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Abstract
Purpose of Review In the last decademany studies have suggested an association between the altered gut microbiota and multiple
systemic diseases including diabetes. In this review, we will discuss potential pathophysiological mechanisms, the latest findings
regarding the mechanisms linking gut dysbiosis and type 2 diabetes (T2D), and the results obtained with experimental modu-
lation of microbiota.
Recent Findings In T2D, gut dysbiosis contributes to onset and maintenance of insulin resistance. Different strategies that reduce
dysbiosis can improve glycemic control.
Summary Evidence in animals and humans reveals differences between the gut microbial composition in healthy individ-
uals and those with T2D. Changes in the intestinal ecosystem could cause inflammation, alter intestinal permeability, and
modulate metabolism of bile acids, short-chain fatty acids and metabolites that act synergistically on metabolic regulation
systems contributing to insulin resistance. Interventions that restore equilibrium in the gut appear to have beneficial effects
and improve glycemic control. Future research should examine in detail and in larger studies other possible pathophys-
iological mechanisms to identify specific pathways modulated by microbiota modulation and identify new potential
therapeutic targets.
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Introduction

Trillions of microorganisms reside in the human gut in a
complex ecosystem which operates as a “hidden organ”
[1] . This microbial community and its genome
(microbiome) include not only bacteria but also proto-
zoans, viruses, and archaea collect ively termed
microbiota.

Gut microbiota exerts diverse physiological features
such as modulation of immune and inflammatory response;
regulation of neuronal signaling; regulation of integrity
and mobility of the gut barrier; biosynthesis of vitamins,
steroid hormones, and neurotransmitters; and metabolism
of branched-chain aromatic amino acids, bile salts, and
drugs [2].

In the last decades, improvement of analytical methods
allowed researchers to show that alteration of microbiota is
associated with many human diseases: gastrointestinal dis-
eases [3], cancer [4], metabolic disease [5, 6], neurodegener-
ative disorders [7], cardiovascular [8], renal [9], and lung dis-
eases [10]. Although experimental data in mice support the
hypothesis of a possible causal role in the etiology of these
diseases, human data that favor causality are often insufficient
or conflicting.

T2D is thought to arise at the intersection of genetic factors,
sedentary lifestyle, poor diet, excessive visceral obesity, and
other environmental exposures throughout life [11]. While the
precise causes of disease are not completely clear, increasing
evidence supports a role for the intestinal microbiota in devel-
opment of T2DM [12••]; however, the pathophysiological
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mechanisms that link the microbiota to T2D have not been
well elucidated.

In this review, we provide an overview of the most recent
findings, with the aim to understand more about pathophysi-
ology and identify new potential therapeutic approaches.

Gut Microbiota: a Dynamic Ecosystem

Analytical Methods

Since it is very difficult to identify intestinal microorganisms
through culture-based methods, alternative techniques allow a
much more comprehensive mapping of bacteria. For the study
of microbial DNA from fecal samples, considered representa-
tive of the distal gut microbiota composition, culture-
independent methods have benefited from evolution of next-
generation sequencing technology, such as 16S ribosomal
RNA gene amplicon sequencing and shotgun metagenomics
sequencing [13].

The 16S rRNA gene sequencing provides information on
the composition of microbial communities. With this method,
polymerase chain reaction (PCR) is used to amplify a specific
region in the 16S gene; this product is subsequently se-
quenced. By contrast, shotgun metagenomics sequencing is
able to analyze the entire genomic content of a community,
by using direct sequencing of microbial RNA without prior
amplification. A subsequent taxonomic assignment requires
assembly tools and updated databases [14]. In recent years,
both methods have improved substantially, with increased
throughput and reduced costs. However, specific bioinformat-
ics tools and up-to-date databases continue to evolve.
Although eachmethod has its own advantages and limitations,
new data suggest that shotgun sequencing provides a higher
resolution representation of the microbial composition and
allows better characterization of complexity as compared to
16S rRNA amplicon sequencing [15]. Further studies compar-
ing the two methods are required.

