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Abstract

Purpose of Review Insulin resistance is an early complication of chronic kidney disease (CKD) associated with worsening
cardiovascular outcomes. This review will evaluate mechanisms responsible for CKD-induced insulin resistance and therapies
currently available.

Recent Findings Recent mechanisms have been identified including SIRPx and specific E3 ubiquitin ligases causing insulin
resistance in CKD. The hallmark finding in these mechanisms is degradation of the insulin receptor substrate 1 (IRS1) which
impairs intracellular insulin signaling and ultimately metabolism. The mechanisms responsible for insulin resistance in CKD
include inflammation, oxidative stress, elevations in aldosterone, angiotensin II, uremic toxins, and metabolic acidosis. Potential
treatments currently available for CKD-induced insulin resistance include lifestyle modification and metformin. Potential future
treatments may include glucagon-like peptide agonists, SGLT2 inhibitors, and thiazolidinediones.

Summary Investigations into molecular mechanisms responsible for insulin resistance in CKD may provide new therapeutic
targets while current therapies may prevent the catabolic sequelac of CKD and ameliorate its cardiovascular consequences.
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Introduction

Chronic kidney disease (CKD) is associated with an increase in
mortality which increases with the stage of disease. Results
from a NIH-supported, multi-center, clinical trial carried out
over 2.5 years revealed that end-stage kidney disease increased
mortality by greater than 46% [1]. One of the factors contrib-
uting to this increased mortality is insulin resistance. Insulin
resistance is an independent predictor of cardiovascular mor-
tality [2, 3] and has long been associated with CKD even in the
absence of diabetes and with mild loss of kidney function [4,
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5]. Fliser et al. found patients with early stages of CKD with
near normal creatinine had defects in insulin-mediated metab-
olism of glucose [5]. Jia et al. used a modified oral glucose
tolerance test and reported insulin resistance in CKD patients
with a median GFR of 46 ml/min per 1.73 m? [6]. Furthermore,
insulin resistance is not limited to specific etiologies of kidney
disease, e.g., diabetes, IgA nephropathy, or polycystic kidney
disease [5]. Several factors have been identified as causal in
CKD-induced insulin resistance, including the accumulation of
toxins such as indoxyl sulfate or urea. How these compounds
impair intracellular insulin signaling is unclear [7-9]. Other
evidence provides a link between glucose intolerance in CKD
and defects in intracellular signaling that occur as a result of
CKD complications (e.g., metabolic acidosis, increased gluco-
corticoid production, excess angiotensin II, and inflammation)
(Fig. 1). For example, changes in tyrosine phosphorylation
may impair insulin signaling, decreasing phosphatidylinositol
3-kinase (PI3K) and p-Akt activation, leading to protein deg-
radation and muscle wasting [11ee, 12, 13].

There is a general dearth of information about therapies that
can routinely prevent insulin resistance in animal models or
people with CKD. However, antidiabetic agents which
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Fig. 1 A scheme representing CKD associated metabolic derangements
inducing insulin resistance while impairing intracellular insulin signaling
leading to metabolic consequences. Adapted from Kidney International
(2015) 88, 1233-1239. Insulin receptor substrate-1 (IRS-1),

improve cardiorenal outcomes in people with diabetes and
CKD, such as SGLT2 inhibitors [14ee, 15¢], may also prove
effective in treatment of insulin resistance in people with non-
diabetic CKD. For example, recent data suggests that SGLT2
inhibitors may improve insulin resistance as well as
cardiorenal complications of CKD [14ee, 15+, 16]. In this re-
view, we will examine recent advances in identifying molec-
ular mechanisms that cause insulin resistance; we will also
describe CKD-specific metabolic derangements that are re-
sponsible for contributing to insulin resistance. Finally, we
will discuss recent trials that highlight potentially promising
novel treatments for insulin resistance in CKD.

Diagnostic Testing

Diagnostic testing for insulin sensitivity is largely confined
to research settings because the available methods are
time-consuming and invasive and require frequent moni-
toring and trained personnel. The current “gold standard”
for measuring insulin resistance is the euglycemic clamp
test. Patients simultaneously receive intravenous infusions
of insulin and glucose to maintain a constant level of blood
glucose. At equilibrium, the rate of glucose administration
is equal to the rate of its uptake into the cells, which re-
flects insulin sensitivity in the overall body. As such, a
high rate of glucose infusion signifies total body insulin
sensitivity while a low rate shows resistance to insulin
[4]. Simpler and less invasive tests have been used to esti-
mate insulin resistance. These assays evaluate insulin sen-
sitivity in either static (i.e., fasting) or dynamic (infusion of
glucose or insulin) states, reflecting more largely hepatic
vs. skeletal muscle insulin sensitivity, respectively [17].
The homeostatic model assessment of insulin resistance
(HOMA-IR) is a commonly used mathematical equation
which estimates static insulin sensitivity in fasting state
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Phosphoinositide 3 kinase (PI3K), protein kinase B also known as
AKT. (Reprinted from: Thomas SS, et al. Kidney Int 2015; 88(6):
1233-9, with permission from Elsevier) [10]

