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Abstract Diabetes mellitus (DM) commonly leads to pro-
gressive chronic kidney disease despite current best medical
practice. The pathogenesis of diabetic kidney disease (DKD)
involves a complex network of primary and secondary mech-
anisms with both intra-renal and systemic components. Apart
from inhibition of the renin angiotensin aldosterone system,
targeting individual pathogenic mediators with drug therapy
has not, thus far, been proven to have high clinical value. Stem
or progenitor cell therapies offer an alternative strategy
for modulating complex disease processes through suppress-
ing multiple pathogenic pathways and promoting pro-
regenerative mechanisms. Mesenchymal stem cells (MSCs)
have shown particular promise based on their accessibility
from adult tissues and their diverse mechanisms of action
including secretion of paracrine anti-inflammatory and cyto-
protective factors. In this review, the progress toward clinical
translation of MSC therapy for DKD is critically evaluated.
Results from animal models suggest distinct potential for
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systemic MSC infusion to favourably modulate DKD progres-
sion. However, only a few early phase clinical trials have been
initiated and efficacy in humans remains to be proven. Key
knowledge gaps and research opportunities exist in this field.
These include the need to gain greater understanding of in
vivo mechanism of action, to identify quantifiable biomarkers
of response to therapy and to define the optimal source, dose
and timing of MSC administration. Given the rising preva-
lence of DM and DKD worldwide, continued progress toward
harnessing the inherent regenerative functions of MSCs and
other progenitor cells for even a subset of those affected has
potential for profound societal benefits.
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Introduction: Diabetic Kidney Disease
and Its Pathogenesis

Diabetes mellitus (DM) is a global pandemic [1]. An es-
timated 171 million people worldwide had a confirmed
diagnosis of DM in 2000 [2], doubling to 346 million in
2012—the majority having type 2 DM [3]. By 2030, this
number is expected to increase to over 430 million people
[4]. Key contributory factors include population ageing,
increasing levels of obesity and declining physical activity
coupled with improved life expectancy due to advances in
medical care [1].

Consequent to this global pandemic, there has been an
increase in the macro- and micro-vascular complications as-
sociated with DM, particularly diabetic nephropathy and other
forms of chronic kidney disease (CKD), referred to in this
review under the umbrella term of diabetic kidney disease
(DKD) [5, 6]. Currently, DM is the commonest cause of
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4 Fig. 1 a A schematic representation of known elements of the
pathophysiological networks involved in the development and
progression of diabetic kidney disease (DKD) is shown. Abbreviations
for a: Mon = monocyte; /ICAM-1 = intracellular adhesion molecule 1;
Mac = macrophages; RAAS = renin-angiotensin aldosterone system;
AGE = advanced glycation end-products; NADPH = nicotinamide ade-
nine dinucleotide phosphate; GLUT-1 = glucose transporter 1; ROS =
reactive oxygen species; VEGF = vascular endothelial growth factor;
TGF = transforming growth factor; /L = interleukin; 7NF = tumour ne-
crosis factor; PKC = protein kinase C; MAPK = mitogen-activated protein
kinases; CSF-1 = colony-stimulating factor 1; MCP-1/ = monocyte che-
motactic protein 1; MIF = macrophage migration inhibitory factor; CTGF
= connective tissue growth factor; ECM = extracellular matrix; eGFR =
estimated glomerular filtration rate; ESRD = end-stage renal disease; R7A
= renal tubular acidosis. b A conceptual model is shown of the mecha-
nisms whereby paracrine properties of systemically administered MSCs
may exert reno-protective effects in the setting of DKD based on insights
from published animal model studies. Abbreviations for b: SOD = super-
oxide dismutase; MDA = malondialdehyde; GLUT I = glucose transport-
er 1; ECM, = extracellular matrix; Hsp 47 = heat shock protein 47;
TGF[31 = transforming growth factor 31; EMT = epithelial mesenchymal
transition; 74/ = T helper 1 lymphocytes; IL-13 = interleukin-1f3; /L-6 =
interleukin-6; TNFo = tumour necrosis factor o; IL-10 = interleukin-10;
MCP-1 = monocyte chemotactic protein 1; MAPK = mitogen-activated
protein kinase; p-ERK = phosphorylated extracellular signal-regulated
kinase; p-/NK = phosphorylated jun n-terminal kinase; p38 = phosphor-
ylated p38 kinase; HGF = hepatocyte growth factor; EGF = epidermal
growth factor; GDNF = glial cell line-derived neurotrophic factor; VEGF
= vascular endothelial growth factor; /GF-1 = insulin-like growth factor
1; IGFBP-1 = insulin-like growth factor-binding protein-1; PIGF = pla-
cental growth factor; BMP-7 = bone morphogenetic protein; W11 =
Wilms tumour 1 protein; BAX = Bcl-2-associated X protein; Bcl-2 = B
cell lymphoma-2 protein

