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Abstract
Purpose of Review Autoimmune-mediated destruction of
insulin-producing β-cells within the pancreas results in type
1 diabetes (T1D), which is not yet preventable or curable.
Previously, our understanding of the β-cell specific T cell
repertoire was based on studies of autoreactive T cell re-
sponses in the peripheral blood of patients at risk for, or with,
T1D; more recently, investigations have included immunohis-
tochemical analysis of some Tcell specificities in the pancreas
from organ donors with T1D. Now, we are able to examine
live, islet-infiltrating T cells from donors with T1D.
Recent Findings Analysis of the T cell repertoire isolated di-
rectly from the pancreatic islets of donors with T1D revealed
pro-inflammatory T cells with targets of known autoantigens,
including proinsulin and glutamic acid decarboxylase, as well
as modified autoantigens.
Summary We have assayed the islet-infiltrating T cell reper-
toire for autoreactivity and function directly from the inflamed
islets of T1D organ donors. Design of durable treatments for

prevention of or therapy for T1D requires understanding this
repertoire.

Keywords Human . Tcell . Autoreactivity . Islets of
Langerhans

Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized
by the activation of lymphocytes that infiltrate and destroy
insulin-producing beta (β)-cells within the pancreatic islets
[1]. Loss of β cell number and function results in insulin
deficiency, and requires life-long insulin administration.
Because people with T1D require frequent blood glucose
monitoring along with intensive insulin therapy and the dis-
ease incidence is dramatically increasing, especially in young
children [2], there is an urgent need for effective therapies.
With this goal in mind, manywell-designed clinical trials have
been completed using immune therapies to prevent or stop β-
cell destruction, before or soon after disease onset [3]. To date,
no therapies have proven to be clinically beneficial. The need
exists to understand the immune cells infiltrating islets of hu-
man patients with T1D to define specific targets for therapies
and biomarkers of disease activity.

The human pancreas, and the islets which are naturally
embedded throughout the organ, needs to be accessed to ef-
fectively study and characterize islet-infiltrating lymphocytes
and fully understand the mechanisms of insulitis/β-cell death.
However, the pancreas is a retroperitoneal organ, predomi-
nantly involved in the exocrine production of enzymes for
the digestion of proteins, carbohydrates, and fat, making it
extremely difficult to access or biopsy. A recent trial involving
pancreatic biopsies of patients with new-onset T1Dwas halted
because of surgical complications [4]. Attempts to visualize or
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image islets using non-invasive methods are being developed,
but have not fully resolved nor defined insulitis, which is the
lymphocytic infiltration of the islets in T1D [5–7]. By neces-
sity, the study of autoreactive T cells in human T1D has come
from the analysis of autoantigen-specific T cells from periph-
eral blood [8–16]. Almost all of the studies evaluating cellular
infiltrates in the islets are gleaned from histology sections
from cadavers.

Compared to humans, animal models of autoimmune dia-
betes provide straightforward access to the target organs. The
non-obese diabetic (NOD) mouse model of spontaneous au-
toimmune diabetes shares many similarities with humans in-
cluding MHC genes conferring disease risk, the development
of insulin autoantibodies and insulitis [17]. Experiments eval-
uating NOD mouse islet-infiltrating T cells indicate the vast
majority are specific for β-cell antigens and transfer diabetes
to immune deficient (lacking T cells and B cells) NOD mice
[18, 19]. By mutating or knocking out β-cell antigens, such as
insulin or chromogranin A, CD4+ T cell responses to these
proteins have been shown to be necessary for the development
of autoimmune diabetes [20, 21]. Additionally, islet-derived
CD8+ T cells have been shown to be a major driver of β-cell
destruction by directly targeting and killing the β-cells [22,
23]. Furthermore, only β-cell antigen-specific CD8+ T cells
infiltrate NOD mouse islets. In another animal model of T1D,
the biobreeding (BB) rat, a variety of lymphoid cells infiltrate
the islets following a viral infection or innate immune system
activation [24].

Studying immune cells from the inflamed islets in animal
models has led to many therapies capable of preventing and
even reversing diabetes. Importantly, using antigens and pep-
tides that stimulate islet-infiltrating T cells, known as antigen-
specific immunotherapy, can induce long-lasting diabetes re-
mission. Unfortunately, the therapeutic results in animal
models have not translated to humans [25]. Studying the func-
tional biology of human islet-infiltrating T cells “at the scene
of the crime” will provide powerful new insights into the
autoimmune basis of human disease with the potential to im-
prove prevention efforts.