Microbial Changes in Humans with T2D

Although the human gut microbiota composition differs in
different parts of intestinal tract, six main phyla are dominant:
Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria,
Verucomicrobia, and Proteobacteria [16•]. Over 90% of the
1000 prevailing bacterial species belong to the Firmicutes and
Bacteroidetes phyla. Recent reports show that interindividual
variation in the composition of communities is very high,
potentially related to age, diet, illness, genetic and environ-
mental factors, and medication [17••, 18••].

The first study describing a substantial difference in the
composition of gut microbiota between individuals with
T2D and healthy individuals dates back to 2010 [19]. In this

small study from Denmark, the authors analyzed the fecal
bacterial composition of 18 men without and with T2D using
16S rRNA amplicon sequencing. T2D was associated with
changes in the intestinal microbiota composition (dysbiosis)
at a phylum level, with a reduction in the proportion of
Firmicutes and a slight increase in Bacteroidetes and
Proteobacteria. However, these results were not confirmed
in two large metagenome-wide association studies conducted
in China and Europe [20, 21]; moderate dysbiosis was ob-
served in T2D but the differential microbial composition var-
ied between two studies. This could be due to ethnic and
dietary heterogeneity in the populations studied, differences
in antidiabetic drugs or other medications, or disease status, as
well as different sequencing techniques used. Nonetheless,
both the Chinese and European studies found butyrate-
p roduc ing bac te r i a (Rosebur ia in tes t ina l i s and
Faecalibacterium prausnitzii) concentrations lower in T2D
while certain Lactobacillus species and some opportunistic
pathogens, such as Bacteroides caccae, Clostridium
hathewayi, Clostridium ramosum, Clostridium symbiosum,
and E. coli, were higher in T2D. Increased expression of the
microbial genes involved in oxidative stress and the pro-
inflammatory state typical of T2D was also observed in the
two larger studies, but not the smaller Danish study [22].

Using 16S rRNA-based high-throughput sequencing anal-
ysis, Zhang et al. [23] found decreased abundance of
Akkermansia muciniphila inindividuals with prediabetes and
newly diagnosed T2D suggesting that low concentrations of
this bacteria in the gut could be a biomarker for glucose intol-
erance [24]. A. muciniphila is a mucin-degrading bacterium
that colonizes the intestinal mucous layer and constitutes 3–
5% of the human intestinal microbial composition.
Interestingly, daily treatment with viable A. muciniphila in
mice with dietary obesity yielded decreased metabolic
endotoxemia, insulin resistance, adipose tissue macrophage
infiltration, and improvement in fasting glycemia [25].

Another study of Danish individuals with insulin resistance
demonstrated increases in serum levels of branched-chain
amino acid (BCAA), potentially linked to both increased pro-
duction by intestinal microorganisms (Prevotellacopri and
Bacteroides vulgatus) and reduced transport within the bacte-
rial cell [26]. This is intriguing, as increased plasma BCAA
are associated with a greater future probability of developing
insulin resistance and T2D in both children and adults
[27, 28]. Thus, these data support the hypothesis that the in-
testinal microbiota could play a fundamental role in systemic
metabolism and insulin resistance.

Stool analysis of 50 individuals with T2D from Japan
showed both increased total counts of Lactobacillus, together
with a reduction of Clostridium coccoides and Prevotellaas
compared with the control group. Intestinal bacteria were also
found in the blood in patients with T2D, suggesting a translo-
cation from the intestine to the bloodstream [29].
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Recent studies based on the analysis of 16S rRNA gene
using next-generation sequencing (Illumina MiSeq) found
that Firmicutes/Bacteroidetes ratio in patients with T2D was
significantly higher than in controls [11, 30]. These results are
in contrast with those obtained in Danish, Chinese, and
European studies in which patients with T2D had a lower
Firmicutes/Bacteroidetes ratio compared to controls.
Egshatyan et al. [30] identifiedBlautia as the most represented
genus; its representation was higher in patients with T2D and
prediabetes than in subjects with normal glucose tolerance. It
is noteworthy that some Clostridia and Blautia coccoides can
stimulate the secretion of TNFα and inflammatory cytokines
to a greater extent than LPS [31].