CKD and end-stage renal disease (ESRD) worldwide [7]. The
reported prevalence of CKD amongst those with DM varies
from 8.6 to 17.7 % [5, 8, 9] with higher prevalence among
people of African American, Asian and Native American eth-
nicity compared to Caucasians [7, 10]. The widespread adap-
tation of the Modification of Diet in Renal Disease (MDRD)
equation for estimating glomerular filtration rate (¢GFR) may
also have contributed to the reporting of increased DKD prev-
alence [11]. Importantly, DKD is associated with greatly
increased risk for cardiovascular [12—-14] and all-cause
mortality [15, 16, 17¢¢, 18<]. Individuals with ESRD sec-
ondary to DKD have an annual mortality rate of approxi-
mately 20 % [19¢+]. In the USA, the cost of treating a person
with DM and CKD has increased more than 11-fold in the
last decade [20].

The most consistent pathological features of DKD are cap-
illary basement membrane thickening and diffuse and nodular
glomerulosclerosis. In the early stages of DKD, these glomer-
ular lesions manifest as hyper-filtration and increased albumin
excretion followed, as the disease advances, by progressively
increasing proteinuria and declining eGFR. Importantly, DKD
is also associated with primary and secondary pathological
changes to the vascular and tubulo-interstitial compartments,
the severity of which exert a strong influence on the rate of
loss of renal function. Furthermore, in a proportion of

individuals with clinical features of DKD, additional primary
renal conditions (e.g. IgA nephropathy, renal arterial disease)
may be superimposed upon DM-driven pathological changes.

The pathophysiology of DKD (Fig. 1a) is primarily driven
by elevated blood glucose but extends to a broad network of
local and systemic processes [21e¢]. These processes remain
only partially understood but key details have been revealed
through experimental studies in cell culture, animal models,
tissue samples and human subjects. For example,
hyperglycaemia induces abnormal activation of protein kinase
C (PKC) in renal parenchymal cells which is associated with
up-regulation of the pro-fibrotic cytokine transforming growth
factor-f3 (TGF-{3) along with the matrix proteins fibronectin
and collagen type IV, nitric oxide dysregulation, endothelial
dysfunction and activation of the mitogen-activated protein
kinase (MAPK) and nuclear factor kappa B (NF-«kB) signal-
ling pathways [22, 23]. Hyperglycaemia is also associated
with high levels of advanced glycation end-products (AGE)
which further stimulate the production of TGF-f3.

Activation of the renin-angiotensin aldosterone system
(RAAS) has been linked to hyperglycaemia-associated in-
creased formation of succinate [24, 25]. This causes elevated
levels of angiotensin II leading to pro-inflammatory signals,
hypertrophy of mesangial and tubular epithelial cells, increases
in TGF-3 [26, 27] and monocyte chemoattractant protein-1
(MCP-1) [28, 29], and the generation of reactive oxygen spe-
cies (ROS) [30]. Induction of MCP-1 results in increased traf-
ficking of monocytes into the kidney. Infiltrating monocytes are
then converted to macrophages which release pro-
inflammatory factors including interleukin-6 (IL-6), tumour ne-
crosis factor & (TNF-«) and ROS [31¢]. During this inflamma-
tory process, additional angiotensin Il is also generated at tissue
level by macrophages and lymphocytes [32].