Pancreatic Histology and Autoreactive Tcells in T1D

The unusual infiltration of cells in the islets of a young child
who died from ketoacidosis was noted over a hundred years
ago (the history of insulitis is comprehensively reviewed in
[26]). In this review, In’t Veld makes the salient point that as of
2011, our knowledge of the histology and composition of
insulitis comes from approximately only 150 donors, and that
insulitic lesions are rare and heterogeneous, even in recent
onset donors. Here, we will highlight the donor tissue collec-
tions that have aided in implicating islet-infiltrating immune

cells, including CD4+ and CD8+ T cells, as the mediators of
pathogenesis in T1D.

The Willy Gepts collection consists of 22 pancreas tissue
samples from new or recent onset donors with T1D in
Brussels, Belgium in the 1960s (11 with insulitis) [27]. This
collection remains an important resource for studies into the
disease processes leading to T1D [27–30]. Stained pancreatic
sections from this collection are available in a digitized format
as part of the Diabetes BioBank Brussels (http://www.
diabetesbiobank.org/).

The Alan Foulis collection is a collection of autopsy pan-
creas samples recovered from nearly 200 individuals with new
or recent onset T1D, from across the UK, who died shortly
after receiving a diagnosis of T1D. This collection is now
housed at the University of Exeter Medical School.
Examples of infiltrated islets from cases can be seen here
(http://foulis.vub.ac.be/index.php). From this collection,
immune dysregulation was seen within the islets from new-
onset donors with T1D by noting the upregulation of human
leukocyte antigen (HLA) class II, and especially HLA class I,
within inflamed islets and the pro-inflammatory phenotype of
immune cells infiltrating the islets [31–36]. This collection is
still in use today.

The Network of Pancreatic Organ Donors with Diabetes
(nPOD) (http://www.jdrfnpod.org/) was established by the
Juvenile Diabetes Research Foundation (JDRF) in 2007 in
order to collect tissue from donors with T1D and to distribute
these tissues to investigators while fostering collaboration and
interaction to understand the etiology of human T1D. To date,
there are over 160 cases of donors with T1D across the disease
spectrum: islet autoantibody positive (30 donors) in the ab-
sence of diabetes, recent onset and established disease (130
donors. For a complete list of donors see, http://www.
jdrfnpod.org/ for- inves t igators /donor-groups/ . In
histopathological analyses of the pancreata from donors with
T1D, detection of insulitis was rare (in 3–18% of islets) [37,
38]. Insulitis can be found in both islets containing insulin and
islets without insulin and restricted to a single pancreatic lobe
or located in several lobes of different areas of the pancreas
[39, 40]. The current histopathological definition of insulitis is
“the presence of ≥ 15 CD45+ leukocytes/islet (alternatively
≥ 6 CD3+ lymphocytes) in three islets with the presence of
pseudoatrophic (insulin-negative) islets” [38], though con-
tinuing discussions and efforts examine this issue [41•].

Pancreas Tissue From Living Patients Two studies (the
Osaka Study and the DiViD Study) have sought to examine
pancreas tissue from living donors; the most recent of these
was terminated due to adverse events suffered by the donors
[4]. While these studies were not without controversy [42],
they generated important information on the nature of the
pancreas, islets, and infiltrates in patients with recent onset
T1D, which is quite rare.
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Osaka University Collection While acknowledging that dif-
ference in HLA genotypes, age, or other pathogenic factors
may play a role in the etiology of T1D, these studies from
Japan are included here as these collections are rare. In addition
to observation of rare insulitis and frequent lymphocytic infil-
trate in the exocrine tissue in the pancreas from donors with
T1D [43, 44], researchers from Osaka University Medical
School recovered by pancreas tissue by biopsy from patients
with newly diagnosed T1D and found detectable insulitis in
approximately 50% of donors [45, 46]. The insulitis was com-
posed of CD4+ and CD8+ T cells, B cells, and macrophages
with noted HLA class I molecule hyperexpression in islets,
intercellular adhesion molecule-1 (ICAM-1) expression on en-
dothelial cells [47], and markers of an activated and pro-
inflammatory environment were detected on infiltrating im-
mune cells. Specifically, the costimulatory molecules CD80
and CD86 were expressed on CD3+ islet-infiltrating T cells
[45] and Fas ligand was expressed by islet and endothelial cells
within the islets [48]. Specific Tcell receptor (TCR) clonotypes
were over-represented in infiltrated islets with interferon-γ
(IFN-γ) mRNA present [49]. CXC chemokine ligand 10
(CXCL10) was expressed on insulin+ cells within islets and
CXCR3 was expressed on CD3+ T cells [50]. In addition,
tumor necrosis factor alpha (TNF-α) expressing, islet-
infiltrating macrophages, and dendritic cells were seen [51].

