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Abstract
Purpose of Review Type 2 diabetes is a growing concern worldwide with increasing incidence in youth. Development of
preventive strategies in earlier stages of life is crucial. We aimed to examine epidemiological evidence of early-life exposures
and their associations with childhood and later risk of obesity and diabetes, and to discuss potential mechanisms.
Recent Findings Parental obesity and diabetes in the preconception period may influence offspring’s obesity risk via epigenetic
mechanisms influencing gametogenesis and early development that could have significant transgenerational effects. A more
comprehensive understanding of these effects is needed to identify possible avenues for interventions in both fathers and mothers
to be. In addition, current evidence suggests that growth and body weight trajectories in infancy and childhood are useful
indicators of later obesity and type 2 diabetes. Moreover, the composition and variations in the microbiome in early life are
associated with long-term health and could mediate associations between several early-life exposures and later risk of diseases.
Summary Altogether, the epidemiological evidence supports the need for preconception and early-life interventions to reduce the
obesity and diabetes burden in later life.
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Introduction

The prevalence of type 2 diabetes has nearly doubled in
adults over the past 30 years [1]. It has also increased in
children and parallels the increasing prevalence of obesity
and overweight in youth [2–4]. Established risk factors for
type 2 diabetes include ethnicity, family history of

diabetes, previous gestational diabetes, older age, over-
weight and obesity, and unhealthful lifestyle behaviors in-
cluding poor diet quality, insufficient physical activity, and
smoking [1]. Over the past decades, several epidemiolog-
ical studies have provided insights into the pathways by
which environmental exposures in sensitive periods of ear-
ly development predict risk for adult metabolic disorders,
including diabetes [5], a concept referred to as the devel-
opmental origins of health and disease [6].

The objectives of this review are to examine epidemiolog-
ical evidence of early-life exposures and their associations
with childhood and later risk of obesity and diabetes, and to
discuss potential mechanisms. We categorize early develop-
ment into three exposure periods: preconception, gestation,
and early childhood (Fig. 1). The gestation period and associ-
ations of fetal growth with later health outcomes have been
more extensively studied, as summarized previously [7–9],
and thus, this review will primarily focus on recent evidence
in the associations of preconception paternal and maternal
health with childhood obesity and on early childhood growth
patterns as indicators of future child’s risk. We also discuss
potential mechanisms for the associations of risk factors dur-
ing preconception and early childhood with later obesity and
diabetes, mainly through alternations in the microbiome and
epigenetic regulation of gene expression.
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Preconception Risk Factors

Abundant evidence has linked maternal obesity and diabetes
during pregnancy with offspring obesity and diabetes risks in
later life. However, in epidemiologic studies, it is challenging
to distinguish the effects of maternal diabetes and obesity in
the preconception compared to the gestational period, as these
characteristics generally track over time. However, some stud-
ies have suggested that effects, and associated mechanisms,
would differ for preconception vs. gestational exposure,
resulting in a complex interaction between the effects of both
periods [10]. Although most studies have focused on
maternal-child associations and mechanisms in the develop-
mental origins of child’s health, more recent studies have in-
vestigated the potential paternal metabolic contribution to his
child’s later risk of disease.

Parental Diabetes in the Preconception Period

The heredity of diabetes has been well-established, with an
additive effect on risk for diabetes in the offspring if both
parents are affected [11]. For example, in the Framingham
Offspring Study, maternal and paternal diabetes over the life
course conveyed equivalent risk for type 2 diabetes in off-
spring in adulthood, suggesting transmission of genetic factors
of similar strengths [12]. This study was unable to distinguish
whether diabetes occurred prior or after pregnancy; yet, off-
spring of mothers with diabetes onset before 50 years of age
had a markedly higher risk of diabetes and an earlier age at
onset [12]. Other studies that looked at parental diabetes prior
to conception specifically have showed associations with the

risks of obesity, type 2 diabetes, and associated metabolic
alterations in the offspring [13–15].

Given that many women may not have been screened for
diabetes prior to conception, it is often difficult to distinguish
pre-gestational type 2 diabetes first diagnosed during pregnan-
cy from true gestational diabetes. Most of the evidence of an
increased risk for obesity and type 2 diabetes in children from
mothers who had developed diabetes prior to pregnancy come
from either offspring of women with type 1 diabetes [14] or
from the Pima Indians [13], a population at elevated risk for
early-onset type 2 diabetes.

