7-α-hydroxylase
(CYP7A1) is the rate-limiting enzyme in this pathway, while
CYP8B1 determines bile acid profile [27]. In the alternative
pathway, cholesterol is oxidized by sterol-27-hydroxylase
(CYP27A1), the rate-limiting enzyme in this pathway,

followed by 7-α-hydroxylation of the oxysterol intermediates
by oxysterol 7-α-hydroxylase (CYP7B1) [28, 29]. CYP27A1
and CYP7B1 are expressed in the liver and in various extra-
hepatic sites including vascular endothelium and macro-
phages [30–34]. Bile acid synthesis is tightly controlled to
ensure the maintenance of a healthy total bile acid pool, with
approximately 95% of bile acids being recycled. FXR is con-
sidered a primary regulator of this homeostatic process; how-
ever, research increasingly supports a role for TGR5 as well.

Regulation of Glucose Homeostasis
and Hepatic Bile Acid Metabolism by FXR

FXR is a key regulator of hepatic bile acid metabolism [35]
that plays a role in a various disease processes, including
inflammatory bowel disease, colorectal cancer, and T2D
[36–38]. FXR, which is highly expressed in the liver and
gastrointestinal tract, can be activated by both free and conju-
gated bile acids, with CDCA having the highest affinity. The
order of potency of bile acid subtypes for FXR is
CDCA>LCA=DCA>CA [39, 40]. However, hydrophilic bile
acids, such as UDCA and MCA, cannot activate FXR [41],
and tauro-conjugated β- and α-MCA may actually serve as
naturally occurring FXR antagonists [42–44]. More recent
work in humans treated with UDCA for 3 weeks prior to
bariatric surgery suggested that UDCA might also exert an-
tagonistic effects on FXR [45].

FXR is a key regulator of glucose and lipid metabolism
[36, 46–51]. FXR improves glycemic control by stimulating
insulin secretion from pancreatic β-cells [52], enhancing adi-
pocyte insulin sensitivity [46] and inhibiting hepatic gluco-
neogenesis (Fig. 1) [53]. However, genetic ablation of FXR
and FXR antagonism improve glucose regulation and liver
lipid deposition [54, 55]. Furthermore, while Trabelsi et al.
report that FXR inhibits secretion of the incretin hormone,
glucagon-like peptide-1 (GLP-1), from intestinal L cells
[56], Pathak et al. report that L cell FXR signaling increases
GLP-1 secretion [17•]. Together, these conflicting reports on
the role of FXR in glucose regulation suggest that further
work is needed to fully understand the glucoregulatory func-
tion of FXR.

Bile acid-mediated activation of FXR suppresses bile acid
synthesis in a homeostatic feedback loop. Specifically, hepa-
tocyte FXR activation upregulates small heterodimer partner
(SHP), which inhibits the transcription factors hepatic nuclear
factor 4α (HNF4α) and liver receptor homolog-1 (LRH-1),
thus reducing their binding to the bile acid response element in
the Cyp7a1 and Cyp8b1 gene promoters and inhibiting tran-
scription of these genes [57–66]. Activation of FXR in the
intestine induces fibroblast growth factor 15 (FGF15 or hu-
man orthologue FGF19) secretion, ultimately activating hepa-
tocyte FGF receptor 4 (FGFR4) and mitogen-activated protein
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kinase (MAPK)/extracellular receptor kinase 1/2 (ERK1/2)
[67–70]. Activation of FXR downregulates Cyp8b1 expres-
sion by upregulating SHP and FGF15/19 levels [71, 72].
However, work in tissue-specific FXR knockout mice dem-
onstrates that treatment with an FXR agonist in mice with loss
of intestinal FXR, but intact hepatocyte FXR, results in de-
creased Cyp8b1 expression, but not Cyp7a1 expression [69,
73•]. In contrast, treatment with an FXR agonist in mice with
loss of hepatic FXR, but intact intestinal FXR, results in
downregulation of both Cyp8b1 and Cyp7a1 expressions
[69, 73•]. These data suggest that hepatic FXR signaling is
important for suppressing Cyp8b1 expression, while intestinal
FXR signaling is critical for downregulating bothCyp7a1 and
Cyp8b1 expressions [69, 73•].