In the DiViD study [4, 52•], insulitis was detected in all six
recent onset donors with 5–58%of the insulin-expressing islets
having insulitis of ≥ 15 Tcells/islet [53•] with different patterns
of B cell composition of the insulitis [54•]. The CD8+ T cells
w e r e t i s s u e r e s i d e n t m emo r y T c e l l s ( T RM )
(CD8+CD69+CD103+), but without expression of mRNA spe-
cies associated with acute cytotoxicity or inflammation [55•].
In contrast, interferon-stimulated genes and CXCL10 were
shown to be upregulated in the islet core as compared to
peri-islet tissue [56•].

HLA Associations in T1D Genetic association studies have
revealed that the HLA class II region has the strongest impact
on risk of T1D [57•]. HLA-DQ2 (DQA*05:01, DQB*02:01)
and DQ8 (DQ*A03:01, DQB*03:02) confer the greatest risk
of developing T1D of any HLA alleles [58]. Individuals who
are heterozygous for HLA-DQ2 and HLA-DQ8 are at greater
risk of developing T1D than those with either HLA-DQ2 or
HLA-DQ8 alone [59]. Antigen-presenting cells from HLA-
DQ2, DQ8 heterozygous individuals express an HLA-DQ8
transdimer composed of the DQ2α chain paired with the
HLA-DQ8β chain (DQA*05:01; DQB*03:02) and a DQ2
transdimer where the DQ8β pairs with DQ2α
(DQA1*03:01; DQB1*02:01) [60]. These transdimers
may promote β-cell autoimmunity by presenting unique
diabetogenic epitopes, or the high density of T1D-
promoting HLA molecules (DQ2, DQ8, DQ2trans and

DQ8trans) may promote autoimmune CD4+ T cell re-
sponses against β-cell antigens [60, 61].

It is now clear that T cell responses to (pro)insulin
are essential for the development of T1D in the NOD
mouse [21, 62, 63]. Evidence continues to accumulate
to support the role of (pro)insulin as an autoantigen in
human T1D [64]. Genetic association studies have im-
plicated proinsulin because a T1D susceptibility locus
maps to a polymorphism of variable number of tandem
repeats upstream of the insulin gene [65, 66]. This poly-
morphism is believed to modulate proinsulin expression
in the thymus affecting central tolerance to this mole-
cule [65–67]. Many studies have attempted to detect
proinsulin specific CD4+ T cell responses in the periph-
eral blood mononuclear cells (PBMC) of patients with
T1D and healthy control subjects [16]. Using sensitive
methods capable of detecting very rare T cells, some
investigators could detect weak responses to proinsulin
peptides [68]. However, these CD4+ T cells could not
be analyzed in detail. Furthermore, T cells isolated from
the pancreatic lymph nodes (PLN) of deceased tissue
donors with T1D were reported to be insulin specific
and HLA-DR4 restricted [69].

Autoreactive CD8+ T Cells Detected In Situ in Islets The
antigen specificity of human islet-infiltrating T cells was
first addressed by Coppetiers et al. [39] by using HLA-
A2 tetramers loaded with known β-cell epitopes to stain
pancreas sections from organ donors with T1D. This
seminal work showed for the first time that CD8+ T
cells infiltrated human islets in T1D and that these T
cells were specific for epitopes of human glutamic acid
decarboxylase 65 (GAD65), islet antigen 2 (IA-2, previ-
ously known as ICA-512), insulin and islet-specific
glucose-6-phosphatase catalytic subunit-related protein
(IGRP). However, this study did not address the speci-
ficity of all islet-infiltrating CD8+ T cells or the T cell
receptor (TCR) genes used by these cells.