Growth factors also contribute to the development of glo-
merular structural alterations. For example, elevated glucose
levels induce an early activation of platelet-derived growth
factor- (PDGF-f3) which causes an increase in TGF-31 ex-
pression [33]. Systemic arterial hypertension and localised
haemodynamic dysfunction may further exacerbate intra-
renal inflammation and the production of growth factors and
extracellular matrix (ECM) proteins.

Based on these and other pathogenic mechanisms, DKD is
now understood to occur in the setting of a pro-inflammatory
milieu that is driven by metabolic dysregulation [19¢] and
mediated by humoral factors that cause pathogenic structural
and functional alterations to the kidney [34]. In addition to the
primary parenchymal cells of the kidney, specific immune
cells also act as an important source of pathogenic mediators
in DKD. For example, the severity of glomerulosclerosis is
associated with the extent of macrophage accumulation in the
kidney [35, 36]. While the role of lymphocytes has yet to be
clearly defined [37], early DKD is associated with an increase
in activated T cells [38]. A counter-balancing role for
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regulatory T cells (T-reg) has also been demonstrated in ani-
mal models of DKD. It has been shown that the anti-
inflammatory effects of T-reg ameliorate metabolic abnormal-
ities and insulin resistance [39], while depletion of T-reg ex-
acerbates albuminuria and hyperfiltration [40].

It is clear from this brief synopsis of DKD pathophysiology
that the driving factors, primary cell responses and secondary,
exacerbating factors represent a complex network of damag-
ing mechanisms that are unlikely to be reversed by targeting a
single mediator or intracellular pathway. Cellular therapies,
particularly stem or progenitor cells, offer the potential for
modifying multiple pathogenic mechanisms simultaneously
and for actively promoting inherent capacity for tissue repair
and regeneration [41¢]. In this review, we summarise and crit-
ically evaluate the evidence for mesenchymal stem cells
(MSCs)—a progenitor cell population that can be culture-
expanded to large numbers from samples of bone marrow,
fat, umbilical cord and other human tissues—as a cellular
therapy for DKD.

Animal Models Used to Evaluate MSCs in DKD

Rodents have served as the primary animal model of DKD
due to their widespread availability, well defined genotypes,
large repertoire of associated experimental reagents and ame-
nability to genetic modification [42]. Almost all in vivo stud-
ies of MSCs in models of DKD have been carried out in mice
orrats. Recently, however, Pan et al. reported results of a study
evaluating the effects of MSC administration on DKD in tree
shrews—a species having greater genome homology with pri-
mates which may also develop spontaneous dysglycaemia
[43-47]

The characteristics of a given model of DKD reflect both
the method(s) used to induce DM and the species/strain sus-
ceptibility to the development of DKD [48]. A range of
methods has been developed for inducing type 1- or type 2-
like DM in mice, including dietary, pharmacologic and genet-
ic interventions [49]. Pharmacologic induction of DM with
streptozotocin (STZ), with or without accelerating factors
such as high-fat diet [43], uni-nephrectomy [50¢] or use of
the non-obese diabetic (NOD) strain [51], has been the pre-
dominant rodent DKD model used in the evaluation of MSCs.
Experimental results in the db/db mouse model of obese, type
2 DM with uni-nephrectomy have also been reported in ab-
stract form [52]. Some concerns related to the renal disease
observed in STZ-induced type 1 DM are of relevance. Non-
specific renal cytotoxicity of STZ itself can lead to acute tu-
bular injury raising the concern that some of the observed
beneficial effects of MSC administration may be due to their
well-documented capacity to reduce the severity of acute kid-
ney injury (AKI) [41e, 53-55]. While all but one reported
study used a low-dose STZ regimen [56], a residual risk of
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STZ-induced AKI has been described even at low doses [57].
Furthermore, STZ-induced diabetes rarely progresses to his-
tologically advanced DKD and renal failure [58]. The recent
development of murine models which more readily recapitu-
late the more advanced features of DKD may be of value for

testing the pre-clinical efficacy of MSCs across the spectrum
of DKD severity [59-61].

