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Abstract
Purpose of Review Deciphering the mechanisms of type 2
diabetes (T2DM) risk loci can greatly inform on disease pa-
thology. This review discusses current knowledge of mecha-
nisms through which genetic variants influence T2DM risk
and considerations for future studies.
Recent Findings Over 100 T2DM risk loci to date have been
identified. Candidate causal variants at risk loci map predom-
inantly to non-coding sequence. Physiological, epigenomic
and gene expression data suggest that variants at many known
T2DM risk loci affect pancreatic islet regulation, although
variants at other loci also affect protein function and regulato-
ry processes in adipose, pre-adipose, liver, skeletal muscle and
brain. The effects of T2DM variants on regulatory activity in
these tissues appear largely, but not exclusively, due to altered
transcription factor binding. Putative target genes of T2DM
variants have been defined at an increasing number of loci and
some, such as FTO, may entail several genes and multiple
tissues. Gene networks in islets and adipocytes have been
implicated in T2DM risk, although the molecular pathways
of risk genes remain largely undefined.
Summary Efforts to fully define the mechanisms of T2DM
risk loci are just beginning. Continued identification of risk
mechanisms will benefit from combining genetic fine-
mapping with detailed phenotypic association data, high-
throughput epigenomics data from diabetes-relevant tissue,

functional screening of candidate genes and genome editing
of cellular and animal models.
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Introduction

Type 2 diabetes (T2DM) affects over 400 million people
worldwide and is one of the major challenges in modern
health [1]. Genetic association studies have identified over
100 loci that influence T2DM risk, and recent studies have
argued that many additional risk loci remain to be discovered
[2••]. These loci predominantly have small to moderate effects
on individual predisposition to T2DM, complicating the clin-
ical translation of genetic information directly. Each locus,
however, contains molecular and cellular mechanisms
through which risk variants functionally contribute to disease.
Deciphering these mechanisms is paramount to a greater un-
derstanding of T2DMpathogenesis and can potentially inform
novel avenues for disease prevention, therapies and
treatments.

Evaluation of T2DM risk locus mechanisms involves a
variety of complementary approaches that include dense
T2DM genetic data, physiological trait data, genome and epi-
genome annotation, quantitative trait locus (QTL) mapping
and cellular and animal modelling. Advances in genetics, ge-
nomics and cellular modelling technology have enabled more
precise identification of risk locus mechanisms using these
approaches. Here, I discuss recent advances in applying these
and other approaches to identify mechanisms of T2DM risk as
well as considerations for future studies.
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Identification of Causal Variants at T2DM Loci

Risk loci identified in genetic studies of T2DM often contain
many associated variants due to linkage disequilibrium be-
tween variants in the human genome [2••, 3, 4]. Genetic stud-
ies traditionally report the most significantly associated vari-
ant at a given locus, or ‘index’ variant [3, 5], although this
variant is not necessarily causal for T2DM. The majority of
associated variants at a given locus are not causal and only
correlate with the true causal variant(s) because of linkage
disequilibrium. Resolving which specific variants are causal
at a risk locus is critical to subsequently understanding molec-
ular functions of these loci.

Genetic fine mapping is a common strategy for resolving
causal variants, whereby a comprehensive set of genetic var-
iants across a locus is genotyped or imputed and evaluated in
large sample sets [6]. A study of genotyping data from the
Metabochip microarray fine-mapped 39 known T2DM loci
using Bayesian methods [7], and at the MTNR1B locus re-
solved a single variant, rs10830963, with >99% probability
of being causal for T2DM risk [7].Whole-genome sequencing
of T2DM samples combined with imputation into GWAS data
from 55 k samples fine-mapped 81 known T2DM loci and at
several loci identified candidate variants with high causal
probabilities that were not assayed in previous studies [2••].
One useful strategy to further improve resolution of causal
variants through fine mapping is using genetic data from dif-
ferent ethnicities, assuming a causal variant is shared across
ethnic backgrounds [8]. A study of T2DM using data of sam-
ples from European, Hispanic, East Asian and South Asian
ancestry fine-mapped 10 known T2DM signals and reduced
the set of variants likely causal for these signals [8].