[18]. The oral or intravenous glucose tolerance tests
(OGTT or IVGTT) are examples of dynamic tests based
on the changes in insulin and glucose in response to a
challenge with oral or intravenous glucose. In OGTT, after
an overnight fast, blood samples for determinations of glu-
cose and insulin concentrations are taken at 0, 30, 60, and
120 min following a standard oral glucose load. Specific
indexes including Matsuda index, Stumvoll index,
Avignon index, oral glucose insulin sensitivity index
(OGSI), Gutt index, and Belfiore index use particular sam-
pling protocols during the OGTT or the meal [19-24].

Molecular Mechanism of Insulin Resistance
Intracellular Insulin Signaling

Identifying the mediators of intracellular insulin signaling
may be key to determining potential targets for therapy of
insulin resistance. Normal insulin signaling is initiated when
insulin binds to its receptor causing auto-phosphorylation of
tyrosines of insulin receptor substratel (IRS1). This is follow-
ed by phosphorylation of phosphatidylinositol 3-kinase
(PI3K) and Akt kinase (pAkt). Akt phosphorylation triggers
several downstream responses in peripheral tissues, leading to
GLUT4 translocation to the membrane, as well as promoting
glycogen and protein synthesis and inhibiting lipid and pro-
tein degradation. Abnormal intracellular signaling in CKD
results in low levels of pAkt in peripheral tissues, leading to
alterations in metabolism of glucose and lipids as well as
accelerated protein degradation in muscle [10]. Specifically,
CKD activates the ubiquitin proteasome system (UPS) which
leads to degradation of IRS1, reduced phosphorylation of
Akt, and eventually impaired protein, lipid, and glycogen
synthesis, as well as increased muscle protein degradation
and lipolysis (Fig. 1).
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Signal Regulatory Protein Alpha

Signal regulatory protein alpha (SIRP«) impairs insulin sig-
naling by dephosphorylating the tyrosines on the insulin re-
ceptor and IRS1 [11ee]. It is expressed highly in the skeletal
muscles in a mouse model of CKD. When SIRP« is sup-
pressed, intracellular insulin signaling improves, leading to
suppression of protein degradation. Conversely, overexpres-
sion of SIRPx impairs insulin signaling and exacerbates ab-
normal muscle metabolism. Identification of Nf-kB binding
sites in SIRP« promoter suggests that inflammation may pro-
mote SIRPa overexpression in CKD. As such, reducing
SIRP« expression, for example by ameliorating inflamma-
tion, may serve as a therapeutic target for preventing insulin
resistance in CKD.

Ubiquitin Proteasome System

The UPS is responsible for targeted protein degradation [10].
The proteolytic process begins when a ubiquitin-activating
enzyme (E1) forms a thioester bond with ubiquitin.
Ubiquitin is then transferred to a ubiquitin-conjugating en-
zyme (E2). In the third step, the ubiquitin ligase (E3) catalyzes
formation of an isopeptide bond between ubiquitin and a ly-
sine residue on the targeted protein. This process is repeated
until a chain of five ubiquitins is formed on the targeted pro-
teins, which are then sent for degradation by the 26S protea-
some. This proteasome recognizes the chain of ubiquitins and
removes them to dissemble and degrade the protein into pep-
tides, which are later degraded by cytoplasmic peptidases. E3
ligases are single- or multi-subunit enzymes with separate
domains for binding to ubiquitin and substrate proteins. The
selectivity of the UPS system comes from the large number of
E3 ligases, each of which binds a specific set of protein tar-
gets. Specifically, IRS1 degradation by the UPS leads to im-
paired insulin signaling (Fig. 2). CKD and its associated com-
plications stimulate the expression of different E3 ubiquitin
ligases, thus altering the specific proteins targeted for degra-
dation by the UPS [10].

Fig. 2 IRSI1 degradation is
characterized by activation of
disease-specific E3 ubiquitin
ligases. Adapted from Kidney
International (2015) 88, 1233—
1239. Insulin receptor substrate-1
(IRS-1), insulin growth factor-1
(IGF-1), Casitas B-lineage
lymphoma B (Cblb), Cullin 7
(Cul7). (Reprinted from: Thomas
SS, et al. Kidney Int 2015; 88(6):
1233-9, with permission from
Elsevier) [10]
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An increase in interleukin (IL)-6 is associated with induction
of SOCS3 or SOCS1 expression. These proteins promote
insulin resistance by enhancing UPS-mediated degradation
of IRS-1 and subsequent reduction in p-Akt. This increase
in UPS activity requires SOCS1-mediated induction of E3
ubiquitin ligases that contain Elongin BC-Cullin proteins be-
cause when these proteins are mutated, SOCS1-induced
ubiquitination of IRS1 is prevented, hence suppressing
IRS1 degradation [25, 26]. Expression of SOCS3 and Stat3,
a transcription factor in the IL6 signaling cascade, was in-
creased in muscle biopsies from obese patients with type 2
diabetes, suggesting these mechanisms can be relevant in
patients with insulin resistance [27].