Efficacy and Mechanism of Action of MSCs
in Pre-clinical Models of DKD

Over the past decade, several groups have reported results of
experiments in which therapeutic benefits of MSCs were eval-
uated in the small animal models of DKD described above.
These pre-clinical studies have involved administration of
autologous/syngeneic [56, 62, 63], allogeneic [43, 64, 65,
66e, 67, 68] and xenogeneic (human) [50e, 51, 69, 70, 71]
MSCs. Most studies employed MSCs of bone marrow origin
but umbilical cord- [70, 71] and adipose-derived MSCs [50e,
62, 69¢] have also been used. Systemic administration of
MSCs via the intravenous route has been utilised in the ma-
jority of studies. Two studies employed intra-cardiac admin-
istration via the left ventricle [51, 68] while another reported
local delivery via the left renal artery [67].

These published studies have generally provided evidence
that MSCs ameliorate clinically relevant indicators of DKD
severity including albuminuria; serum creatinine/urea; glo-
merular hypertrophy, mesangial expansion and sclerosis;
podoctye number and foot process effacement; and tubular
injury and interstitial fibrosis. Taken together, the results to
date indicate that systemic administration of one or more
doses of MSCs exerts beneficial effects on proteinuric DKD
in small animal models regardless of tissue source and
genetic/species compatibility. In keeping with MSC anti-
inflammatory properties, a consistent observation in rodent
models of DKD has been reduction in the intra-renal expres-
sion of key inflammatory mediators such as TNF«, IL-6 and
IL-13 and reduced infiltration by macrophages [51, 62, 64,
66°]. These studies also provide insights into other key issues
related to the clinical translation of MSC therapy to human
subjects with DKD including impact on glycaemic control,
bio-distribution and persistence of administered cells and
mechanism(s) of action.

The potential for MSCs to improve blood glucose con-
trol after systemic administration may delay the progres-
sion of DKD independently of direct reno-protective ef-
fects [72]. Of 14 studies assessing the in vivo effect of
MSCs in animal models of DKD, 8 reported a concomitant
significant reduction in blood glucose [43, 51, 6265, 66¢,
73]. One study reported a reduction in blood glucose only
when allogeneic MSCs (allo-MSCs) were administered in
combination with cyclosporine [68], suggesting that
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immunologic rejection could hinder the propensity of allo-
MSCs to lower blood glucose. Three of these nine studies
reported concomitant islet cell regeneration despite low
levels of MSC engraftment in the pancreas [51, 63, 73],
suggesting that paracrine mechanisms underpin the anti-
hyperglycaemic benefit of MSCs. This is in keeping with
evidence from the wider literature regarding the beneficial
effects of MSCs in models of DM [74-76]. For studies in
which no significant reduction in blood glucose occurred
[50., 56, 67, 70, 71], various explanations have been pro-
posed. Factors such as MSC tissue origin, administration
route and dosage may influence their potency [72].
Additionally, variations in DKD model characteristics such
as the mechanism and degree of pancreatic 3 cell injury at
the time of administration may dictate whether rescue is
possible [56]. Clarification of these factors will be para-
mount for maximising the efficacy of MSC therapy when
applied to human DKD.

Regarding MSC bio-distribution in models of DKD, all
studies have demonstrated tracking of MSCs to the kidneys
after systemic administration, albeit of a degree and dura-
tion that is unlikely to fully explain their beneficial effects
on renal function and structure [77]. Although Lee et al.
reported direct differentiation of some human bone
marrow-derived MSCs into intra-renal CD31" endothelial
cells in diabetic NOD/scid mice [51], it is generally accept-
ed that such trans-differentiation events are rare at best and
insufficient to represent a major mechanism of tissue re-
pair. However, Wang et al. also reported that 10 % of glo-
meruli contained adipocytes arising from administered
MSCs in rats with type 1 DM [67], a finding which should
be closely monitored in human studies.