A few studies have suggested an increase in body mass
index (BMI) z-score in offspring of women with type 1 dia-
betes prior to pregnancy as compared to children not exposed
to diabetes in utero [14]. For example, Lindsay and colleagues
reported no difference in glucose tolerance, but higher BMI,
waist circumference, sum of skinfolds, and prevalence of
overweight and obesity, in 7-year-old offspring from mothers
with type 1 diabetes compared to offspring of non-diabetic
mothers, a relationship that appeared to be related to higher
fetal leptin concentrations [16]. An increased risk for type 2
diabetes was also reported in a small cohort (N = 75) of off-
spring frommothers with type 1 diabetes (predicted RR = 3.2)
[17] and from a larger cohort (N = 597) including mothers
with both gestational and type 1 diabetes (OR specifically in
mothers with type 1 diabetes = 4.02, 95% CI [1.31, 12.33])
[18]. However, given that women with pre-gestational diabe-
tes are usually hyperglycemic both prior to and during preg-
nancy, the sensitive exposure windows are difficult to
disentangle.

The prevalence of type 2 diabetes in women of repro-
ductive age (18–44 years old) remains fairly low in the

Fig. 1 Conceptual model: early-life risk factors of type 2 diabetes
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USA (< 3%) [19]; yet it has been increasing over the past
years especially among pregnant women [20], likely driven
by increased obesity rates and older ages at pregnancy.
Women with pre-gestational type 2 diabetes are more like-
ly to present adverse maternal and fetal outcomes [21], but
little is known about the child’s long-term health risk. In a
sub-analysis of siblings from the Pima Indians of Arizona
longitudinal study, mean BMI in adolescence (age 13) and
diabetes risk in early adulthood (age 22–24) in offspring
were found to be higher in siblings born after the mother’s
diagnosis of type 2 diabetes compared to those born before
[13, 22]. Considering that women of childbearing age do
not typically undergo routine screening for type 2 diabetes,
its presence in women prior to conception remains difficult
to identify; however, the specific maternal and child risk
associated with pre-gestational type 2 diabetes should be
further investigated in diverse populations. Also, efficient
implementation of the American Diabetes Associations’
recommendation to screen high-risk women for gestational
diabetes in the first trimester [23] could contribute to iden-
tify cases of pre-gestational diabetes; however, we do not
know the extent to which this recommendation is followed
in clinical settings.

Little is known about the contributing role of paternal
diabetes to children’s long-term risk of obesity and diabe-
tes. Paternal type 2 diabetes or insulin resistance at con-
ception has been linked to fetal growth restriction and
lower birth weight [24, 25]. One study reported that lower
birth weight predicted later development of diabetes in the
offspring in the presence of paternal type 2 diabetes, but
not maternal type 2 diabetes, suggesting that paternally
derived genetic or epigenetic differences could be respon-
sible for the association [15]. In the sub-analysis of sib-
lings from the Pima Indians of Arizona longitudinal study,
no association was found with timing of paternal diabetes
diagnosis and offspring diabetes risk in early adulthood
[13, 22]. A study in mice showed that offspring from fa-
thers with pre-gestational diabetes could have increased
susceptibility to diabetes through epigenetic alterations in
gametes and modified expression of genes in the pancre-
atic islets, leading to altered glucose metabolism regula-
tion and insulin signaling [26].

Parental Obesity in the Preconception Period

Parental obesity is also a strong predictor of childhood obesity
and some studies showed greater effects of maternal BMI on
childhood obesity risk as compared to paternal BMI; yet, risk
for childhood obesity appears to be greatest when both parents
are obese [27, 28]. In the Northern Finland Birth Cohort 1986,
both maternal and paternal BMI were independently associat-
ed with overweight and obesity in childhood, and obesity
persistence through adolescence [29]. In the US Project Viva

cohort, compared to offspring of non-obese parents, maternal
and paternal obesity, individually or together, were associated
with an earlier age at adiposity rebound (11.4 months earlier
for maternal obesity only, 6.5 months earlier for paternal obe-
sity only, and 12.2 months earlier for obesity in both parents);
in turn, such earlier adiposity rebound predicts later obesity
[30]. Obesity of both parents was associated with the highest
BMI into early adolescence (Fig. 2) [30].

