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Abstract The genome is often the conduit through which
environmental exposures convey their effects on health and
disease. Whilst not all diseases act by directly perturbing the
genome, the phenotypic responses are often genetically deter-
mined. Hence, whilst diseases are often defined has having
differing degrees of genetic determination, genetic and envi-
ronmental factors are, with few exceptions, inseparable fea-
tures of most diseases, not least type 2 diabetes. It follows that
to optimize diabetes, prevention and treatment will require
that the etiological roles of genetic and environmental risk
factors be jointly considered. As we discuss here, studies fo-
cused on quantifying gene-environment and gene-treatment
interactions are gathering momentum and may eventually
yield data that helps guide health-related choices and medical
interventions for type 2 diabetes and other complex diseases.

Keywords Gene-lifestyle interaction . Cardiometabolic .

Obesity . Genomic . Systems biology . Variance
heterogeneity . Genotype-based recall . Recall by genotype

Introduction

Although malignant melanoma can be caused by sunburn,
fatty liver disease by excessive alcohol consumption, lung
cancer by cigarette smoking, and type 2 diabetes (T2D) by
obesity, disease is not an inevitable consequence of excessive
exposures to these risk factors; by contrast, in Mendelian dis-
eases like familial partial lipodystrophy [1] or phenylketonuria
[2], there is much higher certainty that exposure to refined
carbohydrates and phenylalanine respectively can cause
severe health detriments. The high sensitivity to certain envi-
ronmental exposures and pharmacotherapies that some people
experience and others do not may be governed by genetic
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factors that interact with these exposures to determine risk. In
some instances, genetic variation may be beneficial, rendering
the bearers of these mutations especially sensitive to the
health-enhancing effects of specific drugs, foods or types of
exercise, for example, and in other people genetic factors may
augment the detrimental effects of lifestyle and predispose
those taking certain medicines to adverse events. Discovering,
replicating, validating, and translating information about inter-
actions between genetic variation and environmental exposures
andmedical therapies has important implications for the predic-
tion, targeted prevention, and stratified treatment of T2D and
many other diseases.

The literature on gene-environment interactions in
diabetes-related traits is extensive, but few studies are accom-
panied by adequate replication data or compellingmechanistic
explanations. Moreover, most studies are cross-sectional,
from which temporal patterns and causal effects cannot be
confidently ascertained. This has undermined confidence in
many published reports of gene-environment interactions
across many diseases; although interaction studies in psychi-
atry have been especially heavily criticized [3], many of the
points made in that area relate to other diseases, not least to
T2D, where the diagnostic phenotype (elevated blood glucose
or HbA1c) is a consequence of underlying and usually unmea-
sured physiological defects (e.g., at the level of the pancreatic
beta-cell, peripheral tissue, liver, and gut), and the major en-
vironmental risk factors are difficult to measure well.
Nevertheless, several promising examples of gene-
environment interactions relating to cardiometabolic disease
exist, as discussed below and described in Table 1, and inter-
action studies with deep genomic coverage in large cohorts are
now conceivable; the hope is that these studies will highlight
novel disease mechanisms and biological pathways that will
fuel subsequent functional and clinical translation studies.
This is important, because diabetesmedicinemay rely increas-
ingly on genomic stratification of patient populations and
disease phenotype, for which gene-environment interaction
studies might prove highly informative.

How Are Gene-Environment Interactions Defined?

The term gene-environment interaction has different meanings
to different biomedical researchers (see Supplement 1for
glossary of terms used). However, here, we focus on the
concept of effect modification, where the genetic and environ-
mental exposures convey synergistic effects, or, in other words,
where the joint effects are more or less than additive and the
estimated genetic effect on a trait differs in magnitude (and
sometimes direction) across the spectrum of an environmental
exposure. Figure 1 shows three types of interaction effects, and
also illustrates whymodeling interactions is challenged by scale
dependency (i.e., where interaction effects are influenced by the

scale on which the dependent variable is modeled). In clinical
trials, gene-treatment interactions are usually considered to oc-
cur when the direction and/or magnitude of the treatment effects
are conditional on the participant’s genotype.