It remains unclear whether trafficking of systemically ad-
ministered MSCs to the kidney in DKD is essential for
maximising the beneficial effects of their paracrine activities.
Nonetheless, two recent studies have reported results for the
application of ultrasound-targeted micro-bubble destruction
(UTMD) to enhance MSC homing to diabetic kidneys.
Zhang et al. demonstrated that UTMD increased MSC
localisation to the kidneys by increasing interstitial capillary
permeability and endothelial VCAM-1 expression. In this
study, UTMD-enhanced renal trafficking was associated with
reduced urinary albumin excretion without a concomitant re-
duction in blood glucose compared with MSC administration
alone [73]. Subsequently, Wu et al. exploited the interaction
between stromal cell-derived factor-1 (SDF-1) and the
CXCRA4 receptor, which is of central importance to MSC mi-
gration [78], by loading micro-bubbles with covalently at-
tached SDF-1. The resultant increase in SDF-1 in the renal
interstitium after application of ultrasound greatly enhanced
MSC homing at 24 h compared to conventional UTMD [79¢].
No studies have yet assessed the ability of UTMD to increase
MSC homing to the pancreas [80].

A large body of literature has accumulated related to
the mediators and pathways involved in MSC paracrine
functions in diseases involving maladaptive inflamma-
tion and tissue degeneration [41¢]. Figure 1b summa-
rises the paracrine reno-protective effects of MSCs
which have been elucidated in animal models of DKD
to date. As shown, experimental evidence supports mod-
ulatory effects of MSC-derived factors on mechanisms
of fibrosis, oxidative stress, immune/inflammatory activ-
ity, cellular de-differentiation pathways and growth fac-
tor responses. Rather than viewing them independently, it
is important to recognise that most of these mechanisms
interact at one or more levels within the complex molecular
milieu of DKD. For example, Lv et al. demonstrated that
hepatocyte growth factor (HGF) elaboration from MSCs
significantly reduced hyperglycaemia-induced TGF1 ex-
pression in mesangial cells, which in turn was responsible
for the reduced GLUT]1 expression and consequent reduc-
tion in glucose-mediated intracellular oxidative stress ob-
served with allo-MSC administration [65]. Despite this, the
consequences of trophic factor secretion by MSCs in the
setting of DKD remains under-evaluated, with the reno-
protective effect of only three of these factors being rigor-
ously examined using neutralising antibodies and/or small
interfering RNA in vitro. Along with HGF, epidermal
growth factor (EGF) has been shown to prevent podocyte
apoptosis and hyperglycaemia-induced down-regulation of
synaptopodin and nephrin expression [69¢]. Glial cell
line-derived neurotrophic factor (GDNF) prevents
hyperglycaemia-induced down-regulation of podocyte
synaptopodin and Wilms tumour 1 protein [50¢]. Clearly,
continued investigation of MSCs mechanism of action in
animal models of DKD is needed to optimise clinical
translation.