Children of parents with obesity likely share not only genetic
risks but also extra-uterine environmental and lifestyle-related
exposures (shared household dietary habits and meal patterns,
familial physical activities, similar home and neighborhood
characteristics including access to grocery stores, green spaces,
and exposure to pollution) that could explain some of the asso-
ciations observed with parental preconception obesity and off-
spring’s obesity risk. Beyond these shared factors, preconcep-
tion parental obesity could impact child’s obesity risk via epige-
netic mechanisms influencing gametogenesis and early devel-
opment [31–34]. For example, Soubry and colleagues found
relationships of preconception parental obesity, specific to ma-
ternal or paternal obesity, with DNA methylation profiles (in
DNA extracted from umbilical cord blood leukocytes at birth)
of genes implicated in normal growth and development [31, 32].
Specifically, paternal obesity was associated with hypomethyla-
tion of the insulin-like growth factor 2 (IGF2) gene [31], sug-
gesting a susceptibility to “reprogramming” of imprint marks
during spermatogenesis, and both maternal and paternal obesity
were associated with altered DNA methylation patterns at dif-
ferent imprinted genes [32].

In women, pre-conception obesity is also associated
with increased risk of gestational diabetes [35] which
could partly mediate the observed effects in offspring.
Kral and colleagues compared the rates of obesity and
overweight in siblings born before or after malabsorptive
bariatric surgery [36]. Interestingly, male offspring whose
mothers had their surgery before rather than after pregnan-
cy, and thus entered pregnancy at lower BMI (mean ± SD
pre-pregnancy BMI 48 ± 8 vs. 31 ± 9 kg/m2), had lower
rates of obesity and overweight in childhood and

Fig. 2 Child BMI trajectories during infancy and childhood by parental
obesity status in Project Viva (from [30] with permission from Elsevier)
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adolescence [36]. The investigators did not evaluate
whether these benefits were mediated by restricted gesta-
tional weight gain, improved glucose tolerance (before
and/or during pregnancy), or epigenetic differences.
Recent findings from a Swedish cohort study showed that
pregnancies after a bariatric surgery were associated with
reduced risks of gestational diabetes and large for gesta-
tional age infants, but also with increased risks of small for
gestational age infants and possibly increased neonatal
mortality [37].

Parental Nutrition in the Preconception Period

Recent studies in animal models have also shown epigenetic
effects of paternal diet-induced obesity or nutritional inade-
quacies [38, 39••]. For example, in male rodents (mice and
rats) fed a high-fat diet prior to conception, changes in the
sperm epigenome were observed and were linked to offspring
metabolism [40, 41]. Both maternal and paternal folate defi-
ciency have been associated with offspring DNA methylation
changes [42]. These dietary effects could likely persist
through generations [38] and should be further investigated
to better understand the paternal-specific role in the develop-
mental origins of obesity and diabetes. Maternal nutrition pri-
or to conception has also been shown to influence DNAmeth-
ylation in offspring, resulting in lasting phenotypic effects that
are not fully characterized [43]. In addition, effects of dietary
methyl donors (before and during pregnancy) on DNA meth-
ylation changes in the offspring have been reported (e.g., as-
sociations of maternal folic acid in the periconceptional period
have been associated with methylation of the IGF2 gene in
offspring), as reviewed recently [44].

Preconception Environmental Exposures

A number of epidemiologic studies have reported associations
of paternal exposures to various drugs and environmental tox-
icants with altered metabolism in offspring [38, 45, 46].
Recent reviews described how environmental chemical expo-
sures in fathers can affect sperm quality and epigenetic pro-
files, affecting offspring’s metabolism and later risk of obesity
and chronic diseases [38, 39••, 45]. In women, environmental
exposures pre-pregnancy can have a variety of effects, de-
pending of the type, timing, and magnitude of exposure, in-
cluding altered fetal growth and gestational length, and func-
tional and structural abnormalities [47]. Toxicant exposures in
utero can also influence offspring’s later risk of chronic dis-
eases, including diabetes [48].

In summary, both maternal and paternal pre-conception
obesity and diabetes and nutritional and environmental expo-
sures contribute to child’s later risk for disease. Paternal influ-
ences would be limited, in the pre-conception period, to ef-
fects through gametogenesis. However, the long-term and

even transgenerational impact of these epigenetic alterations
is biologically plausible, and fathers can also influence the
postnatal family environment (e.g., dietary and physical activ-
ity patterns). Influences of maternal pre-gestational diabetes
and obesity are likely to be more extensive, given the duration
of exposure from pre-conception through gestation, and also
during postnatal life. Epigenetic research in both animal and
human studies will likely contribute to a better understanding
of the associations between parental preconception risk factors
and obesity and diabetes risk in offspring, and more research
is needed in the field of transgenerational epigenetics, espe-
cially for a possible paternal role in the transmission of risk
factors to offspring [45].