The Rationale for Studying Gene-Environment
Interactions

It is often said that T2D is the consequence of gene-
environment interactions [17]. Indeed, both the environment
and the genome are involved in diabetes etiology, and there
are many genetic and environmental risk factors for which
very robust evidence of association exists. But when epidemi-
ologists and statisticians discuss gene-environment interac-
tions, they are usually referring to the synergistic relationship
between the two exposures, and there is limited empirical
evidence for such effects in the etiology of cardiometabolic
disease. Indeed, in non-monogenic human obesity, a condition
widely believed to result from a genetic predisposition trig-
gered by exposure to adverse lifestyle factors, of the >200
human gene-lifestyle interaction studies reported since 1995,
only a few examples of gene-environment interactions have
been adequately replicated [18], and because these results are
derived primarily from cross-sectional studies with little or no
experimental validation, even those that have been robustly
replicated may not represent causal interaction effects. The
evidence base for T2D is thinner still. Nevertheless, other data
support the existence of gene-environment interactions in
complex disease, thus motivating the search for empirically
defined interactions in T2D.

Some of the earliest empirical examples of gene-
environment interactions come from studies in Drosophila
that show that eye facet number varies both by genotype and
temperature [19–21]; similar examples exist for other morpho-
logical features of the fly’s eyes and head [22]. In agricultural
genetics, the need to maintain or improve food security in the
face of global population growth, climate change, and land
challenges has demanded the cultivation of genetically
engineered plants to maximize crop yields conditional on en-
vironmental characteristics (e.g., soil quality, precipitation, al-
titude, or temperature) [23]. Studies of gene-environment in-
teractions in durum wheat, for example, illustrate that in low
crop yield regions, the D3415 cultivar performs well, whereas
other cultivars (Karel, W4267, M104 and Messapia) produce
much higher yields than D3415 in high-yield regions [24].
Such studies emphasize how pairing a plant’s genes with its
environment can optimize selected phenotypes; similarly,
matching appropriate environments and medical interventions
to genotype is likely to be necessary for the optimization of
health phenotypes in humans.

Animal studies of obesity and diabetes also provide useful
examples of interactions, where phenotypic differences
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between genetically engineered animals are augmented with
interventions that perturb the molecular pathways upon which
the gene(s) of interest reside. For example, high-fat feeding is
a common intervention used to accentuate phenotypic differ-
ences between genetically distinct animals; in a study of glu-
cose and lipid metabolism, the effects of 8-week high and low
fat feeding regimes on metabolic phenotypes of five inbred
mouse strains (C57BL/6J, 129X1/SvJ, BALB/c, DBA/2,
FVB/N) were compared; the study showed that metabolic
sensitivity to dietary fat varied considerably by genotype.
Elsewhere, the NOD mouse strain has provided a
longstanding murine model for autoimmune type 1 diabetes
owing to its predisposition to early-onset disease [25]; the
NOD mouse is especially susceptible when reared in a
germ-free environment, but much less so when reared in stan-
dard Bdirty^ cages [26]. This phenomenon, which is not
observed in wild-type mice, is thought to reflect immune
adaptations in the NOD mouse that require exposure to for-
eign microbes early in life [26].

Complex metabolic diseases such as non-autoimmune dia-
betes are often uncommon in indigenous populations living
traditional substance farming or hunter-gatherer lifestyles, yet
phylogenetically similar people living industrialized lifestyles
are often disproportionally afflicted [3]; these observations are
consistent with the presence of susceptibility loci whose ef-
fects are triggered by environmental exposures. This phenom-
enon is most apparent in ethnic groups whose recent evolution
is characterized bymigration and frequent exposure to famine,
cold, and other metabolic stressors. This process, which is
described in detail elsewhere [27], might have led to

enrichment of alleles that predispose to metabolic efficiency,
particularly after meals. Other intriguing examples are those
from certain populations that cope unusually well living at
high altitudes [17], in nutrient deficient settings [18], or in
cold climates [28]. Whilst these ecological observations are
especially prone to confounding, bias, and reverse causality,
they provide tentative support for gene-environment interac-
tions in human disease.