Biomarkers of DKD Progression and Their Role
in Clinical Translation of MSCs

A significant unmet need for successful translation of
MSCs, and other cellular therapies for DM and its com-
plications, in human subjects is the identification of
measurable factors (“biomarkers™) that can serve as pre-
dictors or early indicators of favourable therapeutic re-
sponse. This is particularly important for DKD as im-
pact on the relevant “hard outcomes” such as rate of
decline of GFR, development of ESRD, cardiovascular
events or death may not be evident for years following
intervention. Increased urine albumin excretion is an
important marker of risk for development of progressive
DKD [81-83] but, in recent years, it has been shown to
fluctuate over time in many individuals with DM
[83—86]. Thus, although albuminuria combined with
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eGFR continues to be a guideline-endorsed biomarker of
CKD [87], its value as a surrogate for future risk of progres-
sive CKD/ESRD in the context of clinical trials in DKD is open
to question. It is against this backdrop that the evaluation of
alternative biomarkers or panels of biomarkers linked to a
growing understanding of the pathophysiology of DKD has
become an important research topic [88-90]. Although the ma-
jority of novel DKD biomarkers are currently in the early stages
of validation, several have biological plausibility and have been
the subject of promising studies in cohorts of subjects with
diabetes. In some cases, such emerging biomarkers may be
linked to the putative mechanisms of action of MSCs in animal
models of DKD discussed above (see Table 1). Thus, the design
of experimental systems and clinical trials of MSCs as a thera-
peutic intervention for DKD may be enhanced by careful con-
sideration of the growing literature on measurable biomarkers
in blood and urine. For the purpose of this review, we will focus
on a selection of such novel biomarkers which we believe may
have specific potential for predicting the effects of MSC therapy
in DKD.

Pro-inflammatory cytokines may represent important
indicators of DKD risk and severity. For example, serum
and urine concentrations of TNF-« are elevated in people
with DM compared to healthy controls [91-93]. Navarro

et al. demonstrated that urinary TNF-« is raised in type 2
DM and independently correlates with albuminuria status
and renal function [93]. In vivo models of the role of
MSCs on renal function in rats with DKD have demon-
strated a decrease in TNF-o following MSC therapy
[64]. The receptors for TNF-a, TNF receptor-1
(TNFR1) or TNF receptor-2 (TNFR2), may also serve
as indicators of DKD severity in their soluble forms
(STNFR1 and sTNFR2). Niewczas et al. in a cross-
sectional study of type 1 diabetic subjects identified that
serum TNF-a and the sTNFRs were associated with
cystatin-C-based eGFR (cC-eGFR) in univariate analy-
ses. However, on multivariate analysis, only the associa-
tion with sTNFRs remained significant [94]. Further
work by this group demonstrated that circulating
TNFRs are predictive of stage 3 CKD in type 1 DM
[95] and of ESRD in type 2 DM [96¢¢]. Serum and/or
urine concentrations of other pro-inflammatory mediators
such as IL-6, IL-13 and MCP-1 have also been shown to
be associated with DKD in patient cohorts. Although
their value as clinical predictors of DKD progression
and complications has not been robustly proven, they
may also be considered as putative biomarkers of the
anti-inflammatory effects of MSCs.

Table 1  Potential biomarkers for monitoring MSC response in DKD

Biomarker Reference Source Key results

Individual biomarkers

TNF-« [91-94] Serum +urine  Elevated in DM and DKD (macro- > micro- >
normo-albuminuria)

TNFR1 + 2 [94, 95, 96°¢, 130] Serum + urine  Predictive of progression to CKD3 in type 1 DM
and to ESRD in type 2 DM

Adiponectin [101-113, 114¢] Serum + urine  Serum: predictive of progression in macro-albuminuria

Urine: predictive of progression to ESRD

NGAL [117-121] Serum + urine  Elevated in DM and DKD (increased with progressive
albuminuria)

FGF-23 [123, 130ee] Serum Predictive of progression in macro-albuminuria

FGF-21 [124, 130ee] Serum Predictive of eGFR decline in normo-albuminuria and
of progression of CKD3

KIM-1 [121, 125, 127-129, 130e] Serum + urine  Serum: predictive of eGFR decline and ESRD.