In summary, the results to date suggest that patients with
T2D show evidence of gut dysbiosis. Discrepancies between
studies are numerous, probably due to various confounding
factors such as different study populations, different sequenc-
ing techniques used, and differences in dietary intake and
medication use. Large studies that take into account these
different variables are necessary. A cross-sectional and obser-
vational prospective study in patients with T2D is ongoing
(ClinicalTrials.gov ID: NCT03204799).

Bacteria, Metabolities, and Host Interactions

In the last 10 years, low-grade inflammation has been hypoth-
esized to be the link between microbiome and T2D risk, via
mechanisms related to bacterial toxins, short-chain fatty acids,
bile acids and BCAA metabolism (Fig. 1).

Low-Grade Inflammation and Bacterial Toxins

Animal and human studies suggested that a high-fat diet
(HFD) can change the intestinal ecosystem and increase the
circulating levels of proinflammatory mediators. Caniet al.
[32] defined “metabolic endotoxemia” as a condition charac-
terized by a two- to threefold increase in circulating lipopoly-
saccharide (LPS) levels; this may result in low-grade systemic
inflammation and contribute to insulin resistance. LPS is a
component of the gram-negative bacterial wall which can ac-
tivate local immune response via high-affinity binding to spe-
cific receptors (e.g., Toll-like receptors (TLRs), the NLRP3
inflammasome and NOD like receptors (NLRs)) expressed
at high levels on the surface of macrophages and dendritic
cells [33]. In blood and tissues, LPS also activates the
TLR4/MyD88/NF-κB pathway, triggering an inflammatory
response through release of pro-inflammatory molecules
TNF-α, IL-1, IL-6, and iNOS. With activation of this inflam-
matory cascade, activated serine kinases (JNK and IKK) can
induce IRS (insulin receptor substrate) serine phosphoryla-
tion, which inhibits insulin signaling, resulting in cellular in-
sulin resistance (IR) [34]. In human muscle cell lines TLR4

inhibitors suppressed inflammation and decreased LPS-
induced insulin resistance [35].

N-acetyl cysteine (NAC) is a potent antioxidant that exerts
anti-inflammatory activity via inhibition of NF-kB, while re-
ducing glucose intolerance and insulin resistance in T2D and
inhibiting the growth and adhesion of some pathogens [36].
Zheng et al. recently evaluated the effects of NAC (1 mg/mL,
in drinking water) on the microbiota of HFD-fed mice. After
5 months of treatment, NAC improved glucose tolerance and
reduced fasting glucose, body weight, and plasma endotoxin
levels, while increasing the prevalence of beneficial bacteria
such as Akkermansia, Lactobacillus, and Bifidobacterium
[37•]. Since systemic levels of NAC were not measured, the
precise site of action is uncertain.

Patients with T2D have higher blood levels of LPS (a com-
ponent of the gram-negative bacterial wall) compared to
healthy subjects. This may seem like a paradox, because in
the microbiota of patients with T2D, there is a decrease in the
percentage of gram-negative and increase in gram-positive
Firmicutes. The explanation is that high endotoxemia is di-
rectly related to increase of intestinal permeability [38••].
Increases in LPS may even precede the development of
T2D; indeed, the CORDIOPREV study [39••] demonstrated
that postprandial LPS levels were higher in individuals who
developed T2D over a median of 60 months, as compared
with those who remained free of T2D during a median
follow-up of 60 months.

Intestinal permeability is usually regulated by tight and
adherence junction proteins between intestinal epithelial
cells, which create a barrier that prevents bacteria, toxins
and intestinal lumen products from reaching the circula-
tion. In mice fed a high-fat diet, reduced expression of
zonula occludens-1 (ZO-1), occludin, and claudin-1 leads
increased translocation of bacteria and LPS into the circu-
lation [40]. A recent paper showed that in mice with
streptozotocin-induced diabetes, hyperglycemia could re-
duce tight and adherence junction integrity via a direct
effect on reprogramming of intestinal epithelial cells
through GLUT2-dependent mechanism [41••].