Heritability studies conducted in intervention settings also
provide suggestive evidence of gene-treatment interactions.
Studies of overfeeding, underfeeding, and aerobic exercise
training in twins and nuclear families indicate that changes
in body composition are more highly correlated between
members of the same kinship than between those of different
kinships. For example, Bouchard et al. implemented a long-
term overfeeding protocol (structured diet containing
1000 kcal/day above the baseline energy requirement) in 12
pairs of monozygotic (MZ) twins [29]; the intraclass correla-
tion (ICC) for change in bodyweight inMZ pairs was r=0.55.
The ICC in non-twin pairs was not reported, but the ratio of
the trait variance explained between pairs to that within pairs
(F ratio) was 3.43, suggesting that body weight adaptation to
long-term overfeeding is heritable. Elsewhere, adaptation of
maximal oxidative capacity (a measure of aerobic fitness that
is a strong predictor of diabetes) following a 20-week stan-
dardized exercise intervention protocol was examined in 720
individuals from 450 nuclear families [30]. As with the over-
feeding study, aerobic adaptation was strongly correlated in
biologically related participants, and much less so in those
who were unrelated (F ratio = 2.50). Importantly though,

Fig. 1 Types of gene-environment interactions. a A non-removable,
Bpure^ interaction. b A non-removable Bcross-over^ interaction. c A
removable interaction with the trait expressed on the linear scale. d

Exactly the same data used in (c), but the interaction is removed by
expressing the trait on the natural log scale
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defining heritability in this way incorporates both genetic and
shared non-genetic (e.g., shared familial environment) sources
of trait variance; moreover, the heritable basis of baseline
body weight and aerobic fitness is substantial and because
these short-term studies did not partition out these factors, it
is difficult to determining the extent to which phenotypic ad-
aptation is under genetic control.

Discovery Strategies

Numerous approaches, varying by study design, data type and
analytical method, have been used to discover gene-
environment interactions; some approaches address similar
objectives, whilst others are complementary and can be ap-
plied in sequence. Below we describe several of these ap-
proaches, and refer the reader to another excellent review of
gene-environment interaction methods [31].

(a) Established statistical approaches

Until 2008, almost all studies of gene-environment interac-
tions focused on testing hypotheses based on existing biolog-
ical evidence, typically focusing on a small number of genetic
variants. Linkage studies were the first generation of genome-
wide interaction studies (GWIS) [32] but were generally un-
successful and are seldom used in contemporary studies of
complex traits. With few exceptions (see Table 1), neither
approach led to convincing evidence of gene-environment
interactions.

The advent of genome-wide association studies (GWAS) in
2005 facilitated a new era of genetic association studies and
the rapid discovery of thousands of loci for many complex
traits; GWAS triggered a quantum leap in population genetics,
largely because it is agnostic to prior biological knowledge,
which directly contrasts most previous gene discovery ap-
proaches. By 2008, researchers were exploring if environmen-
tal risk factors modified the effects of GWAS loci, an approach
that now predominates in gene-environment interaction re-
search. There is appeal to this approach because few statistical
tests are performed, which helps preserve statistical power,
and it is analytically simple. Indeed, several of the few ade-
quately replicated examples of gene-environment interactions
have been discovered in this way (Table 1). There are, how-
ever, good arguments for why loci derived from GWAS may
not, on average, be good candidates for interactions [33]. For
instance, heterogeneous SNP association signals are generally
filtered out in standard GWAS meta-analyses, yet as we dis-
cuss below, variance across genotypes is a characteristic of
interactions. Indeed most, perhaps all, comprehensive studies
focused on determining whether established GWAS-derived
loci interact with environmental risk factors or clinical

interventions have yielded predominantly negative results [4,
5, 34–36].

With GWAS came the possibility to conduct GWIS at a
much higher variant density, and in samples of unrelated in-
dividuals, not only in family pedigrees as with earlier linkage
studies. The simplest approach involves testing all SNPs for
interaction with one or more environmental variables. Whilst
computationally feasible [37], conventional GWIS for com-
plex traits require sample sizes that are often unachievable to
be adequately powered. To help preserve power, restricting
the number of variants tested to those with nominally signif-
icant marginal associations (e.g., P=0.10) may help [38].
Other statistical tricks to minimize multiple testing involve
the joint estimation of SNP and SNP×environment regression
coefficients (2 df tests), which are relatively powerful, espe-
cially when an interacting locus also conveys a detectable
marginal effect [39]. This approach has also been adapted
for meta-analysis [40], and in some empirical situations has
been shown to be more powerful than testing for marginal or
interaction effects separately [16], although no novel loci have
yet been confirmed using this approach for T2D.