While FXR signaling through SHP and FGF15/19 is a
critical contributor to FXR-mediated regulation of bile acid
metabolism, several recent studies reveal new FXR-
mediated pathways (Fig. 2, dashed lines), suggesting that
there is still much to learn about FXR regulation of bile acid
metabolism. For example, MAFG has been identified as an
FXR target gene that transcriptionally represses Cyp8b1 ex-
pression in mice [74].While FXR is thought to primarily exert
its effects on Cyp7a1 and Cyp8b1 expressions through tran-
scriptional pathways, recent studies have identified important
FXR-dependent post-transcriptional regulators. In particular,
Tarling et al. reported that FXR activation upregulates the
expression of the RNA-binding protein, ZFP36L1, to rapidly
degrade Cyp7a1 mRNA [75•]. ZFP36L1-dependent regula-
tion of bile acid metabolism may also contribute to obesity,
as hepatocyte-specific Zfg36l1−/− mice are resistant to diet-
induced obesity [75•]. Moreover, microRNAs (miRs), such
as miR-144 [76] and miR-122a [77], may be downstream

mediators of FXR action. For example, Li et al. found that
miR-33a is induced in a mouse model of elevated hepatic bile
acid synthesis (mice overexpressing Cyp7a1) to act as a ho-
meostatic regulator inhibiting Cyp7a1 and Cyp8b1 mRNA
expressions in response to elevated hepatic bile acid synthesis
[78]. Moreover, FXR activation with GW4064 induces ex-
pression of miR-122a [77], a liver-specific microRNA. MiR-
122a overexpression decreases Cyp7a1, but not Cyp8b1,
mRNA levels [77]. The identification of microRNAs that reg-
ulate bile acid metabolism provides a potentially viable ap-
proach to target bile acid metabolism for the treatment of T2D,
as microRNAs have already been successfully applied to the
treatment of liver disease in humans [79, 80]. Overall, under-
standing the post-transcriptional pathways involved in regula-
tion of bile acid metabolism will be critical in rationale design
of bile acid-based pharmaceutical strategies for treating meta-
bolic disease [81–83].

FXR shows promise as a target for the treatment of meta-
bolic and inflammatory disorders including T2D, primary bil-
iary cirrhosis, nonalcoholic fatty liver disease (NAFLD), and
nonalcoholic steatohepatitis [84–88]. In fact, an FXR agonist,
obeticholic acid (Ocaliva©), has been approved by the Food
and Drug Administration (FDA) to treat the rare liver disease,
primary biliary cholangitis. However, FXR activation sup-
presses both Cyp7a1 and Cyp8b1 expressions in tandem,
which can have detrimental effects on lipid metabolism as
Cyp7a1 is the rate-limiting enzyme in bile acid synthesis.
Specifically, inhibition of Cyp7a1 expression decreases the
conversion of cholesterol to bile acids, resulting in lipid dys-
regulation [89, 90]. Therefore, FXR signaling has been report-
ed to produce off-target effects, such as dyslipidemia [54, 91,
92]. For example, mice with targeted deletion of Cyp7a1

Fig. 1 Glucoregulatory effects of FXR and TGR5. FXR-mediated
glucoregulatory effects in various tissues are illustrated with purple
arrows and TGR5-mediated pathways are illustrated with green arrows.

Farnesoid X receptor (FXR), transmembrane G-coupled protein receptor
(TGR5), glucagon-like peptide-1 (GLP-1)
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develop hypercholesterolemia and have an increased risk of
developing atherosclerosis [89]. A marked decrease in bile
acid synthesis and decreased Cyp7a1 expression are also as-
sociated with dyslipidemia and cholelithiasis [93, 94]. Thus,
an improved understanding of the selective regulation of
Cyp8b1 expression may lead to the development of bile
acid-based therapeutics with fewer adverse side effects.

Regulation of Glucose Homeostasis
and Hepatic Bile Acid Metabolism by TGR5

TGR5 is a transmembrane G protein-coupled receptor [95]
that is ubiquitously expressed throughout the body, including
endocrine glands, adipocytes, muscle, liver, and the gastroin-
testinal tract [96–98]. In the liver, TGR5 is present on liver
sinusoidal endothelial cells [99], cholangiocytes [100], biliary
epithelial cells [101], and Kupffer cells [102]. It has been
speculated that TGR5 is not expressed on hepatocytes; how-
ever, Yang et al. reported that TGR5 is expressed in a human
hepatocellular carcinoma cell line [103], and recent work re-
veals that TGR5 is present in canine hepatocytes [104].