Cloning Islet-Infiltrating T Cells Identification of clinically
relevant T cells and their antigens/epitopes has progressed
slowly because β-cell antigen specific T cells are present at
low frequencies in peripheral blood, pushing even the most
sensitive assays to their limits [13, 16]. Moreover, it requires
knowledge of the antigen or access to quantities of human
islets. Evidence for a T1D-associated response in PBMCwere
invariably weak [14, 70, 71]. Isolating CD4+ T cell clones,
based on their responses to β-cell antigens [11], allowed for
some epitopes to be defined in detail [8, 12, 15]. It has become
clear that a detailed understanding of the T cell responses
against β-cells within the pancreatic islets would be essential
to gain insights into the immunopathogenesis of human T1D.
In doing so, one must consider the sample purity and T cell
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source when interpreting data derived from such studies since
islets from control individuals [72•] and acinar tissue [73••] in
pancreata can contain immune cells.

The first report describing the isolation and analysis
of viable human islet-infiltrating CD4+ Tcells was published in
2015 [74••]. Islets isolated from a 19-year-old tissue donor who
had T1D for 3 years were cultured with IL-2 and IL-15 for
10 days. Under these conditions, T cells emerged from some
of the islets. These T cells were cloned by fluorescent-activated
cell sorting (FACS) sorting. Cloned cells were screened against

a panel of overlapping peptides that mimicked the entire se-
quence of proinsulin. In addition, 26 peptides from GAD65,
IA-2, IGRP, zinc transporter 8 (ZnT8), and heat-shock protein
6 (HSP-6) that were previously reported to be CD4+ T cell
epitopes in earlier studies were tested, but none of them stimu-
lated any of the T cell clones. Remarkably, all of the CD4+ T
cell clones for which an epitope could be identified were re-
stricted by HLA-DQ8, or HLA-DQ8 transdimers—HLA mol-
ecules strongly implicated in the pathogenesis of human T1D
(Table 1, Fig. 1 and [74••]).'

Table 1 Islet donor characteristics and specific autoreactivity of islet-derived T cells

Organ donor
ID

Age
(years)

Sex T1D duration
(years)

Donor HLA T cell Autoantigen HLA restriction Reference

Donor A 19 M 3 A1, A2
B8, B51
DR3, DR4
DQ2, DQ8

8 CD4+ T cell clones Proinsulin42–50 DQ8 [74••]
1 CD4+ T cell clone Proinsulin41–51 DQ8 [74••]
1 CD4+ T cell clone Proinsulin41–49 DQ8 [74••]
1 CD4+ T cell clone Proinsulin50–59 DQ8 [74••]
1 CD4+ T cell clone Proinsulin50–58 DQ8 [74••]
2 CD4+ T cell clones Proinsulin52–62 DQ8transa [74••]
1 CD4+ T cell clone HIP C-peptide: IAPP2b DQ8 [75••]
1 CD4+ T cell clones HIP C-peptide: IAPP2b DQ8 [75••]

nPOD6342 14 F 2 A2, A68
DR1, DR4
DQ5, DQ8

1 CD4+ T-cell clone GAD274–286 DR4c [76••]
1 CD4+ Transductant

(GSE.20D11)d
Insulin B9–23 DQ8 [77••]

nPOD6367 24 M 2 A2, A29
DR4, DR7
DQ2, DQ8

1 CD4+ T cell line HIP C-peptide:A-chainb ND [76••]

nPOD6268 12 F 3 A2, A68
DR17, DR13
DQ2, DQ6

3 CD8+ T cell lines Pooled insulin B10–18,
IA-2797–805, IGRP265–273
tetramers

A*02:01 [76••]

nPOD69 6 F 3 A2, A26
DR4, DR7
DQ2, DQ8

1 CD4+ T cell line Proinsulin76–90
e DR4c [76••]

1 CD4+ T cell line Chromogranin Af ND [76••]
2 CD4+ T cell lines Proinsulinf ND [76••]

nPOD6323 22 F 6 A1, A25
DR4, DR17
DQ2, DQ8

1 CD4+ T cell line Chromogranin Af ND [76••]
1 CD4+ T cell line HIP C-peptide:IAPP1b ND [76••]
1 CD4+ T cell line HIP C-peptide: IAPP2b ND [76••]
1 CD4+ T cell line GRP78292–305(Arg-Cit 297) ND [76••]
1 CD4+ Transductant