Gestational Risk Factors

Maternal Nutrition and Diabetes in Pregnancy

Adequate fetal growth and development are highly dependent
on maternal nutritional status [49]. Several studies, mainly
related to famine exposure, support associations between nu-
tritional deprivation in utero and offspring risk of diabetes in
adult life [50]. It remains unclear whether these associations
are related to insufficient intake of total energy or of specific
macro- or micronutrients. On the other hand, fetal overnutri-
tion is also associated with later risk of obesity and metabolic
disturbances in offspring, likely through different pathways
[51, 52]. Common causes of fetal overnutrition include exces-
sive gestational weight gain or maternal diabetes during preg-
nancy. Excessive pregnancy weight gain is highly prevalent: a
2017meta-analysis including 23 observational studies and > 1
million women found that excessive gestational weight gain
occurs in 47% of pregnant women in developed countries
[53]. Women with weight gain above recommendations are
at higher risk for having large for gestational age babies [53]
and their children have a 1.4-fold higher risk of obesity into
adolescence and adulthood [51]. Interestingly, maternal
weight gain in early pregnancy seems to have a stronger as-
sociation with later obesity compared with third trimester gain
[54]; this observation suggests that intervention studies aiming
to limit gestational weight gain should begin early in pregnan-
cy if aiming to reduce the long-term risk in offspring.

Maternal hyperglycemia during pregnancy (with diabetes
prior to pregnancy or first occurrence in pregnancy) contrib-
utes to fetal overnutrition, and observational studies suggest
higher risk of obesity and diabetes in exposed offspring
[14, 55–59], although studies often lack adjustment for impor-
tant confounding factors, most notably maternal and paternal
BMI [60]. Current evidence linking gestational diabetes to
childhood obesity raises several questions as to whether hy-
perglycemia per se is a direct cause for childhood obesity, and
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randomized controlled trials with long-term follow-up as well
as mechanistic studies remain needed.

Environmental Exposures

There is some evidence that environmental exposures during
pregnancy influence fetal growth and later risk of obesity and
metabolic disorders. One particularly well-characterized ex-
posure is maternal smoking during pregnancy, which is asso-
ciated with restricted fetal growth [61]. However, in later
childhood, children ofmothers who smoked during pregnancy
have 1.5-fold greater risk for overweight and obesity as com-
pared to children of mothers who did not smoke [61] and a
dose-response relationship of maternal smoking and offspring
overweight has been observed [62]. A number of environmen-
tal chemical exposures have been linked to obesity and meta-
bolic perturbations, and earlier life exposure to these
chemicals and contaminants could have a long-lasting effect
[63–65]. Studied chemical exposures include, but are not lim-
ited to, smoking, arsenic, persistent organic pollutants (POPs),
peroxisome proliferator-activated receptor (PPAR) activators
(organotins and phthalates), bisphenol A (BPA), and pesti-
cides [64]. Thus, many exposures could influence child’s risk
of obesity and diabetes through fetal growth, although we do
not fully understand all the drivers and their interactions.

Early Childhood Risk Factors

Growth and Body Weight Patterns

Several indicators of childhood growth have been associated
with higher risks of insulin resistance and type 2 diabetes later
in life [66, 67]. In infancy, rapid weight gain, defined as a
change in weight z-score > 0.67 (corresponding to the width
of percentile bands on growth charts), is associated with over-
weight and obesity through adulthood [68]. The odds ratio for
overweight and obesity was 3.66 [95% CI 2.59–5.17] in the
presence of rapid weight gain before 2 years of age based on a
recent meta-analysis (2018; 17 studies), with higher odds
when rapid weight gain occurred before 1 year of age [69].
Some studies have also suggested that rapid weight gain in the
first year of life, and particularly in the first 3 months of life
[70, 71], could be associated with decreased insulin sensitivity
in adolescence and early adulthood although other studies
have found either the opposite [72, 73] or null findings [74].

Growth trajectories in most children include a peak in BMI
around 1 year of age, with a decrease through 4 to 6 years of
age after which adiposity starts to increase again. The BMI
nadir has been labeled the “adiposity rebound” [75], although
BMI is not a direct measure of adiposity. Different childhood
growth patterns have been associated with elevated risk of
type 2 diabetes and obesity later in life. An infancy BMI peak

at a later age and of greater magnitude was associated with
adiposity in later childhood in two prospective birth cohorts
[76, 77•]. In addition, an earlier adiposity rebound has been
associated with higher risk of obesity [78, 79] and cardiomet-
abolic disorders [80–82] in adolescence and adulthood. For
example, in the Helsinki cohort, an earlier age at adiposity
rebound was found to be associated with a higher BMI at
age 12 years and an increased cumulative incidence of type
2 diabetes later in life [81].