Dense genetic data also facilitates the identification of ad-
ditional risk variants at loci that have distinct effects on T2DM
risk [2••, 7]. For example, in a T2DM fine-mapping study of
39 loci, conditional analyses identified 49 total distinct com-
mon variant risk signals including 5 signals at the KCNQ1
locus, 3 signals at the HNF1A locus and 2 signals at several
additional loci [7]. Common risk loci also harbour lower fre-
quency risk variants, such as at the CCND2, PPARG and IRS1
loci identified in genome sequencing of T2DM samples [2••,
9]. Moving forward, in addition to genome sequencing, stud-
ies imputing genotype data from T2DM cohorts and Biobanks
into large reference panels will facilitate continued fine-
mapping of causal variants [10, 11].

Physiological Association of T2DM Variants

Genetic association data of quantitative measures relevant to
T2DM pathogenesis can provide key insight into the mecha-
nisms of a diabetes risk locus.

The canonical example of physiology at T2DM signals is
the FTO locus, which has a primary effect on bodymass index
(BMI) and obesity [12]. Studies have more broadly deter-
mined the effect of T2DM risk variants on measures of fasting
glycemia such as glucose and insulin levels [13, 14].
Homeostasis model assessment (HOMA) derived from these
measures provides likely effects on pancreatic beta cell func-
tion and insulin secretion (HOMA-B) and insulin resistance
(HOMA-IR) [5]. Cataloguing T2DM loci based on these mea-
sures revealed a clear distinction between loci that influence
insulin secretion and insulin sensitivity [5]. A larger percent-
age of loci from these analyses influenced insulin secretion,
suggesting that this is the predominant mechanism of current-
ly known T2DM loci. Additional glycemic measures such as
HbA1C, proinsulin level, 2 h glucose response and glucose-
stimulated insulin secretion (GSIS) [15–19], as well as phe-
notypes such as lipid levels [20] and anthropometric traits
[21–23], are also relevant to T2DM pathophysiology.

Patterns of quantitative trait associations can also help iden-
tify groups of T2DM loci with shared physiology and, by
extension, potential shared mechanisms. For example, many
variants that influence BMI appear to affect neuronal func-
tions and variants that influence glucose levels, HOMA-B
and related phenotypes appear to affect pancreatic islet func-
tions [22, 24]. A study used several glycemic measures to
define distinct clusters of loci influencing insulin sensitivity,
insulin secretion and insulin processing [25]. The majority of
loci, however, could not be assigned to a cluster, suggesting
that association data from larger studies of these physiological
measures are needed.

Not all risk loci will necessarily affect normal physiology
and instead, for example, influence progression or exacerba-
tion of T2DM in pre-diabetic individuals. T2DM loci also
influence other complex diseases such as T1D [26], other
autoimmune disease [27], cancer [28] and neurodegenerative
disease [29]. Finally, the increasing availability of richly
phenotyped cohorts such as those from biobanks further en-
ables ‘phenome-wide’ studies of hundreds of human pheno-
types and diseases [10, 30, 31]. Moving forward, these asso-
ciations can be exploited to gain additional clues into the
mechanisms of T2DM loci.

Consequences of T2DM Variants on Genome
Function

Determining the genomic consequences of variants causal for
T2DM risk is closely linked to functional annotation of the
genome.

Protein-coding variants are causal candidates for risk sig-
nals at several loci including SLC30A8, GCKR, PPARG,
KCNJ11, ABCC8, HNF1A and HNF4A [3, 7]. Relatively
few T2DM loci, however, are likely explained by a protein-

72 Page 2 of 10 Curr Diab Rep (2017) 17: 72



coding variant. The majority of loci instead map to non-
coding sequence, implying that they likely affect gene regula-
tion [7]. Regulatory processes are often cell type specific and
require data generated in each cell type [32, 33]. High-
throughput techniques provide genome-wide maps of cell
type epigenomes, including accessible chromatin (ATAC-
seq, DHS-seq, FAIRE-seq), histone tail modifications and
transcription factor binding (ChIP-seq) and DNA methylation
(WGBS) [34–36]. Consortia such as ENCODE and the NIH
Epigenome Roadmap have used these assays to map the epi-
genome of hundreds of human cell lines and primary tissues
[32, 37]. Additional studies have focused on profiling the
epigenome of specific diabetes-relevant tissues such as islets,
skeletal muscle and adipose [24, 38–40].