(GSE.8E3)d
Proinsulin49–65 DQ8transa [77••]

1 CD4+ Transductant
(GSE.6H9)d

Insulin B9–23 DQ8 [77••]

T1D.6 20 M 7 A2, −
DR17, DR4
DQ2, DQ8

1 CD4+ T cell line GAD555–567 DR4c [76••]
1 CD4+ T cell line HIP C-peptide:NP-Yb DQ8 [75••, 76••]

T1D.7 27 M 17 A1, A3
DR17, DR4
DQ2, DQ8

1 CD4+ T cell clone IAPP65–84(Arg-Cit 73, 81) ND [76••]
1 CD4+ T cell clone GAD115–127 ND [76••]
1 CD4+ T cell clone IA-2545–562(Gln-Glu 548, 551, 556) ND [76••]

The age, gender, HLA, and duration of T1D of the islet donors are shown along with the original citations. In this on-going project, these are the
autoreactivities of islet-infiltrating T cell lines or clones identified, to date, and the donors from which the islet-infiltrating Tcells were derived. (Adapted
from: Babon JA, et al. Nat Med. 2016;22:1482–1487) [76••]

ND not determined
aHLA-DQ8trans: DQA1*05:01/DQB1*03:02
bHIP hybrid insulin peptide: fusion of a human insulin C-peptide fragment (N-terminus ELGGG) with a fragment of another peptide (A-chain insulin A-
chain fragment, IAPP1 and 2 two islet amyloid polypeptide fragments, NP-Y neuropeptide Y fragment)
c HLA-DR4 were all HLA-DRB1*04:01
d Clonal CD4+ T-cell receptor transductant
e Proinsulin76-90 (SLQPLALEGSLQKRG) is designated Proinsulin52-66 by numbering starting with the B chain
f Epitopes not identified
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Using a similar strategy [76••], the isolated islets from nine
donors with T1D (2–20 years duration of T1D, received 2–
5 days following brain death) were handpicked for increased
purity and divided into two aliquots that were treated in two
parallel methods. The first aliquot of 100 isolated handpicked
islets were dispersed with enzyme, stained for viability and
immune cell surface markers, and then immediately detected
and sorted by FACS. By doing so, an “ex vivo” or “ex islet”
profile of islet-infiltrating T cells could be seen along with
single T cell sorting for expansion. From these donors, there
were 202 ± 404 CD4+ Tcells and 119 ± 189 CD8+ Tcells (per
100 islets) for a CD4+:CD8+ ratio of 1.7:1. From the isolated,
handpicked islets of seven control donors and from two do-
nors with type 2 diabetes, a few CD8+ T cells were seen from
only one of the control donors. The second aliquot of 100
handpicked islets was plated on a gel matrix with T cell recep-
tor stimulation and cytokines for growth. After 10 days in
culture, cellular outgrowths were seen only in the islets from
donors with T1D, with an average of 26% of the plated islets.
These outgrowths were collected, characterized for CD4+ and
CD8+ T cells, and expanded.

The autoreactivity from 50 lines (grown from individual
islets from donors) or from sorted clones from donor islets
was tested with panels of known islet-protein associated pep-
tide targets and to modified peptides using either HLA-
matched Epstein Barr virus (EBV)-transformed B cells or au-
tologous splenic EBV-transformed B cells. To date, we have
identified the reactivity of 18 of the T cell lines or clones
(Table 1, Fig. 1 and [76••]).