(b) Data reduction approaches

A number of data reduction strategies for the analysis of
gene-environment interactions have been proposed for use in
observational studies. A common feature of these approaches
is reduction of multiple hypothesis testing through selection of
a subset of variants (step 1) for explicit interaction testing (step
2). One such approach is the Bcase-only^ design, whereby the
association between SNPs and an interacting variable is first
tested only in disease cases and associated SNPs are then
tested for interaction in the full cohort of cases and controls.
Statistical power is preserved because the first screening step
only involves association tests, which generally yield higher
power than interaction tests when all else is equal. Although
somewhat counterintuitive, in the presence of gene-
environment interactions, SNPs are associated with the
interacting environmental exposure only in cases, providing
an opportunity to shortlist candidate SNPs for subsequent
pairwise interaction tests in the full cohort using an interaction
effect test [41]. A caveat to this approach is that when the
genetic and environmental variables are correlated in controls,
variants will be inappropriately prioritized for interaction test-
ing, thereby reducing the power of the test; this problem may
be enhancedwhen using GWAS, owing to the large number of
variants tested.

Analytical strategies have also emerged that focus on
modeling genetic effects for quantitative signatures of gene-
environment interactions. These approaches pivot on the no-
tion that interaction effects are characterized by
heteroscedastic phenotypic variances that are conditional up-
on genotype (termed variance heterogeneity) (see Fig. 2);
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various methods have been proposed that exploit this charac-
teristic, approaches that have proven somewhat successful for
discovering gene-environment interactions in cardiometabolic
traits [42•, 43•]. Thus, identifying differences in variance con-
ditional upon genotype allows for the shortlisting of SNPs for
explicit interaction testing. In the seminal description of this
approach [42•], SNPs with genome-wide significant
(P<5×10−8) heterogeneity of variance estimates were identi-
fied for plasma C-reactive protein and soluble ICAM1, which
were subsequently shown to interact with BMI and smoking
(P<5×10−8). Although in this example, the interaction would
have been detectable in a conventional GWIS analysis, in
other examples, where the explicit interaction test (stage 2)
is not genome-wide significant, a less conservative signifi-
cance threshold might be sufficient, owing to the orthogonal
nature of the two sets of evidence.

An important advantage of variance heterogeneity tests is
that the environmental exposure does not need to be explicitly
characterized, as heterogeneity of variance will be present
even when the interacting environmental factor is unmeasured
or unknown. Indeed, many large datasets exist with genetic
and phenotypic data that lack good environmental exposure
data, and even where environmental exposure data are

available, standardizing measurements across cohorts can re-
sults in a substantial loss of power in meta-analyses [6]. A
caveat of this approach, as with most tests of gene-
environment interaction, is that it is prone to confounding by
linkage disequilibrium (synthetic associations and rare variant
effects), scale dependency, and population stratification.

(c) Causal inference models

Causality is often uncertain in epidemiology when an as-
sociation between an exposure and outcome is observed.
Genetics is well suited to causal inference, because genetic
variants are randomly assorted at meiosis and are usually not
correlated with factors that can confound non-genetic associ-
ations in epidemiology. Using an approach termedMendelian
randomization, genotypes can be used as instrumental vari-
ables in experiments that resemble randomized controlled tri-
als (RCT) [44, 45]. Because there are now many established
associations between gene variants and diabetes-related expo-
sures (e.g., smoking [46], coffee consumption [47], macronu-
trient intake [48]), it is possible to undertake a special type of
Mendelian randomization experiment that focuses on model-
ing gene-environment interactions using genotypes as proxies

Fig. 2 Outline of how variance heterogeneity tests can be used to
discover gene-environment interactions. a Conventional linear
regression analysis in the presence of variance homogeneity. b
Conventional linear regression analyses in the presence of variance

heterogeneity. c Linear regression analyses intended to model variance
heterogeneity. d Linear regression analyses intended to unmask the
underlying gene-environment interaction
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for environmental exposure, although interaction studies of
this kind are yet to be reported. A limitation of this approach
is that suitable instruments (genetic variants that are strongly
correlated with the exposures of interest) for the environmen-
tal exposures in gene-environment interaction tests are often
unavailable.