Variants known to affect regulatory activity are listed
in Table 1. A common strategy is to identify candidate
variants that overlap epigenome annotations from
T2DM-relevant tissues. A study of islet FAIRE-seq re-
vealed that rs7903146 at TCF7L2 lies in islet accessible
chromatin [36], which genetic studies support as the most
likely causal variant for this locus [7]. Candidate T2DM
variants in islet regulatory sites defined using ChIP-seq,
FAIRE-seq and DHS-seq have also been reported at
MTNR1B [7], JAZF1 [41], CDC123/CAMK1D [42],
ZFAND3 [24], WFS1 [43], KCNK16/17 [44], KCNQ1
[45] and CENTD2 [46•, 47]. T2DM variants also overlap
regulatory sites active in other tissues such as skeletal
muscle at ANK1 [40], adipose at PPARG [48] and pre-
adipose and brain at FTO [49••, 50, 51]. Experiments
have then confirmed the allelic effects of these candidate
variants on cell-type regulatory activity, for example
through gene reporter assays or correlating variant

genotypes to molecular outputs using allelic imbalance
or QTL mapping. For example, at TCF7L2, the risk allele
of rs7903146 correlated with increased accessible chro-
matin in islet samples and had increased reporter activity
in islet cell lines [36]. At some loci, such as PPARG and
FTO, multiple functional variants may exist on the same
risk haplotype. These studies demonstrate that variants at
specific T2DM loci affect regulatory activity in islets, as
well as other disease-relevant tissues such as adipose,
muscle and brain.

Characterizing patterns of genomic annotations at variants
across sets of T2DM loci can reveal broad genomic conse-
quences of T2DM risk variants, as well as help prioritize be-
tween multiple annotated variants at a locus. Several studies
have identified enrichment of variants across T2DM loci in
regulatory sites active in pancreatic islets [2••, 7, 24, 39].
These enrichments are particularly pronounced in regions of
islet ‘stretch’-enhancer activity or in regions of highly clus-
tered islet active enhancers [24, 39]. Studies have also identi-
fied enrichment of variants in regulatory sites for other
T2DM-relevant tissues, such as liver, adipocytes and pre-
adipocytes and sites bound by specific regulatory proteins
within these tissues, such as FOXA2 [2••, 7, 52]. Recent
methods incorporate the effects of annotations directly as
priors in fine mapping to improve causal variant resolution
[53–55]. For example, incorporation of genome and 12 cell
type epigenome annotations into fine mapping of 81 T2DM
loci reduced the number of candidate causal variants by over
35% [2••]. At the CENTD2 locus, incorporating epigenome
priors identified a candidate causal variant in islet accessible
chromatin, rs140130268, which was not as highly prioritized
in genetic data alone [46•]. The use of such methods will

Table 1 Regulatory variants at
T2DM signals Locus Variant(s) Cell type TF

TCF7L2 rs7903146 Islets –

MTNR1B rs10830963 Islets, liver NEUROD1

PPARG rs4684847 Adipose PRRX1

FTO rs1421085 Pre-adipose ARID5B

rs8050136 Brain CUX1

ANK1 rs508419 Skeletal muscle TR4

CENTD2 rs140130268 Islets –

rs11603334 Islets PAX4/6

CAMK1D rs11257655 Islets, liver FOXA1/2

ZFAND3 rs58692659 Islets NEUROD1

JAZF1 rs1635852 Islets PDX1

KCNQ1 rs231362 Islets –

KCNK17 rs10947804, rs12663159,
rs146060240, rs34247110a

Islets –

WFS1 rs4689397, rs6823148,
rs881796, rs4234731a

Islets –

a Variants tested for haplotype effect
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benefit future studies to prioritize causal variants at known
signals and help identify additional risk variants.