Taken together, these data suggest that hyperglycemia
could lead to an increase in intestinal permeability, favoring
translocation of proinflammatory bacteria and toxins which in
turn impairs glucose metabolism.

Short-Chain Fatty Acids

One mechanism potentially mediating the impact of intestinal
dysbiosis to regulate systemic metabolism and T2D risk is
related to alterations in short-chain fatty acids (SCFAs).
SCFA acetate, propionate, and butyrate are the most abundant
microbial metabolites derived from fermentation of non-
digestible carbohydrates introduced with diet. SCFAs play
diverse roles including cell growth and differentiation,
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promotion of gut epithelial integrity, anti-inflammatory and
immunomodulatory functions [42], and regulation of pancre-
atic β cell proliferation and insulin biosynthesis [43]. SCFAs
have also been shown to modulate intestinal inflammation by
Treg cells and influence fluid secretion, motility, and duodenal
barrier function through mechanisms that may also involve
GLP-2 secretion [44]. SCFA principally bind G-protein-
coupled receptors 43 and 41 (GPR43/FFA2 and GPR41/
FFA3) expressed not only on enteroendocrine and intestinal
epithelial cells but also in the islets of Langerhans [45]. In
turn, animal data show that GPR41 regulates intestinal gluco-
neogenesis, food intake and energy expenditure, and stimulate
secretion of the intestinal peptide YY. This regulates appetite
and energy intake with direct effects on the central nervous
system [46]. Similarly, GPR43 stimulates production of
glucagon-like peptide-1 (GLP-1), a gut hormone that in-
creases glucose-dependent insulin secretion and inhibits

glucagon secretion [47]. SCFAs can also bind GPR119, an-
other receptor expressed in intestinal L-cells and pancreaticβ-
cells. GPR119 agonists reduce blood glucose by promoting
intestinal secretion of GLP-1, improving pancreatic β-cell
function and insulin secretion [48]. Thus, activation of G-
protein-coupled receptors by SCFAs may have beneficial ef-
fects via reducing food intake, improving insulin sensitivity,
inhibiting fat accumulation, and reducing systemic inflamma-
tion. Decreases in SCFA-producing bacteria may reduce these
beneficial effects and promote the development of insulin re-
sistance and T2D.

Nevertheless, there are animal [49] and human studies [50]
in which an increased concentration of SCFAs in feces was
associated with higher body weight and fat gain (via GPR41
receptor action) and insulin resistance. The role of SCFAs is
thus controversial and needs further investigation in this
context.

Fig. 1 Influence of the gut microbiota in promoting insulin resistance and
T2D. TLR-4 Toll-like receptor 4, MyD88 myeloid differentiation protein
88, TAK1 transforming growth factor B-associated kinase 1, GPR43 G-
protein-coupled receptor 43, GPR41 G-protein-coupled receptor 41,
TMAO trimethylamine N-oxide, FMO3 flavin monooxygenase 3, LPS
lipopolysaccharides, NF-kB nuclear factor-kappa B, GLP-2 glucagon-
like-peptide 2, IL interleukin, TNF tumor necrosis factor, eNOS
endothelial nitric oxide synthase, MCP-1 monocyte chemoattractant

protein-1, GLP-1 glucagon-like peptide-1, IRS insulin receptor
substrate, ZO-1 zonula occludens-1, PYY intestinal peptide YY, TGR5
G-protein-coupled bile acid receptor 1, FXR farnesoid X receptor, Fgf15
fibroblast growth factor 15, GIP glucose-dependent insulinotropic
polypeptide, CB endocannabinoid receptor, eCB endocannabinoid
(yellow circles), SCFAs short-chain fatty acids (blue circles), BCAA
branched-chain amino acids (green circles)
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Bile Acid Metabolism

Intestinal bacteria play an important role in the conversion of
primary bile acids to secondary bile acids, and can also influ-
ence their composition. However, bile acids, in turn, could
regulate the composition of the gut microbiota because of their
antimicrobial activity [51]. Previous reports found that bile
acid composition is different between control and germ-free
mice, and probiotic administration changes gut microbiota
composition and increases bile acid deconjugation [52].
Secondary bile acids can stimulate GLP-1 secretion through
G-protein-coupled bile acid receptor 1 (TGR5), modulate ex-
pression of farnesoid X receptor (FXR) and fibroblast growth
factor 15 (Fgf15), thus regulating hepatic glucose metabolism
and insulin sensitivity [53].