Ex vivo Sequencing of TCR From Islet - Infiltrating T
Cells An alternate, but complementary approach to study
islet-infiltrating T cells was carried out by single cell sorting
islet-infiltrating CD4+ and CD8+ T cells after short-term cul-
ture, followed by TCR sequencing of individual cells [77••].
Subsequently, the TCR α/β chains were transduced in a TCR
null cell line, termed TCR transductants, and tested for antigen
specificity to overlapping preproinsulin peptides and other
well-characterized islet antigens. Isolated islets from three re-
cent onset T1D organ donors were studied in this manner, all
of which were also evaluated by Babon and colleagues by
functional T cell analysis (Table 1). It was possible to isolate
hundreds to thousands of T cells from 500 islet equivalents.
Analysis of α/β TCR sequences revealed diversity within
CD4+ T cells with about 15–20% of sequences detected more
than two times from two separate donors [77••]. CD8+ TCR
sequences revealed more clonality with 1/3 to 1/2 of all se-
quences in the same donor repeated > 2 times [77••].
Interestingly, the majority of repeatedly detected TCR se-
quences were found from separate islet preps in the same
donor, indicating that clonally expanded T cells have the abil-
ity to migrate to different islets in the pancreas. None of the
TCR sequences, CD4+ or CD8+, were shared between pa-
tients. This could be due to the fact that only three patients
with slightly different HLA genes were studied and larger
numbers may reveal more clustering of TCR usage.

Others have studied TCRβ chain usage among islet-
infiltrating T cells from histologic sections [78] and isolated
islets [79] or from the PLN [69] from donors with T1D,

FVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

DQ8trans

DQ8trans

DQ8

DQ8/DQ8trans

DQ8

DQ8

DQ8

IAPP2

NP-Y

IAPP1

INS-A

Ref. 76

Ref. 77

Insulin B-Chain Insulin A ChainC-Peptide

Human Proinsulin

IAPP2

x10 (5)

x2 (2)

x2 (1)

x2 (2)

Ref. 74

Ref. 75    , 76  

DR4DR4

Fig. 1 Proinsulin-derived epitopes recognized by human islet-infiltrating
CD4+ T cells. The boxes indicate regions of human proinsulin for which
CD4+ T cell epitopes have been mapped examining human islet-
infiltrating T-cells from multiple donors with T1D. Two-colored boxes
indicate hybrid insulin peptides (HIPs) and are placed to align with the
proinsulin part of the epitope, with the other half of the HIP is as labeled:
islet amyloid polyprotein (IAPP), neuropeptide Y (NP-Y), insulin A-

chain (INS-A). Horizontal lines indicate the epitopes described in each
study (references shown on the right). For epitopes that an HLA
restriction have been determined, the restricting HLA allele is shown
within the box. In some cases, several clones have been isolated that
recognize the same, or very similar epitopes indicated by the numbers
(i.e., x2). The number of unique TCRαβ sequences expressed by these
clones is shown in parenthesis
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finding some skewing of certain TCRVβ families with higher
frequencies than in the spleen or peripheral blood. Some
skewing of TCRVα chains has been seen [49]. The largest
effort to profile TCR sequences from donor tissues from indi-
viduals with T1D comes from Brusko and colleagues within
the nPOD consortium [80••]. Tissue donors with T1D (n = 18)
and non-diabetic controls (n = 9) had PLN, nonpancreatic
lymph nodes, spleen, and peripheral blood FACS sorted into
T cell subsets and TCRVβ chains sequenced. Within a single
individual, there was evidence of TCR clonal expansion that
could be traced from PLN to spleen to peripheral blood, espe-
cially within CD8+ T cells; however, there was limited TCR
clonal sharing across T1D donors. However, the TCRVβ
CDR3 region of a known GAD-restricted CD4+ T cell clone
[81] was identified within the PLN of seven donors. From
these studies, it appears that larger numbers of HLA-
matched patients need to be studied with a focus on targeted
searched for antigen-specific T cells.

Autoantigen Specificity of Islet-Infiltrating T Cells

Proinsulin Epitopes Proinsulin, the precursor of insulin, has
been a strong candidate antigen in the pathogenesis of human
T1D for many years [64, 82, 83]. Several lines of evidence
suggest that proinsulin is recognized by the adaptive immune
response that drives β-cell destruction. For example, autoan-
tibodies to (pro)insulin precede the onset of T1D [84] and
genetic polymorphisms in the insulin promoter modulate risk
of T1D [65]. Now that several human islet-infiltrating CD4+ T
cell clones specific for proinsulin epitopes have been de-
scribed, the evidence against proinsulin is very strong. All
but one epitope recognized by human islet-infiltrating CD4+

Tcells derived from the C-peptide region of proinsulin, which
is not present in administered insulin (Table 1 and Fig. 1). Two
CD4+ TCR transductants responding to insulin B chain amino
acids 9–23 (B:9–23) presented by either DQ8 or DQ8trans
were identified from two separate tissue donors with T1D
[77••]. This epitope is known to play a critical role in NOD
mouse diabetes development [21] and has been well-
characterized from the peripheral blood of patients with T1D
[85–87]. Another identical antigen-specific CD4+ T cell re-
sponse has been reported to amino acids 19–35 within C-
peptide presented by DQ8trans from two separate patients
identified in different laboratories [74••, 77••] (Table 1 and
Fig. 1). This indicates the distinct possibility of common epi-
topes stimulating islet-derived CD4+ T cells, even after the
clinical onset of T1D.