Many T2DM variants likely impact cell-type regulatory
activity by altering transcription factor (TF) binding.
Identification of disrupted TFs can also provide further clues
towards T2DM-relevant regulatory pathways. Methods to
identify specific TF binding sites within regulatory regions
include in silico prediction, which can be combined with spe-
cies conservation and DNA footprints, and experimental tech-
niques such as electromobility shift assays (EMSA) and allelic
ChIP [34, 56]. For example, at the CAMK1D/CDC123 locus,
variant rs11257655 disrupted islet FOXA1 and FOXA2 bind-
ing in both EMSA and ChIP assays [42]. AtMTNR1B, variant
rs10830963 disrupted NEUROD1 binding in islets [7]. In ad-
ipose cells, rs4684847 at PPARG affects PRRX1 binding and
rs1421085 at FTO affects ARID5B binding within conserved
regulatory modules [48, 49••]. In brain, rs8050136 at FTO
affects CUX1 binding [51]. In skeletal muscle, rs508419 at
ANK1 affects TR4 binding in an accessible chromatin foot-
print [40].More broadly, several T2DM loci contain candidate
variants that map in islet accessible chromatin footprints for
RFX [44]. Finally, a study of DHS-seq data from ENCODE
identified T2DM variants mapping in footprints for MODY
transcription factors [57]. Together this demonstrates that
T2DM variants affect genomic binding of a variety of tran-
scription factors acting within diabetes-relevant tissues. It is
likely, however, that not all T2DM variants affect regulatory
activity by disrupting transcription factor binding. Instead
some may involve changes, for example, in nucleosome po-
sitioning [58], DNAmethylation [59], miRNA binding [60] or
gene splicing [61].

Generation of epigenome data across environmental con-
ditions, disease states, development [62] and cellular popula-
tions [63] will continue to help identify mechanisms by which
non-coding T2DM variants affect genome function.
Epigenomic data from larger numbers of samples will also
be useful for correlating genetic variants to chromatin, histone
modifications and transcription factor binding via QTL map-
ping [64, 65]. Furthermore, high-throughput assays can deter-
mine allelic effects on enhancer activity or transcription factor
binding across tens to hundreds of thousands of variants in a
single experiment [66–68]. These studies have not yet been
widely conducted in key diabetes-relevant tissue and will be
invaluable in identifying the effects of T2DM variants on epi-
genome function.

Target Genes of Causal Regulatory Variants

Identifying the genes affected by T2DM variants is a critical
challenge, particularly as most T2DM signals are non-coding
and regulatory elements are often distal to their target genes.

Genes implicated as targets of variants at T2DM signals are
listed in Table 2.

The primary approach to determine gene targets is to cor-
relate T2DM regulatory variants to gene expression level via
QTL or allele-specific expression (ASE) mapping [33]. For
example, a study identified correlation of risk alleles at
TCF7L2 with higher TCF7L2 expression in human islets, al-
beit in few samples [69]. Studies of diabetes-relevant tissue
have since mapped gene expression in larger sample sizes [70,
71]. In islets, QTL mapping of RNA-seq identified potential
target genes including AP3S2, STARD10, CAMK1D,
HMG20A, ADCY5, DGKB, MTNR1B, NKX6–3, ZMIZ1,
GPSM1, UBE2E2 and KCNK17 [44, 60, 71]. Additional pu-
tative target genes include ANK1, JAZF1, GPSM1, ABCC8,
PROX1-AS, ZFAND3 in skeletal muscle [40], IRX3 in brain
[50] and IRX3 and IRX5 in pre-adipocytes [49••], and PPARG,
KLF14 andCCND2 in adipocytes [9, 48, 72]. A critical aspect
of mapping eQTLs at disease signals is determining whether
both signals share the same casual variant(s), and thus condi-
tional association or co-localization tests are needed to con-
firm sharing [73, 74]. An alternate to QTL analyses is to map
ASE in heterozygote coding variants linked to a T2DM vari-
ant. In islets, this has implicated additional genes such as
SLC30A8, ANPEP, KCNJ11, THADA and WFS1 [71, 75]. At
most loci, however, no target gene has been defined through
either approach. At other loci, multiple target genes have been
implicated and may involve a combination of genes.
Continued efforts to define target genes will be enhanced by
larger expression datasets from key tissues across a variety of
environmental conditions and within specific cellular popula-
tions, as well as the use of multi-variant expression models
[76, 77].