Branched Chain Amino Acids

Gut microorganisms are a potential source of circulating
BCAA through both biosynthesis and by modifying nutrient
absorption. Although many of the underlying mechanisms
have not yet been identified, several authors suggest that mi-
crobial amino acid metabolism may play multiple roles in the
genesis of insulin resistance [54]. Human studies have dem-
onstrated that both dietary intake of BCAA and high plasma
levels of BCAA are associated with an increased risk of T2D
[55]. Multiple mechanisms may contribute to elevations in
BCAA in this context. Firstly, insulin resistance may cause
reduced suppression of proteolysis [56]. Moreover, obesity
and proinflammatory states are linked to reductions in
BCAA catabolism in peripheral tissues, potentially mediated
at least in part by reduced adiponectin secretion [57]; this
effect may precede insulin resistance. BCAA may affect insu-
lin, glucagon, GLP-1 and glucose-dependent insulinotropic
polypeptide (GIP) secretion [58].

A latest meta-analysis of three genome-wide association
studies provides genetic evidence linking IR with elevated
circulating BCAAs levels [59]. While these data do not pro-
vide conclusive data about cause and effect relationships, it is
important to note that experimental reductions in dietary
BCAA results in increased energy expenditure and improved
insulin sensitivity in rodents [60].

TMAO

Trimethylamine (TMA) is an organic compound synthesized
exclusively by gut microbiota from dietary nutrients including
phosphatidylcholine, choline, and carnitine. After being
absorbed, it is converted in the liver by flavin monooxygenase
3 (FMO3) to form trimethylamine N-oxide (TMAO). Higher
TMAO plasma levels are associated with an increased risk of
T2D [61] and cardiovascular disease [9]. Overexpression of
FMO3 in human hepatoma cell lines elicited a significant

increased glucose production and insulin resistance probably
through the PPARα and Kruppel-like factor 15 pathways; in
mice, its deletion conferred protection against obesity [62]. In
the POUNDS Lost trial [63], the author highlight that dietary
changes can modify plasma levels of TMAO, choline and L-
carnitine, and their reduction is associated with improved in-
sulin sensitivity.

Endocannabinoid System

Another emerging mechanism involved in intestinal perme-
ability, glucose metabolism, and energy homeostasis is alter-
ation in the endocannabinoid (eCB) system. Gut metabolites
can activate several pathways via cannabinoid CB1 and CB2
receptors, an important target in the context of inflammation,
T2D, and obesity [64]. In rodents, CB1 receptor blockade
improves intestinal barrier function while stimulation of
CB2 receptors improves insulin resistance [65].

Microbiota Modulation: a New Therapeutic
Strategy for Diabetes?

Diet

More than 10 years ago, the results of the CARDIA study
highlighted how high-fat diet and lower consumption of die-
tary fibers are associated with weight gain and insulin resis-
tance while the consumption of dairy products improved gly-
cemic control [66]. Animal-based diets may reduce the levels
of Firmicutes that metabolize the plant-derived polysaccha-
rides and produce beneficial SCFAs [67].

Emerging data indicate that dietary interventions can in-
deed change the composition of the bacterial community. A
meta-analysis evaluated the efficacy of dietary interventions,
finding modulation of intestinal microbiota in parallel with
improved blood glucose control, as measured by HbA1c,
while having little or no effect on fasting blood glucose,
fasting insulin, insulin resistance, inflammation, and SCFA
levels compared to the control group [68••].