Casitas B-Lineage Lymphoma B/MG53

In mice, a high-sucrose and/or a high-fat diet (HFD) increases
levels of carbohydrate-responsive element-binding protein
(ChREBP) and binding of the sterol regulatory element pro-
tein 1c (SREBPI1c) which stimulate myostatin expression.
Myostatin production leads to IRS1 degradation via up-
regulation of the Casitas B-lineage lymphoma B (Cb1b) pro-
tein which in mice exhibits properties of an E3 ubiquitin ligase
[28]. MG53 is another E3 ubiquitin ligase, and it is up-
regulated in animal models of obesity, hypertension, and met-
abolic syndrome or while on a HFD. Mice lacking the ability
to express Cb1b or MG53 ameliorated insulin resistance even
while on HFD or high-sucrose diet [29-31].

Metabolic Abnormalities in CKD-Induced
Insulin Resistance

Inflammation and Oxidative Stress

The state of heightened inflammation in CKD can promote
insulin resistance by several mechanisms. Inflammatory
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conditions, which are characterized by activation of NFkB,
regulate expression of SIRPo which decreases Akt phosphor-
ylation and in turn leads to insulin resistance [11¢¢]. CKD is
associated with elevated levels of pro-inflammatory cytokines
(e.g., tumor necrosis factor alpha (TNF-«), IL-6, and IFN-
gamma), which are associated with an increase in insulin re-
sistance and higher rates of cardiovascular disease and mor-
tality, even with near normal serum creatinine in early CKD
[5, 32, 33]. In vitro studies support these findings. In human
skeletal muscle cells, TNF-« induced insulin resistance [34]
and indirectly generated free fatty acids (FFA) suggesting en-
hanced lipolysis, while inhibiting IRS1 via increased intracel-
lular diacylglycerol (DAG) and long-chain acyl-coenzyme A
(LCA-CoA) [35]. IL-6 promoted insulin resistance by induc-
ing expression of SOCS-3 or SOCS-1, either of which can
inhibit IRS-1binding to the insulin receptor via STAT3 signal-
ing [36] as well as enhanced ubiquitin-mediated degradation
of IRS-1 [37]. Oxidative stress can contribute to the develop-
ment of insulin resistance in CKD in presence of increased
circulating fibrinogen, C-reactive protein (CRP), TNF-«, and
IL-6 [38—40]. High levels of reactive oxygen species (ROS)
can reduce tyrosine phosphorylation of IRS1, resulting in de-
creased insulin signaling [41].

Aldosterone and Angiotensin Il

Excessive aldosterone and angiotensin I are commonly ob-
served in CKD and can lead to insulin resistance by several
mechanisms. For example, mineralocorticoid receptor activation
increases asymmetric dimethyl arginine (ADMA), which im-
pairs insulin signaling in adipocytes of rodents with CKD.
Angiotensin II stimulates the expression of IL-6 and serum
Amyloid A [42, 43], which increase SOCS3 resulting in reduced
IRS1 and impaired insulin signaling. Consistently, angiotensin
receptor blockers decrease the expression of inflammatory cyto-
kines and reduce insulin resistance in patients with CKD [44].

Uremic Toxins

Accumulation of urea and uremic toxins may promote insulin
resistance. For example, high urea concentrations encourage
production of ROS, which in turn promotes modification of
intracellular proteins by O-linked beta-N-acetylglucosamine
(O-GlcNAC). Increased modification of the mediators in insulin
signaling pathway by O-GlcNAcs blunt insulin signaling.
Treating uremic mice with antioxidants prevented insulin resis-
tance [8]. Administering p-cresyl sulfate, a uremic solute, to
mice with normal kidney function led to insulin resistance,
including redistribution of body fat to muscle and liver, and
altered insulin signaling in muscle [45]. Furthermore, in animal
models of CKD, reducing serum p-cresyl sulfate (by treatment
with a prebiotic which reduced its intestinal production)
prevented insulin resistance and the resulting dyslipidemia [45].
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Metabolic Acidosis

Metabolic acidosis, another common complication of CKD,
can also lead to development of insulin resistance. Acidosis
promotes detachment of insulin from its receptor, thereby re-
ducing insulin-stimulated intracellular signaling [46].
Treatment with supplemental bicarbonate, or changing the
diet to include vegetable and fruit instead of meat, can correct
the acidosis and preserve muscle mass and insulin sensitivity
while slowing CKD progression [47-49].