Complementary techniques such as 3C, 4C, Capture-C and
Hi-C capture the spatial configuration of chromatin to identify
physical links between regulatory elements and target pro-
moters [78, 79]. For example, at the CENTD2 locus 3C anal-
yses in islets identified interactions of T2DM risk variants
with the promoter region of STARD10 [46•]. At the FTO lo-
cus, 4C-seq analyses in mouse brain regions identified long-
range interactions between T2DM regions and IRX3 [50].
Data from Hi-C assays can also identify broad chromatin do-
mains called TADs (topologically associating domains) that
can be used to restrict the genomic space over which regula-
tory elements act [80]. For example, at the FTO locus, TAD
definitions were used to restrict genes likely to be regulated by
T2DM risk variants including IRX3 and IRX5 [49••].
Chromosome conformation data can also be combined with
RNA-seq and allelic imbalance mapping to boost the ability to
detect QTLs for T2DM variants on gene expression [81], as
well as a means to identify haplotype-specific regulatory ef-
fects [82].

Rare and low frequency T2DM risk variants affecting pro-
tein function can be used to bolster support for the gene likely
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Table 2 Genes implicated as
targets of T2DM signals Locus Target gene Evidencea Cell type

TCF7L2 TCF7L2 Expression, Model Pancreatic islets

ACSL5 CC, Model HCT116

MTNR1B MTNR1B Expression, RV Pancreatic islets

PPARG PPARG Expression, Coding, RV, Model Adipose

FTO IRX3 Expression, CC, Model Brain, Pre-adipose

IRX5 Expression, Model Pre-adipose

FTO Model –

RPGRIP1L Model –

ANK1 ANK1 Expression Skeletal muscle

NKX6.3 Expression Pancreatic islets

CENTD2 STARD10 Expression, CC, Model Pancreatic islets

ARAP1 Expression Pancreatic islets

CDC123 CAMK1D Expression Pancreatic islets

ADCY5 ADCY5 Expression Pancreatic islets

UBE2E2 UBE2E2 Expression Pancreatic islets

ZMIZ1 ZMIZ1 Expression Pancreatic islets

KCNK16 KCNK17 Expression Pancreatic islets

THADA THADA Expression Pancreatic islets

HMG20A HMG20A Expression Pancreatic islets

DGKB DGKB Expression Pancreatic islets

AP3S2 AP3S2 Expression Pancreatic islets

ANPEP Expression Pancreatic islets

CDKN2A/B CDKN2A Model, RV Pancreatic islets

ZFAND3 ZFAND3 Expression Skeletal muscle

JAZF1 JAZF1 Expression Skeletal muscle

GPSM1 GPSM1 Expression Skeletal muscle, Islets

PROX1 PROX1-AS Expression Skeletal muscle

KLF14 KLF14 Expression Adipose

CCND2 CCND2 Expression Adipose

WFS1 WFS1 Coding, Expression, Model Pancreatic islets

AP3S2 AP3S2 Expression Pancreatic islets

ANPEP Expression Pancreatic islets

SLC30A8 SLC30A8 Coding, Expression, RV, Model Pancreatic islets

KCNJ11 KCNJ11 Coding, Expression, RV Pancreatic islets

ABCC8 Coding, Expression, RV Skeletal muscle

HNF1A HNF1A Coding, RV –

HNF4A HNF4A Coding, RV –

HNF1B HNF1B RV –

GCKR GCKR Coding, RV, Model –

MC4R MC4R Coding, RV, Model –

IRS1 IRS1 Model –

SSR1 RREB1 RV –

PAM PAM RV –

GCK GCK RV –

PAX4 PAX4 RV –

a Expression = expression QTL, allele-specific expression, genotype-dependent expression; Coding = common
coding variant; RV = rare or low freq. coding variants; CC = chromatin conformation; Model = cell and/or animal
model
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affected by a risk signal. For example, many T2DM loci map
near genes that cause Mendelian T2D and obesity [2••] and it
is likely that the majority of these genes are the targets of
common variants. Rare and low frequency coding variants at
T2DM loci identified through exome sequencing also influ-
ence polygenic T2D risk, such as atMTNR1B, PAX4, PPARG,
PAM, RREB1 and SLC30A8 [2••, 83–85], supporting the like-
ly causality of these genes. In addition, the availability of large
Biobanks has enabled the recall of individuals with rare cod-