The binding affinity of various bile acids to TGR5 differs as
compared to FXR [95, 96]. Unlike FXR, hydrophobic bile
acids have the highest affinity for TGR5, with the following

rank order of potency: LCA>DCA>CDC>CA>UDCA. TGR5
activation by bile acids and synthetic agonists results in activa-
tion of the adenylyl cyclase, which in turn activates protein
kinase A (PKA) signaling pathways [96]. Moreover, cell-
specific signaling pathways are also activated [99, 102, 105].

Increased TGR5 signaling improves glucose regulation
through several tissue-specific effects [106, 107]. TGR5 sig-
naling in gastrointestinal enteroendocrine L cells enhances
secretion of GLP-1 [107]. Recent work reveals that L cell
TGR5 is located on the basolateral L cell membrane [108,
109]. TGR5 signaling in immune cells decreases inflammato-
ry cytokine secretion and TGR5 signaling on adipocytes in-
creases energy expenditure by promoting the beiging of white
adipose tissue in mice [110–112]. Therefore, TGR5 may exert
its metabolic effects, in part, by decreasing inflammation and
promoting mitochondrial biogenesis [96, 113, 114]. However,
TGR5 activation leads to unwanted side effects, including
pruritus [115, 116], cholesterol gallstone formation [117],
and cholestasis [118, 119]. Together, these data suggest that
identifying and targeting downstream effectors of TGR5 may
be a more effective approach with less risk for adverse side
effects than directly targeting TGR5.

Several studies point to an important role for TGR5 in bile
acid metabolism and the maintenance of a healthy bile acid
profile [17•, 120]. Indeed, Pean et al. reported that genetic

Fig. 2 Established and emerging
pathways involved in the
regulation of Cyp7a1 andCyp8b1
expressions by TGR5 and FXR.
Established pathways are
illustrated with solid arrows, and
newly identified regulators of
Cyp7a1 and Cyp8b1 expression
are illustrated with dashed arrows.
Regulators of Cyp7a1 expression
are illustrated with blue arrows
and regulators of Cyp8b1
expression are illustrated with red
arrows. Farnesoid X receptor
(FXR), transmembrane G-
coupled protein receptor (TGR5),
Cholesterol 7-α hydroxylase
(Cyp7a1), sterol 12-alpha-
hydroxylase (Cyp8b1), sterol 27
hydroxylase (Cyp27a1),
oxysterol 7-α hydroxylase
(Cyp7b1), cholic acid (CA),
chenodeoxycholic acid (CDCA),
deoxycholic acid (DCA),
lithocholic acid (LCA), fibroblast
growth factor 19 (FGF19), FGF
receptor 4 (FGFR4), small
heterodimer partner (SHP)
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ablation of TGR5 leads to increased hydrophobicity of the
biliary, circulating, and hepatic bile acid pools and revealed
a protective effect of TGR5 during liver regeneration in mice
[18]. Donepudi et al. report similar shifts in the gallbladder
bile acid profile in Tgr5−/− compared to Tgr5+/+ mice in free-
fed and fasted conditions [120], in parallel with decreased
Cyp7b1 and Cyp27a1 mRNA levels. Thus, TGR5 can upreg-
ulate the alternative pathway of bile acid synthesis, which
likely contributes to TGR5-dependent decreases in bile acid
profile hydrophobicity [120]. Pathak et al. reported that TGR5
is a downstream target of FXR that is required for the effect of
L cell FXR signaling to promote GLP-1 secretion [17•].
Specifically, this study identified an FXR response element
on the human TGR5 gene promoter, which is highly con-
served in the mouse Tgr5 gene [17•]. Thus, interactions be-
tween TGR5 and FXR may have implications for hepatic bile
acid metabolism; however, further work is needed to compre-
hensively define the underlying molecular mechanisms.

Role of Bile Acids in Glucoregulatory
Improvement After Bariatric Surgery

Bariatric surgery, including Roux-en-Y gastric bypass
(RYGB) and vertical sleeve gastrectomy (VSG), is the most
effective long-term treatment for obesity and results in high
rates of T2D remission, even prior to weight loss [121, 122].
One well-established mechanism by which bariatric surgery
improves glucose regulation is by increasing bile acid signal-
ing [16•, 123, 124]. A reoccurring finding between vastly
different bariatric procedures is increased circulating bile acid
concentrations, in both humans and rodent models [16•,
124–130]. Therefore, bariatric surgery provides a useful mod-
el system with which to understand bile acid metabolism and
how it may be targeted for T2D treatment.