Causal interactions between genetic and environmental fac-
tors can also be modeled using types of Bayesian Network
Analysis, such as the Bayesian Epistasis Association Mapping
tool [49] and hierarchical modeling [50]. Approaches like these
utilize multiple layers of data to estimate directional relation-
ships between variables and hence permit some degree of caus-
al inference. Bayesian Network Analysis in general works well
when accurate and precise data are included and where gene
ontologies are well defined, and much less so when these
conditions do not hold. One of the major appeals of Bayesian
Network Analysis is its capacity to integrate data across multi-
ple biologic systems gathered within the same participant,
which is likely to be particularly relevant for the functional
elucidation of gene-environment interaction effects.

Translation of Gene-Environment Interaction
Effects

Research on the genetics of complex disease has two principal
objectives: (i) to elucidate understanding of pathobiology and
(ii) to aid the prevention or treatment of disease. The major
advances in human genetics during the past 15 years, made
possible primarily through huge developments in high-
throughput genomic technologies combined with a greater will-
ingness of scientists to collaborate, have facilitated discovery of
thousands of disease-associated loci that with appropriate
follow-up will substantially further our understanding of
disease biology. The second objective, however, is yet to be
realized to any meaningful degree.

(a) Theoretical considerations

Two common characteristics of established complex
disease-associated variants discovered using hypothesis-free
high-throughput approaches is that the magnitude of effect is
relatively small and homogeneous across a range of environ-
mental settings and treatment arms of clinical trials [4, 34–36].
Whilst the discovery of these loci helps define novel aspects of
human biology, this information has proven relatively ineffec-
tive for the stratification of medical interventions, probably in
part because of the way in which the variants were discovered.
To identify gene variants that are of use for stratified medicine
will likely require explicit strategies that seek to discover loci
that predict a person’s susceptibility to disease given specific
environmental exposures or that predict treatment response.

The strategies needed to detect such interactions will be dis-
tinct from those used to detect genetic associations per se.

The extent to which genetic information enhances the ac-
curacy of established disease prediction models or improves
the degree to which disease occurrence is correctly predicted
in prospective analyses is likely to vary considerably across
diseases. Importantly though, because germline DNAvariants
are salient biomarkers, their predictive accuracy relative to
non-genetic biomarkers can improve as the time between the
baseline assessment and disease incidence lengthens [51].
Thus, genotypes provide a rare example of disease biomarkers
that could be measured very early in life to predict diseases
occurring several decades later. Whilst many studies have
reported on the discriminative or predictive accuracy of
models including genetic and environmental data, most do
not consider their joint, synergistic, effects and generally treat
these two types of exposure as independent factors. However,
Aschard et al. [52•] examined the discriminative value and
reclassification potential of simulation models including
two-way gene-gene and gene-environment interaction effects
in relation to breast cancer, rheumatoid arthritis (RA), and T2D.
The authors found that the inclusion of up to ten interaction
effects of fairly modest magnitude improved discriminative ac-
curacy (ROC AUC) for breast cancer by approximately 4 %,
RA by approximately 2 %, and T2D by approximately 1 %.
The net improvement in case–control classification for the
model including all 10 interaction effects was approximately
30 % for each of these traits compared with the null model.
Increasing the number (up to 20) andmagnitude (risk ratio=10)
of the simulated interaction effects included in the model sub-
stantially increased both its discriminative accuracy and net
reclassification.

Aschard et al.’s analyses focused on discriminating be-
tween people with and without prevalent disease, which is
unlikely to be directly comparable with analyses focused on
predicting incident events; although few discovery genetic
association studies have been performed using longitudinal
data, some prospective studies have estimated the predictive
value of established prevalent disease-associated gene variants
for change in quantitative biomarkers [53] or disease events
[54]. Those studies suggest that genetic variants that are
strongly associated with cross-sectional traits do not always
predict change in the trait, and vice versa. Moreover, the pri-
mary metric used in these analyses was the C-statistic, a mea-
sure of discriminative accuracy whereby a value of 50 % re-
flects accuracy equivalent to tossing a coin and a value of
100 % reflects perfect discrimination; importantly, this partic-
ular approach to quantifying discriminative accuracy is sensi-
tive to the frequency of the disease and its risk factors, with
models focused on rarer diseases and exposures generally
yielding lower values than those focused on common diseases
and risk factors. Nevertheless, Aschard et al.’s study provides
valuable information that may help quantify assumptions
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about the extent to which data on gene-environment interac-
tions can help classify and predict disease events.