Additional Known Islet Epitopes A large bank of T cells
directly sorted from or directly grown from individual islets
of nine donors with T1D includes a total of 236 lines or
clones: 111 CD4+ T cell lines or clones, 23 CD8+ T cell lines

or clones, and 102 lines grown from individual islets that were
mixtures of both CD4+ T cells and CD8+ T cells. Initial anal-
ysis found a broad repertoire of T cell autoreactivity to a num-
ber of known target epitopes and to a number of modified
epitopes [76••]. To date, we have identified the reactivity of
15 CD4+ T cell lines or clones and three CD8+ T cells lines
(Table 1). Proinsulin was the target of four of the islet-
infiltrating lines: a CD4+ T cell line reactive with an HLA
DRB1*04:01 restricted proinsulin76–90 epitope and two
CD4+ T cell lines reactive with as-yet-unidentified proinsulin
epitope(s). Other known CD4+ targets included three epitopes
of GAD65 and a CD4+ Tcell line reactive with an unidentified
epitope of chromogranin A. Three CD8+ T cell lines reacted
with pools of HLA-A2 multimers loaded with previously
identified [88] peptides from insulin, IA-2 and IGRP. It should
be noted that all donors (Table 1) were recovered after diag-
nosis of T1D and have been on an insulin regimen since di-
agnosis. In addition, we must consider epitope spreading as a
mechanism of multiple targets of autoimmunity after diagno-
sis [89]. The remaining islet-infiltrating CD4+ Tcell and CD8+

T cell lines and clones from this bank are under current
investigation.

Post-Translationally Modified Epitopes Epitopes generated
by post-translational modification have been implicated in the
pathogenesis of many autoimmune diseases [90], including
T1D [91, 92]. Epitopes formed by post-translational disulfide
bond rearrangement in insulin [12], glutamine deamidation of
several islet-associated proteins [93•], and the conversion of
arginine to citrulline have all be reported for GAD65 [91].
From the large bank of islet-infiltrating T cells [76••], islet-
derived CD4+ T cell lines and clones were reactive to an epi-
tope of glucose-regulated protein 78 (GRP78) with an argi-
nine to citrulline modification (GRP78292–305(Arg-Cit 297)), an
epitope of islet amyloid polypeptide (IAPP) with two arginine
to citrulline modifications (IAPP65–84 (Arg-Cit 73,81)), and an
epitope of IA-2 with three glutamine to glutamic acid
deamidations (IA-2545-562(Gln-Glu 548, 551, 556)).

Hybrid Insulin Peptide (HIP) Epitopes A new type of post-
translation modification, the formation of hybrid peptides by
transpeptidation, was recently reported to generate neo-
epitopes recognized by NOD mouse and human CD4+ T cells
[75••]. Human islet-infiltrating CD4+ Tcells, isolated from the
residual pancreatic islets of deceased organ donors who suf-
fered from T1D were found to recognize hybrid insulin pep-
tides (HIPs). Two HIPs were shown to be the targets of a
human islet-derived CD4+ T cell clone and a human islet-
derived CD4+ T cell line: a C-peptide:IAPP2 and a C-
peptide:neuropeptide-Y HIP, respectively [75••]. Synthetic
peptides of these sequences were very also potent stimulators
of these T cells, with responses being detected at low
nanomolar concentrations. Interestingly, some of these clones
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are restricted by HLA-DQ8, which is strongly associated with
risk of T1D in humans [57•, 58].

The presence of human HIP specific CD4+ T cells in the
pancreatic islets of organ donors who suffered from T1D was
confirmed recently. Babon et al. [76••] reported that T cell
responses to HIPs formed by the fusion of C-peptide and
peptides from IAPP1, IAPP2, or insulin A-chain could all be
detected in CD4+ Tcell lines derived the islets of organ donors
who suffered from T1D.