ing variants for phenotypic studies, such as for CDKN2A [86].

Finally, genome editing is increasingly an invaluable tool
for determining target genes. For example, editing the risk
alleles of a T2DM variant or deleting entire regulatory regions
surrounding these variants followed by RNA-seq or 4C/Hi-C/
Capture-C can be used to identify genes with differences in
expression or promoter interactions caused by specific T2DM
variants. For example, at the TCF7L2 locus, deletion of regu-
latory regions surrounding the T2DM risk variants revealed
effects on expression and promoter interactions at ACSL5 in
HCT116 cells [87]. At the FTO locus, editing the alleles of
rs1421085 in pre-adipocytes confirmed effects of this variant
on regulation of IRX3 and IRX5 [49••]. Future efforts to define
target genes will thus benefit greatly from genome editing in
cell lines and iPSC-derived models of diabetes-relevant tissue.

Cellular and Animal Models of T2DM Loci

Modelling risk variant and gene function within cellular and
animal systems can provide further support for the role of a
candidate target gene in T2DM pathogenesis as well as deter-
mine biological functions and pathways target genes affect.

Cellular models of candidate genes at T2DM loci include
studies of primary tissue, diabetes-relevant cell lines and cells
derived from induced pluripotent stem cells (iPSCs). For cod-
ing variants, one approach is to assess the activity of tagged
alleles. For example, at GCKR, transfecting fluorescently la-
belled alleles revealed differential effects on hepatic glucose
uptake [88]. As most T2DM variants are regulatory, studies of
gene expression changes are more appropriate, for example
using siRNA or expression vectors. Silencing CDKN2A ex-
pression in the EndoC-bH1 human islet cell line increased
insulin secretion and PKA signalling [86]. At TCF7L2,
adenovirus-based overexpression in human islets reduced
glucose-stimulated insulin secretion [69]. Given the large
number of T2DM risk loci and candidate target genes, func-
tional screens can help expedite these evaluations. For exam-
ple, a siRNA-mediated screen of genes at T2DM loci in
EndoC-bH1 cells identified genes affecting insulin secretion
[89]. Genome editing in both cell line and iPSC-derived
models further enables characterizing the effects of specific
variant alleles on cellular function. At IRX3/IRX5, editing

the alleles of rs1421085 resulted in altered thermogenesis in
differentiating pre-adipocytes [49••].

Animal models can help further determine the effects of
altered T2DM gene activity at an organismal level.
Knockouts and transgenes in rodents both globally and in
tissue-specific settings have been characterized for genes at
several T2DM loci, such as TCF7L2 [90], SLC30A8
[91–93], MC4R [94], WFS1 [95], IRS1 [96], STARD10
[46•], IRX3 [50], FTO [97] and RPGRIP1L [98]. At some loci,
rodent models provide additional support for likely mecha-
nisms of human risk variants. For example, STARD10 beta
cell-specific mouse knockouts had impaired proinsulin pro-
cessing and insulin secretion, and overexpression in beta cells
improved glucose homeostasis, consistent with human data
[46•]. In other cases, data from rodent models have compli-
cated interpretation of risk mechanisms such as at SLC30A8,
where multiple knockout models had differential effects on
glucose homeostasis [84, 99]. A further challenge with rodent
models is evaluating the effects of human risk variants, as
most are non-coding and not often highly conserved across
species. One strategy is to introduce human sequence directly
in rodents, such as in bacterial artificial chromosomes (BACs)
[100]. The utility of rodent models will be enhanced as more
target genes are defined and expedited by the use of genome
editing techniques.