(b) Mechanisms of action

The mechanisms underlying observations of gene-
environment interactions in T2D are rarely discussed,
probably because few functional studies have been per-
formed around explicit interaction effects. However,
more than half a century ago Jacob and Monold [55]
outlined the mechanisms underlying the synthesis of
enzymes in bacteria, which they described as requiring
genetic repressors that can be activated or inactivated
by specific metabolites present in the cellular environ-
ment [55]. In pharmacogenetics, mechanisms are often
eloquently described; take for example, activating muta-
tions in KCNJ11, the gene encoding the Kir6.2 subunit
that controls gating of the ATP-sensitive K+ channels
(KATP) in the pancreatic beta cells. Here, carriers of
the mutations can produce but not secrete insulin in
response to glucose; however, treatment with sulfonyl-
ureas, which binds to the SUR1 subunit of the sulfonyl-
urea receptor/potassium channel complex on the beta-
cell membrane, depolarizes the K+ channels, leading to
the activation of voltage-gated Ca2+channels thus in-
creasing the secretion of insulin [56].

Most gene-environment interactions are likely to include
one of four mechanisms: (i) ligand binding interactions (mu-
tations that disrupt the binding of ligands to the cell membrane
receptor(s) or the nuclear receptor(s)); (ii) epigenetic interac-
tions (mutations that in the presence of certain environmental
exposures cause epigenetic changes that differentially affect
gene transcription); (iii) double hit interactions (where envi-
ronmental exposures cause somatic mutations that interact
with existing germline variants); and (iv) gating interactions
(where mutations in regulatory elements pathogenically mod-
ulate the activity of biologic processes, such that, for example,
without exercise, diet modification or pharmacotherapy, dis-
ease occurs).

Whilst understanding mechanisms of action may not be nec-
essary for translating knowledge of interactions into the clinical
context, defining mechanisms is necessary to identify therapeu-
tic targets. Thus, emphasis should be placed on elucidating the
functional processes underlying any valid observation of gene-
environment interaction.

(c) Genotype-based recall (GBR)

Specially designed intervention studies, where large sam-
ple frames are used to identify two equally sized subgroups
that are highly distinct in their genetic predisposition to dis-
ease (e.g., minor vs. major allele homozygotes at a given rare
variant) and who are subsequently enrolled into a randomized

controlled trial, represent a powerful test-bed through which
gene-environment interaction effects can be validated (Fig. 3;
Supplement 2). The earliest example of a genotype-based re-
call study focused on in vivo effects of the PPARG Pro12Ala
genotypes on adipose tissue free fatty acid metabolism [57]. A
second recent intervention study focused on administering 0,
10, or 20 mg of yohimbine in people selected for genotypes at
the α(2A)-adrenergic receptor locus (ADRAD2A) [58]. The
main outcome was early insulin response (30 min) insulin
concentrations following a 75-g oral glucose load. The study
was one of the first GBR trials to be reported and showed that
treatment response is conditional on ADRAD2A genotype.

Fig. 3 Figure describing the genotype-based recall trial paradigm.
Participants are selected from low- and high-burden genetic risk groups
within a large sampling frame and are subsequently randomized to
treatment (e.g., intensive lifestyle modification) or control arms of a
clinical trial. Treatment allocation and genotype ideally remain masked
until the trial has ended (although this is often difficult or impossible
with lifestyle interventions), at which time gene-treatment interactions
can be quantified
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Barriers and Limitations

Epidemiology has yielded most of the evidence garnered dur-
ing the past 20 years on gene-environment interactions in T2D
and related traits, much from small cross-sectional studies.
However, several large prospective cohort studies exist with
good measures of environmental and genetic exposures, re-
peated measures of quantitative outcomes, and long-term fol-
low-up for incident disease [59–61], rendering them excellent
resources for generating hypotheses about gene-environment
interactions. However, epidemiological studies are prone to
various forms of chance, bias, and confounding as well as
reverse causality, which make the determination of causal ef-
fects especially challenging [62]. Owing to the salient nature
of germline DNA variants, genetic association studies are ro-
bust to reverse causality, but there are other sources of bias and
confounding, such as population stratification, synthetic asso-
ciation, and survival bias that may provide alternative expla-
nations for an apparent effect of a genotype on a disease trait
[63]. Epidemiological studies of gene-environment interac-
tions are prone to the limitations of both genetic and non-
genetic epidemiology, as well as other limitations that are
idiosyncratic to this type of research. Scale dependency is
one such limitation, which occurs when data conversions
drive the presence or absence of statistically significant inter-
actions (see Fig. 1).