In another recent clinical study, high dietary fiber intake
improved hemoglobin HbA1c levels and increased GLP-1
production. Shotgunmetagenomics andmetabolomic analysis
showed increase abundance of SCFA-producing bacteria and
lower levels of deleterious metabolites such as indole and
hydrogen sulfide [69•]. Therefore, diet represents an important
factor contributing to the composition of the intestinal
microbiome. However, responses to intervention can vary
substantially between individuals; for example, abundance
of several Firmicutes species at baseline, predicted the respon-
siveness to intervention in one study [70]. Large RCTwill be
required to fully test whether dietary modifications aimed at
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changing the microbiome could represent a new therapeutic
target for the prevention and management of T2D.

Probiotics

Probiotics are defined as “live microorganisms that, when
administered in proper amounts, may exert health bene-
fits to the host” [71]. While the type and composition of
bacteria in various commercial products differ consider-
ably, the most common probiotic products contain
Lactobacillus sp., Enterococcus sp., Bifidobacterium sp.,
and Streptococcus sp. A promising technique could be to
use recombinant bacteria to improve glycemic control:
recently, a genetically modified strain of Lactococcus
lactis was shown to enhance insulin secretion and im-
prove glucose tolerance in mice [72]. The beneficial ef-
fects of probiotics on T2D have been extensively demon-
strated in animal studies, with reduction of Firmicutes/
Bacteroidetes ratio, increased abundance of SCFA-
producing bacteria, decreased levels of inflammatory
molecules TNFα, IL-1, IL-6; increased levels of GLP-1;
and improved insulin resistance [73]. Furthermore,
probiotics reduce inflammatory phenotypes, improve β-
cell dysfunction, and can have beneficial effects on the
intestinal wall, reducing intestinal permeability and
prevent ing translocat ion of bacter ia l LPS [74] .
Experimental data suggest also a potential immunomod-
ulatory role: B. infantis can induce T regulatory (Treg)
cells, stimulate production of CD25+ lymphocytes, stim-
ulate human dendritic cells (DCs), and induce the pro-
duction of IL-10 [75].

While the limited studies conducted in humans are gener-
ally concordant with animal studies (Table 1), there are some
exceptions. Ivey et al. did not find any effect of probiotic
supplementation for 6 weeks using a capsule containing L.
acidophilus La5 and B. animalis subsp. lactis Bb12 on glyce-
mic parameters in overweight subjects [80]. In another RCT,
31 glucose-tolerant patients were enrolled to evaluate the ef-
ficacy of L. reuteri SD5865 administered over 4 weeks; in-
creases in GLP-1 and insulin secretion were found, without
changes in insulin sensitivity [82]. More recently, Mobini et
al. [84] evaluated the effects of Lactobacillus reuteri DSM
17938 over 12 weeks in patients with T2D on insulin therapy:
probiotic supplementation improved insulin sensitivity in a
subgroup but did not affect overall glycemic control measured
by HbA1c.

Several systematic reviews and meta-analyses conclud-
ed that probiotics could have beneficial effects on glycemic
control in T2D, but effects on HbA1c, anti-inflammatory
and anti-oxidative benefit are inconsistent [89–93].
Limitations of the RCT conducted thus far include: hetero-
geneity of the groups studied (ethnicity, metabolic state,
drugs, duration of diabetes), different bacterial strains

used, short period of treatment, different methods of anal-
ysis, and small sample sizes. Therefore, given the consid-
erable disparities in both the design and findings of the
studies, and substantial interindividual variation in re-
sponse to probiotic integration, future long-term, multi-
center RCT utilizing consistent methods will be required
to determine their usefulness as prevention or as synergis-
tic approach in T2D treatment. Several trials are ongoing
(IRCT201511032321N2; ACTRN12613001378718).