Urine: predictive of eGFR decline. Lower levels associated

with remission of micro-albuminuria. Reduced by
ARB therapy

IL-6 [150e¢] Serum Higher baseline level associated with stabilisation of eGFR
in phase I/l trials of bone marrow MPCs

Biomarker panels

Peptide and metabolite panels  [21e, 91, 144, 145, 146+, 147, 148]  Urine Elevated in DKD. Predictive of progression to micro- or
macro-albuminuria

Candidate biomarker panel [130e¢] Serum Predictive of progression from CKD3

TNF-a tumour necrosis factor alpha, DM diabetes mellitus, DKD diabetic kidney disease, TNFR+2 TNF receptor 1 and TNF receptor 2, CKD3 chronic
kidney disease stage 3, ESRD end-stage renal disease, NGAL neutrophil gelatinase-associated lipocalin, FGF-23 fibroblast growth factor 23, FGF-21
fibroblast growth factor 21, eGFR estimated glomerular filtration rate, K/M-1 kidney injury molecule 1, /Z-6 interleukin 6, MPCs mesenchymal

precursor cells, 4RB angiotensin receptor blocker
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Type 2 DM is associated with down-regulation of the
adipokine adiponectin in association with obesity and in-
sulin resistance [97]. Adiponectin is reported to have a
reno-protective effect in rodent experiments [98—100].
Consistent with this, serum adiponectin levels have been
observed to be negatively correlated with urinary albumin
excretion in subjects with DM, normo-albuminuria and
preserved GFR. However, this correlation is less consis-
tent in subjects with micro-albuminuria [98, 101-104].
Furthermore, in subjects with overt DKD, serum and
urine adiponectin levels have been shown to have positive
correlations with albuminuria and negative correlations
with GFR [105-112]. Saraheimo et al., in a prospective
study of subjects with type 1 DM, observed that increased
serum adiponectin predicted progression from macro- but
not micro- or normo-albuminuria to ESRD [113].
Similarly, Panduru et al. identified an association between
urinary adiponectin and progression to ESRD in
type 1 DM [114¢]. The authors concluded that urinary
adiponectin was a better predictor than albumin excretion
rate. Thus, serum or urine adiponectin may be of specific
value as a predictor of DKD progression in the setting of
overt proteinuria and reduced eGFR—perhaps the most
likely target group for MSC therapy.

Other novel biomarkers of interest include neutrophil
gelatinase-associated lipocalin (NGAL), fibroblast growth
factor 23 (FGF-23) and fibroblast growth factor 21 (FGF-
21). NGAL is a small molecule belonging to the lipocalin
superfamily which plays a role in apoptosis, immune regula-
tion and transportation of small hydrophobic molecules [88,
115]. In a cohort of subjects with type 2 DM, Yang et al.
demonstrated that urine NGAL correlated positively with
cystatin C, urea nitrogen and serum creatinine and inversely
with eGFR [116]. Nielsen et al. demonstrated that urine
NGAL was elevated in type 1 DM with and without albumin-
uria suggesting a tubular source [117]. They showed that urine
NGAL increases significantly with increasing albuminuria. In
a study by Bolignano et al., urine and serum NGAL were
higher in subjects with DM compared to controls and the rate
of increase of NGAL was associated with increasing albumin-
uria [118]. However, controversy exists regarding the utility of
this marker as other authors have suggested that there may not
be an association following adjustment for clinical predictors
[119-121]. FGF-23 is an osteocyte-produced hormone in-
volved in the regulation of phosphate excretion and vitamin
D activation [122]. Titan et al. demonstrated that serum FGF-
23 concentration is an independent predictor of renal outcome
in patients with type 2 DM and macro-albuminuria [123]. A
related factor, FGF-21, is secreted by the liver and has been
shown to regulate various metabolic conditions [124]. In a
large cohort of subjects with type 2 DM, higher serum FGF-
21 concentration at baseline was associated with eGFR de-
cline during a median 4-year follow-up. In subjects with

eGFR >60 mL/min/1.73m? and normo-albuminuria, serum
FGF-21 was an independent predictor of eGFR decline.
Other biomarkers such as kidney injury molecule-1 (KIM-1)
[31e, 121, 125-129, 130°°], vascular endothelial growth factor
(VEGF) [131-135] and «-1 microglobulin [130ee, 136—140]
may also be relevant in trials of stem cell therapies.