Function of Islet-Infiltrating T Cells In addition to the
autoantigenic reactivity of islet-infiltrating T-cells, identifica-
tion of their effector functions is critical for understanding and
intervening with their function in potential therapies. In exam-
ining the autoreactive CD4+ T cells from the large bank of
islet-infiltrating T cells from nine donors with T1D, we found
that, upon stimulation with specific peptide-pulsed HLA-
matched or autologous EBV-transformed B cells, all
autoreactive CD4+ T cell lines or clones secreted interleukin
(IL)-2, IFN-γ and/or TNF-α and none of lines or clones se-
creted any detectable IL-4, IL-5, IL-10, or IL-17a [76••]; this
was done with low passage number lines and clones. This will
be an important line of investigation to continue with the in-
clusion of a variety of methods to fully understand the func-
tion of the islet-infiltrating T cells.

Pathogenicity There is a strong “circumstantial” case to be
made that human islet-infiltrating T cells cause T1D.
Recurrence of autoimmunity has been seen following islet
transplantation [94–96], indicating that autoimmunity must
be controlled in those with long-term T1D for whom islet
regeneration or replacement may be a therapeutic option.
The best possible evidence linking human T cells to the de-
velopment of T1D is to analyze them directly from infiltrated
islets. This has the advantage that no bias, due to selection
based on antigen specificity, is introduced: T cells are selected
solely by their location within the affected tissue of individ-
uals with the disease.

Future Directions This is an on-going analysis of large banks
of islet-infiltrating T cells from a number of donors across
three laboratories that will include analyses such as epitope
discovery, functional analyses, and transcriptome analyses for
both CD4+ and CD8+ islet-derived T cell clones, lines, and
transductants. These analyses will most likely expand to other
laboratories as additional techniques and expertise is required
to obtain a comprehensive analysis of the islet-infiltrating T
cell repertoire. For example, these studies can be paired with
in situ staining of pancreata from the same donors for global
phenotype and specific autoreactivity with HLA multimers of
islet-infiltrating T cells and transcriptome analyses of islets
recovered by laser microcapture.

We anticipate the recovery of more donors with T1D. In
order to begin to define common antigens that may be targeted
early in the disease process, through the efforts of nPOD, the
recovery of donors with circulating T1D-associated autoanti-
body, but without a diagnosis of T1D will be pursued.
Nonetheless, the isolation of islet-infiltrating T cells from
these samples may be challenging [97–100].

A major goal of any immunotherapy is to monitor patients’
responses to that therapy, which can only be done by sampling
peripheral blood. However, to perform the correct comparison
of the T cell repertoire infiltrating a donor’s islets to the rep-
ertoire found in that donor’s peripheral blood is a challenge.
For these tissue donors, peripheral blood is either unavailable
or in quantities insufficient for current analyses. To overcome
this, we must first understand the islet-infiltrating T cell rep-
ertoire and then examine the peripheral blood of HLA-
matched individuals at risk for T1D and at different stages
of T1D. Ultimately, we will apply this knowledge to develop
biomarkers of disease activity and improve antigen-specific
therapy.

Conclusions

Through the collaborative efforts of many individuals, consor-
tia, institutions, and families of donors, we are now able, for
the first time, to directly assay the repertoire and function of
islet-infiltrating immune cells. Here, across three laboratories,
we have isolated both CD4+ and CD8+ T cells directly from
the islets of donors with T1D and have seen remarkable sim-
ilarity in CD4+ autoreactivity to known islet-associated pro-
teins (peptides from proinsulin, GAD65, and, chromogranin
A), with post-translationally modified peptides, with arginine-
citrulline modifications or deamidations, peptides from islet-
associated proteins (GRP78, IAPP, IA-2), or to a number of
hybrid insulin peptides. Both CD4+ and CD8+ T cell clonality
has been observed, but with noted diversity of the TCR from
islet-infiltrating T cells. To date, the islet-infiltrating CD4+ T
cells have exhibited a pro-inflammatory phenotype. This is an
active, on-going investigation that will yield critical informa-
tion on the repertoire and function of islet-infiltrating T cells
and inform the design of therapies for T1D.
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