Moving forward, as T2DM risk is a consequence of many
variants, models of multiple T2DM signals will be informa-
tive in addition to single locus models. Furthermore, given the
potential for T2DM risk variants to interact with environmen-
tal cues, these models ideally need to be evaluated in a variety
of environmental contexts. Finally, in addition to rodent and
human cellular models, zebrafish and drosophila are attractive
models due to the relative ease of genetic manipulations, short
generation time and the conservation of glucose homeostasis
mechanisms across species [101, 102].

Molecular Pathways of Genes at T2DM Risk Loci

Genes affected by T2DM risk signals likelymapwithin shared
cellular pathways through which disease pathogenesis is
mediated.

A study analysed genes mapping to T2DM-associated var-
iants or involved in monogenic diabetes using protein-protein
interaction (PPI) networks [3]. T2DM genes mapping within
interaction networks were generally more inter-connected
than expected. The most inter-connected node in the network
was CREBBP, involved in chromatin remodelling of regula-
tory elements, suggesting the importance of this protein to
T2DM-relevant pathways, even though it does not harbour
known T2DM risk variants itself. Additional analyses identi-
fied an enrichment of T2DM-associated variants among genes
involved in adipocytokine signalling.
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An alternate approach to understand pathways of T2DM
variants is to define the upstream factors broadly regulating
target gene activity. For example, studies have found that
T2DM-associated variants preferentially map within binding
motifs for transcription factors involved in MODY [57], as
well as RFXmotifs [44]. A fine-mapping study of T2DM loci
identified enrichment of likely causal T2DM variants in
FOXA2-bound regulatory sites [7]. Candidate genes at
FOXA2 loci were preferentially downregulated in knockout
models of FOXA2 compared to other loci. Although binding
of FOXA2 itself was not often disrupted by the variants di-
rectly, it suggests the potential importance of this protein in
regulating T2DM-relevant sites.

Finally, mapping the trans effects of a T2DM variant can
reveal disease-relevant gene networks. For example, variants
at the KLF14 locus with maternally inherited cis effects on
KLF14 expression in adipose tissue were also associated with
adipose expression of an entire gene network in trans [72].
Genes regulated in trans were then further associated with
insulin resistance related traits, broadly implicating the
KLF14-regulated gene network in metabolic disease risk.

Thus far, however, efforts to comprehensively define path-
ways of T2DM genes have not been widely successful. This is
due in part to the still relatively small number of T2DM loci at
which the specific target gene(s) and upstream regulator(s) are
known, in combination with the large number of pathways
likely involved in T2DM pathophysiology. A further compli-
cation is the incomplete knowledge of biological pathways
and interactions. Future studies incorporating increasing
knowledge of target genes and regulators and their tissue ac-
tivity will help uncover molecular pathways of T2DM risk.

Conclusions

Determining the molecular mechanisms of T2DM risk loci
holds enormous promise as a means to understand the genes
and pathways involved in diabetes pathophysiology. The
mechanisms of the majority of T2DM risk loci, however, are
currently unknown and even for loci with proposed mecha-
nisms the stories are often incomplete. In addition to this re-
view, Grotz et al. also discuss identifying causal mechanisms
and genes at T2DM risk loci [103].

Evaluation of risk loci entails genetic fine-mapping, quan-
titative phenotype association, genomic and epigenomic an-
notation and cellular/animal models. Finding consistency
across these data is critical to fully describe mechanisms as
well as their potential for clinical translation. Physiological
and genomic studies both suggest that many currently known
T2DM loci affect pancreatic islet regulation. However, loci
also affect protein function and adipose, liver, muscle and
brain regulation. As the majority of T2DM risk remains to

be described, continued discovery of risk loci will undoubted-
ly reveal a greater diversity of cellular mechanisms.

Future studies that leverage the substantial advances and
opportunities in high-throughput epigenomics, functional
screening, genome editing and statistical methods to integrate
these data will further expedite efforts to describe mechanisms
of T2DM loci.
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