Current evidence suggests that growth and body weight
trajectories are useful indicators of risks for later obesity
and related metabolic disorders. However, studies remain
needed to identify determinants of early adiposity rebound
and different growth patterns in childhood and to provide
insight on mechanisms linking childhood growth patterns
to cardiometabolic risk in adulthood. Differences in growth
patterns are likely the result of numerous interactions be-
tween pre-conception and gestational exposures, and
disentangling these effects will require detailed longitudi-
nal assessments. In Project Viva, a pre-birth longitudinal
cohort in the USA, maternal glucose tolerance status in
pregnancy was associated with the timing and magnitude
of BMI peak while higher maternal first trimester weight
gain, smoking during pregnancy, no breastfeeding, paren-
tal obesity, and no university education were associated
with higher BMI at rebound [30].

Early-Life Feeding Practices

The associations of early-life feeding practices (breastfeeding
or not, and timing of introduction and type of complementary
feeding) and obesity and diabetes risk have been investigated
in numerous observational studies. Although some observa-
tional studies suggest a lower prevalence of overweight and
obesity in children who were fed breast milk compared with
infant formula [83], optimal duration and intensity of
breastfeeding to provide substantial benefits remain unknown
and several confounding factors such as parental feeding
styles, socioeconomic status, and maternal health should be
accounted for in future studies to fully support these associa-
tions [84]. Moreover, results from the Promotion of
Breastfeeding Intervention Trial (PROBIT) study, a random-
ized controlled trial promoting increased duration and exclu-
sivity of breastfeeding, showed that although the intervention
succeeded in increasing the duration of exclusive
breastfeeding, it did not lower risk of overweight and obesity
[85] or influence cardiometabolic risk factors [86] in early
adolescence. Timing of introduction and type/order of com-
plementary food could also contribute to childhood obesity or
metabolic risk throughmicrobiome alterations and related epi-
genetic alterations, although the evidence in this research area
is scarce and inconsistent [87–89].
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Microbiome

The potential role of the gut microbiome, either as an exposure
or as a mechanism, in metabolic disorders such as type 2
diabetes has recently been identified and has been the subject
of intense investigation [90]. Beyond the importance of the
gut microbiota in the development of infant’s immune sys-
tems, there is now growing evidence for the role of the
microbiome in postnatal programming of obesity and auto-
immune and metabolic disorders [91, 92]. Early-life
microbiome’s composition and variations are associated with
long-term health and could mediate the associations observed
between several early-life exposures and later risk of diseases
[93••]. Evidence of perinatal factors affecting the microbiome
in early life has accumulated, and relevant exposures include
maternal-fetal transmission, birth mode, infant feeding, anti-
biotic use, and diet (Fig. 3) [92, 94].

Results from animal studies and from human prospective
studies suggest that gut microbiome variations in early life
precede the development of obesity [93••]. Dogra and col-
leagues showed that gut microbiota composition at 6 months
was associated with adiposity at 18 months of age [95].
Although limited, there is evidence suggesting that maternal
obesity status in pregnancy and weight gain, as well as mater-
nal diabetes, may be associated with offspring microbiome in
infancy [91, 96]. However, these effects appear to differ

according to child’s sex, ethnicity, and geographical location
[91]. Mechanistic studies are needed to understand the con-
tributing or mediating roles of the microbiome to the develop-
mental origins of obesity and diabetes [92], including investi-
gations of related epigenetic modifications in the host that are
likely one of the key mechanisms to explain these associations
[97].

Conclusions

A deeper understanding of early-life risk factors linked to risk
of diabetes, and their associated mechanisms, could help tailor
interventions for susceptible populations or vulnerable periods
of development. Improving maternal and paternal metabolic
health, including through diet, before conception could play a
significant role in preventing later disease risk in offspring.
Recent evidence has increased the awareness of paternal met-
abolic health in the preconception period, but additional stud-
ies remain needed. The preconception period presents a
unique opportunity for intervention, which could possibly re-
sult in more effective interventions compared to those begin-
ning in pregnancy only [98]. Nonetheless, healthy nutrition
during pregnancy remains crucial, together with appropriate
gestational weight gain and control of maternal hyperglyce-
mia to favor adequate fetal growth. Finally, strategies are

Fig. 3 Factors shaping the microbiome in early life (reprinted by permission from Springer Nature [92])

89 Page 6 of 10 Curr Diab Rep (2018) 18: 89



needed to prevent obesity and promote a healthy lifestyle
among all sectors of the population. Recent studies have iden-
tified several windows of opportunity, from preconception to
childhood, during which interventions could have long-lasting
effects and that could halt the transgenerational cycle of obe-
sity and type 2 diabetes.
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