The term error relates to the imprecision of an estimate and
the term bias describes the extent to which error is dispropor-
tionate between two or more groups under investigation. The
large size of many epidemiological studies necessitates that
environmental exposures are usually assessed with fairly im-
precise methods such as questionnaires and outcomes with
proxy variables. This can cause underestimation of the true
magnitude of the marginal and interaction effects and dimin-
ishes power to detect interactions [64]. Under a set of reason-
able assumptions about interaction studies, Wong et al. [65]
described sample size requirements to detect interactions with
low type 1 and type 2 error rates; when the exposure and out-
come are good proxies for the true (latent) exposure (ρTx=0.8)
and outcome (ρTy=0.8) ∼2410 participants are required to de-
tect a reasonably sized interaction, but when exposure and out-
come are poorly assessed (ρTx=0.4; ρTy=0.4), the required
sample size booms (N ∼84,787).

Recognizing that many existing interaction studies may
have been underpowered, studies of interaction are now often
performed by combining results from large cohort collections
using meta-analysis. Palla et al. illustrated why retrospective
meta-analysis of published interaction studies may yield
meaningless results [66•], owing largely to bias and confound-
ing, and difficulty standardizing results. Thus, most gene-
environment interaction studies involving multiple cohorts
focus on prospective meta-analyses, where each participating
cohort performs new analyses according to a standardized

analyses plan, and their summary results are subsequently
pooled.

Meta-analyses of data from multiple cohorts have obvious
appeal, as sample sizes that far exceed most individual study
of gene-environment interaction can be collated. A caveat to
the approach though is that the assessments of exposures and
outcomes in these cohorts often differ on multiple levels (e.g.,
type and validity of measures, data structure, reference time-
frame, data processing approaches). Methodological differ-
ences demand that environmental exposure variables are stan-
dardized before analysis, which typically involves collapsing
exposure data to a parsimonious level, which can substantially
reduce statistical power. We recently conducted a large meta-
analysis examining the interaction between an FTO variant
and physical activity in obesity [7]; the study involved meta-
analyzing summary statistics from 45 adult and nine pediatric
cohorts. Although some cohorts had very detailed physical
activity data (e.g., objective continuous assessments of phys-
ical activity), others had very crude (binary) subjective phys-
ical activity data; thus, all cohorts were asked to reduce their
physical activity exposure variables to a simple binary vari-
able where approximately 80 % of participants were defined
as physically active and the remaining 20 % were defined as
inactive.

This approach, whilst pragmatic, diminishes statistical
power in at least two key ways: first, stratification of contin-
uous data often results in loss of power [67]; second, where
interaction effects are approximately linear, asymmetrical
stratification of exposure data also diminishes power. We pro-
vide several relevant examples elsewhere [6]; for example, a
study with ∼15,000 participants and the environmental expo-
sure variable stratified at the median of its distribution would
be adequately powered (80 %) to detect the interaction effect.
But if the exposure variable is stratified at the 80th centile of
its distribution, with all else equal, a sample size of ∼24,000
would be equivalently powered to detect the same interaction
effect. Power is lost primarily owing to increased variance in
the exposure variable. Poolingmultiple heterogeneous cohorts
causes an increase in the dependent variable’s variance, which
also leads to a substantial loss of statistical power. Hence,
meta-analyses of gene-environment interactions composed
of data from multiple diverse cohorts may not be as powerful
a strategy for replication as many hope, and focusing on a
handful of large, well-characterized and comparable cohorts
for replication is likely to be a considerably more efficient
strategy. The recent availability of large cohorts with data that
are suitable for gene-environment interaction modeling such
as UK Biobank [68], seem set to change the research
community’s dependency on meta-analysis to conduct large
genetic studies, as many of the caveats to the latter (described
in detail in [6]) are likely offset in this single large study.