Fecal Transplantation

Fecal microbiota transplant (FMT) consists of administering
fecal matter, taken from a healthy donor, via endoscopy or
enema. FMT is a technique that has produced good results in
the treatment of Clostridium difficile infection when medical
therapy is ineffective, and it is a promising treatment for a
variety of diseases [94]. Thus far, there has been only one
human study evaluating the effects of FMT in patients with
metabolic syndrome [95]. In this work, FMT from healthy
subjects to adults with metabolic syndrome led to increased
butyrate-producing bacteria in the stool of the recipient micro-
biota and improvement in peripheral insulin sensitivity. This
study, while promising, was limited by small sample size and
absence of data on glycemic control and inflammation
markers. Given the limited data available at present, future
studies will be required to fully define the adverse effects of
such treatment, including transplantation of potentially path-
ogenic microorganisms, and to critically evaluate the risk/
b e n e f i t r a t i o . S e v e r a l R C Ts a r e o n g o i n g
(ChiCTR1800014569; NCT03127696; NCT01790711; NTR
5141). Ultimately, it is hoped that defining the microbiota
mediating beneficial effects will allow administration of cul-
tured bacterial treatments.

Impact of Diabetes Treatments on the Microbiome

Different drugs, including antidiabetic medications, can affect
the intestinal microbiota [96].

Metformin, currently the cornerstone of T2D treatment,
has long been recognized to improve insulin sensitivity
and reduce hepatic glucose production [97]; it also alters
the composition of the microbiota: increase abundance of
A. muciniphila, Lactobacillus, and Escherichia spp. and
decrease abundance of some pathogens [98]. Metformin
also promotes the production of SCFAs, regulates bile
acid turnover, improves intestinal permeability, reduces
endotoxin levels, and stimulates the activity of endocrine
cells by enhancing release of GLP-1 and PYY peptides
[99].

Incretin-based therapies can also affect the composition of
the microbiota in rodents, but results differ across studies. In
mice fed a HFD, the GLP1RA liraglutide reduces
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Bacteroidetes, Proteobacteria, and Actinobacteria and in-
creases Firmicutes abundance. Similar results were obtained
in obese rats after treatment with saxagliptin. On the contrary,
in HFD-fed mice sitagliptin induces an increase in the relative
abundance of Bacteroidetes and Proteobacteria and decrease
in Firmicutes [100]. It is not clear whether these discrepancies
are due to the model (rat vs. mouse) or to the drug. The effect
of DPP-4i on the microbiota could be related to an enhance-
ment of intestinotrophic effect of GLP-2, which improves in-
testinal mucosal barrier integrity and thus reduces
permeability.

SGLT2 inhibitors may also impact the microbiome. In db/
db mice, treatment with SGLT2i yields an anti-inflammatory
effect and increases SCFA levels in cecum [9]. There are no
published data on humans thus far.

Various studies to evaluate changes in the composition of
the intestinal microbiota before and after the use of diabetes
medications agents are underway (eudract_number: 2015-
000199-86; ChiCTR-OPC-17010757; ClinicalTrials.gov ID:
NCT02900417; ChiCTR-OPC-17010757).

Bariatric Surgery

Bariatric surgery has proved to be one of the most effective
interventions for severe obesity. Moreover, there are several
weight loss-independent effects of “metabolic surgery” in-
cluding beneficial effects on intestinal glucose metabolism,
insulin sensitivity, β-cell function, changes in bile acids, and
gut microbiota composition [101]. A recent systematic review
of 12 animal and 9 clinical studies [102] demonstrated an
increase of Bacteroidetes, Fusobacteria, Verrucomicrobia,
Proteobac ter ia , and a decrease o f Firmicu te s ,
Clostridiaceae, Clostridiales, Blautia, andDorea. Three stud-
ies showed an increase in abundance of A. muciniphila. The
mechanisms responsible for these changes are unknown but
may include intestinal remodeling, antibiotic use, and dietary
changes.

Conclusion

In recent years, the study of human gut microbiota has led to
interesting discoveries that open the frontiers for innovative
treatments for many diseases including T2D. Available data
suggest that human microbiota plays an important role in the
onset and maintenance of insulin resistance in patients with
T2D. Given the personal and societal impact of T2D world-
wide, large-scale randomized trials will be required to fully
assess whether microbiome modulation may be a therapeutic
option to improve glycemic control and reduce the risk of
complications.
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