Potential Treatments for Insulin Resistance
in CKD

Lifestyle Modification

Intensive lifestyle modifications reduced progression to dia-
betes (58% reduction in 2.8 years) in people with impaired
glucose tolerance in the Diabetes Prevention Program (DPP)
[50]. These modifications consisted of intentional loss of at
least 7% of original body weight using a healthy, low-calorie
and low-fat diet and moderate physical activity for at least
150 min per week [50]. This impressive improvement even
exceeded that observed by treatment with metformin and
lasted in long-term follow-up of this cohort (27% reduction
after 15 years of follow-up) [S1e°].

Metformin

Metformin is a known insulin sensitizer with its main site of
action in the liver. It has been associated with improved body
composition and stabilization of body mass index (BMI) [52].
Treatment with metformin reduced progression to diabetes in
the DPP study (31 and 18% reduction after 2.8 and 15 years of
follow-up) [50, 51¢]. In addition, a recent systematic review
found metformin use in patients with moderate CKD, conges-
tive heart failure, and chronic liver disease conferred a 33%
reduction in all-cause mortality [53]. The US Food and Drug
Administration (FDA) recently relaxed its restriction for use
of metformin in patients with CKD [54]. Thus, randomized
trials maybe warranted to examine the impact of metformin on
renal and cardiovascular outcomes as well as mortality in pa-
tients with CKD.

Glucagon-Like Peptide-1 Receptor Agonists

Glucagon-like peptide (GLP) agonists, or the incretin mi-
metics, enhance glucose-dependent insulin secretion, slow
gastric emptying, and reduce postprandial glucagon and food
intake. Liraglutide improves cardiovascular and microvascu-
lar outcomes, including kidney disease, in people with diabe-
tes [55¢]. Glucagon-like peptide-1 receptor (GLP1) agonists
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improve insulin resistance in animal models [56]. However,
their impact on insulin resistance and its contribution to im-
proved renal and cardiovascular outcomes have been not ex-
amined in human trials.

SGLT2 Inhibitor

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel
class of oral diabetic agents which function by reducing renal
glucose reabsorption. The SGLT2 inhibitors empagliflozin and
canagliflozin slowed CKD progression and improved cardio-
vascular outcomes in people with diabetes and kidney disease
[14ee, 57¢e, 58e¢]. Interestingly canagliflozin improves muscle-
specific insulin sensitivity in Zucker diabetic rats [15¢].
Furthermore, in small trials, SGLT?2 inhibitors enhance insulin
sensitivity in people with diabetes, [59+, 60] an observation
which is physiologically consistent with the calorie deficit
and the resulting weight loss caused by this class of medica-
tions. However, the effect of SGLT?2 inhibitors on insulin resis-
tance has not been examined in patients with nondiabetic CKD.

Thiazolidinediones

The thiazolidinediones (TZDs) improve glucose tolerance by
enhancing insulin sensitivity. Use of rosiglitazone has been
complicated with an increase in heart failure. However, pioglit-
azone use is associated with significant protection from micro-
and macrovascular complications. Specifically, the Insulin
Resistance Intervention after Stroke (IRIS) trial examined the
use of pioglitazone in nondiabetic, high-risk patients after an
ischemic stroke or TIA [61¢e]. In patients with insulin resis-
tance, defined as a HOMA-IR score of > 3.0, treatment with
pioglitazone reduced subsequent stroke and acute coronary
syndrome [62¢]. Finally, in the PROspective pioglitAzone
Clinical Trial In macroVascular Events (PROactive) trial
pioglitazone-treated CKD patients were less likely to reach a
composite end points of all-cause mortality, MI, and stroke,
independent of the severity of renal impairment [63]. Future
trials are required to assess the impact of pioglitazone on insu-
lin resistance and renal outcomes.

Conclusions

Many CKD complications (e.g., inflammation/oxidative
stress, renin angiotensin aldosterone pathway activation, ure-
mic toxins, and metabolic acidosis) can lead to insulin resis-
tance. Several of these anomalies may stimulate insulin resis-
tance via similar mechanisms, for example overexpression of
SIRP«x, a mediator of insulin signaling in skeletal muscles.
Results of recent clinical trials have shown evidence that insu-
lin resistance can be modified and that this may lead to im-
provements in adverse outcomes of CKD. Promising avenues

of treatment include intensive lifestyle modification, metfor-
min, and TZDs as well as the newer diabetes agents such as
GLP1 agonists and SGLT?2 inhibitors. Future studies are need-
ed to identify optimal approaches for diagnosis and treatment
of insulin resistance in CKD, even in absence of diabetes.
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