Interaction effects are also prone to a specific form of con-
founding that can occur when the outcome variable is a proxy
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for the phenotype of interest, as is often true in epidemiolog-
ical studies. Consider the example of gene-lifestyle interac-
tions in obesity, where anthropometric measures such as
height and weight are used to derive BMI, a proxy for total
adiposity. Because BMI is not a perfect correlate of adipose
mass, there are relatively lean people within any population
who are muscular and heavy, with a high BMI [69]. Those
persons may plausibly exercise and avoid other unhealthful
lifestyle behaviors (e.g., consuming fatty foods or sugar-
sweetened beverages) more than those with a high BMI and
high-fat percentage; thus the magnitude of the effect of a ge-
netic risk score on BMI will likely be stronger in inactive than
active people (causing a statistical interaction) purely because
the outcome measure in the inactive group is more valid. This
problem emphasizes the need to validate epidemiological ob-
servations of interaction in other studies that have the ability to
elucidate the target phenotypes.

Conclusions/Perspective

The major recent breakthroughs in complex trait genet-
ics have boosted confidence that similar successes might
be achievable in the field of gene-environment interac-
tion research. The derivation of massive amounts of
genetic and phenotypic data, along with an understand-
ing that those data should be used and reused, has en-
couraged investigators to dig deep into their databases
to explore whether genetic association signals are mod-
ulated by non-genetic factors. Thus, the once esoteric
topic of gene-environment interaction is now becoming
mainstream and appealing to investigators across diverse

disciplines; this has propelled major methodological in-
novations for the discovery, replication, validation and
translation of gene-environment interactions. The expo-
nentiation of data resources for these purposes has
demanded analytical solutions that address data dimen-
sionality reduction. Although not yet extensively imple-
mented, systems-medicine approaches for interaction
modeling in complex human disease, which might build
on the eQTL-based methods developed in yeast [70, 71]
and human dendritic cells [72], and other system-based
approaches [73], are growing in popularity and will ac-
celerate gene-environment interaction research as large
systems genetics-focused studies come online [74]
(Fig. 4).

The paucity of replicated gene-environment interac-
tion effects may reflect an abundance of false-positive
findings in the published literature [3], although other
explanations for why true-positive interaction effects fail
to replicate should not be dismissed [6]. Most if not all
complex traits probably result from the accumulation of
many small-magnitude gene-environment interactions,
gene-gene interactions, and marginal effects. If so, most
existing interaction studies will likely be underpowered
to detect real effects owing to their small sample sizes.
Accordingly, interaction meta-analyses are increasingly
performed on data from multiple cohorts. Although suc-
cessful for genetic association studies, meta-analysis
may not work well in the context of gene-environment
interaction owing to the diversity of measurements and
data across cohorts, which degrades statistical power
[6]. Thus, it seems logical to focus gene-environment
interaction analyses on cohorts that are either very large

Fig. 4 We can now quantify the key molecular events that link germline
DNA variation with disease processes in a range of settings, from cell
lines to human populations, and major advances have been made in
coupling these complex datasets with information about extrinsic
environmental exposures including drug prescription in ways that allow

the logical interrogation of gene-drug and gene-lifestyle interactions.
Doing so may teach us about disease etiology and help stratify type 2
diabetes (T2D) into subclasses that can be treated more effectively, with
fewer side effects and at lesser cost than before
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and that include well-validated and standardized assess-
ment methods, or those that are smaller in size but
which include accurate and precise measures of expo-
sures and outcomes [65]. By exception, variance priori-
tization meta-analyses are likely to be less prone to loss
of power, because the environmental exposure is inferred
by comparing phenotypic variances by genotype rather
than through direct assessment. Although most published
gene-environment interaction studies focus on cross-
sectional data, longitudinal interaction studies are also
needed, especially those that include repeated measures
of exposures and outcomes, as this will facilitate temporal
inference and help preserve statistical power [75].

Emphasis is frequently placed on translation when gene-
environment interaction data are discussed. The logic is
appealing, as identifying genetic markers that define patients
who are at substantially greater or lesser risk of disease than
the general population given exposure to modifiable risk fac-
tors, or who will respond much better of worse to treatment,
could help optimize medical interventions. However, there are
as yet no translatable examples of gene-environment interac-
tions that are sufficiently convincing to guide medical inter-
ventions for T2D. Nevertheless, numerous examples from
Mendelian disorders and pharmacogenetics fuel hope that ge-
netic data may eventually help tailor prevention or treatment
strategies for complex diseases focused on lifestyle modifica-
tion. Specially designed intervention studies, such as
genotype-based recall trials (Fig. 3), will also facilitate clinical
translation of data on gene-environment interactions.
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