The mechanisms by which bariatric surgery increases cir-
culating bile acid concentrations remain incompletely defined,
but appear to be dependent on anatomic re-arrangement of the
gastrointestinal tract; Roux-en-Y gastric bypass, but not lapa-
roscopic adjustable gastric banding, increases circulating bile
acid concentrations in humans [131]. Furthermore, diverting
bile to the distal gut increases circulating bile acid concentra-
tions and improves glucose regulation, suggesting an impor-
tant role for the distal gastrointestinal tract [132, 133]. Finally,
studies in rodents have suggested that increased bile acid re-
absorption may contribute to increased circulating bile acid
concentrations after bariatric surgery. One study reports an
increase in ileal apical sodium–bile acid transporter (ASBT)
expression after VSG in mice [134]. Other studies report gut
hypertrophy after various types of bariatric surgery in rodents,
which likely enhances gut absorptive capacity [134–136].
However, further work is needed to fully define the

mechanisms responsible for increased circulating bile acid
concentrations after bariatric surgery.

FXR and TGR5 Contribute to Improved
Glucose Regulation After Bariatric Surgery

Several studies in whole body TGR5 and FXR knockout
mouse models demonstrate that increased bile acid receptor
signaling contributes to the metabolic benefits of bariatric sur-
gery [16•, 123, 124]. Using a whole body FXR knockout
mouse model, Ryan et al. reported that FXR contributes to
body weight loss and improved glucose regulation after
VSG [124]. More recently, TGR5 has been shown to contrib-
ute to improved glucose regulation after VSG in mice [16•,
123]. TGR5-dependent improvement in glycemic control af-
ter VSG was associated with a TGR5-dependent decrease in
the hydrophobicity of the circulating bile acid pool. This ben-
eficial bile acid profile shift was associated with a TGR5-
dependent reduction in hepatic CYP8B1 protein expression,
with no effect on hepatic CYP7A1 expression [16•]. Ding
et al. confirmed that TGR5 contributes to the glucoregulatory
benefits of VSG, in part due to increased GLP-1 secretion after
VSG [123]. By contrast, McGavigan et al. did not observe a
TGR5-dependent increase in GLP-1 secretion after VSG.
These discrepancies could be a result of differences in surgical
model, strain, and/or the timing of experiments. Notably, all of
the published work assessing the role of TGR5 and FXR in the
benefits of bariatric surgery has been performed in whole
body knockout mouse models which are prone to develop-
ment of compensatory pathways. Therefore, further work is
needed in inducible and tissue-specific knockout models to
gain a deeper understanding of the mechanisms by which
TGR5 and FXR contribute to improved glucose regulation
after bariatric surgery.

In contrast, the role of TGR5 in Roux-en-Y gastric bypass-
mediated improvements in glucose regulation is unclear, with
one study reporting that TGR5 does not contribute to weight
loss or improved glucose regulation after Roux-en-Y gastric
bypass in mice [137]. This suggests that VSG and Roux-en-Y
gastric bypass activate different signaling pathways to exert
their beneficial metabolic effects. However, Zhai et al. ob-
served increased ileal TGR5 expression after Roux-en-Y gas-
tric bypass in mice and present data to suggest that TGR5
contributes to elevated GLP-1 production after Roux-en-Y
gastric bypass, although this was not directly assessed
in vivo [138].

Overall, bariatric surgery increases bile acid concentrations
to increase TGR5 and FXR signaling and improve glucose
regulation. However, the exact molecular mechanisms and
tissue site(s) of action by which enhanced TGR5 and FXR
signaling improve glucose regulation after bariatric surgery
are unknown.
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Conclusion

Targeting bile acid profile by inhibiting Cyp8b1 expression is
a promising therapeutic modality for T2D. The role of FXR in
the regulation of bile acid synthesis and Cyp8b1 expression is
well documented; however, recent work suggests that TGR5
may also regulate Cyp8b1 expression. Furthermore, recent
studies reveal nontraditional pathways in the regulation of bile
acid metabolism, including key post-transcriptional mecha-
nisms. Overall, our understanding of the regulation of bile
acid metabolism by FXR and TGR5 is rapidly evolving; how-
ever, there remain significant gaps in our understanding of
these processes. In particular, it will be important to define
the pathway(s) by which Cyp8b1 expression is selectively
regulated to enable pharmaceutical targeting of this promising
therapeutic target.
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