As an alternative to measurement of individual biomarkers,
assays involving quantification of biomarker panels may
eventually allow for more precise prediction of adverse renal
outcomes or responses to novel therapies. Recently, Looker et
al. evaluated a large number of candidate biomarkers for their
predictive value for rapid progression from CKD stage 3 in a
longitudinally followed cohort of subjects with DKD [130e¢].
This study identified a minimal panel of 14 biomarkers which
provided significant predictive value when added to clinical
information. The panel included the above-mentioned
KIM-1, FGF-21 and «-1 microglobulin along with other
proteins and small molecules/metabolites. Building on
rapid advances in mass spectrometry, urinary proteomics
has been extensively applied as a technology for non-
biased discovery of biomarkers panels for CKD/DKD
progression [141-143]. Notably, Goode et al. identified
a 273-peptide urine signature (CKD 273) with a sensi-
tivity of 85.5 % and specificity of 100 % in classifying
CKD among subjects from a multicentre prospective
study [144]. Subsequently, the CKD 273 panel was
shown to have predictive value for loss of renal func-
tion and death in a prospectively followed CKD cohort
[145]. It was also validated as accurately identifying
DKD [146¢] and for predicting transition to micro- or
macro-albuminuria in a cohort of subjects with type 2
DM [147]. In a longitudinal study of normo-albuminuric
subjects with type 1 and type 2 DM, the CKD 273
panel significantly enhanced the predictive value of
urinary albumin alone for development of macro-
albuminuria up to 5 years later [148]. Sharma et al. quantified
94 urine metabolites using gas-chromatography-mass spec-
trometry and found that 13 metabolites were significantly re-
duced in subjects with DKD [21e¢]. The metabolic signature
was specifically linked to mitochondrial metabolism and the
authors concluded that global suppression of intra-renal mito-
chondrial function may be a measurable indicator of DKD
severity. As MSCs and their products have been demonstrated
to have direct cytoprotective effects on renal epithelial cells
[149], it is interesting to speculate that changes in urine me-
tabolites could serve as an early indicator of response to cel-
lular therapy in DKD.

Human Clinical Trials of MSCs in DKD

Clinical trial activity in the area of MSC therapy for DKD, or
for other causes of CKD, has only recently been initiated and
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remains at an early stage worldwide. A search of the major
clinical trial registries [WHO International Clinical Trials
Registry (www.who.int/ictrp/en/); EU Clinical Trials
Register (www.clinicaltrialsregister.eu/) and the U.S.
National Institutes of Health ClinicalTrials.gov (www.
clinicaltrials.gov)] yielded only three clinical trials of MSC
therapy in DKD as well as four additional trials in non-
diabetic CKD. The details of these trials are summarised in
Table 2. As is clear from the table, these clinical trials involve
small numbers of subjects with DKD/CKD and represent ei-
ther exploratory studies (Phase 0) or studies with safety as the
primary end-point and potential signals of efficacy as second-
ary end-points (Phase I/II). Two clinical trials in DKD/CKD
involve allo-MSC administration while the remainder focus
on autologous MSCs from bone marrow or adipose tissue.
With the exception of an ongoing trial of autologous MSCs
delivered intra-arterially in subjects with reno-vascular dis-
ease, all trials involve intra-venous administration of various
doses of MSCs.

To date, only one Phase I/II trial has been completed with
results reported in abstract form at the 2015 American
Diabetes Association national meeting [150¢¢]. In this trial,
two doses of a cell product manufactured by the Australian
company Mesoblast Ltd. consisting of allogeneic bone
marrow-derived Stro3+ mesenchymal precursor cells
(MPCs) were compared with placebo infusion in a cohort of
30 subjects with type 2 DM and eGFR of20-50 mL/min/1.73/
m? on stable medical therapy. Preliminary results from 12 and
24 weeks follow-up indicated an acceptable safety profile for
MPCs in the setting of relatively advanced DKD. In addition,
trends for change in renal function provided an “efficacy
signal” in that subjects receiving placebo had greater de-
cline in eGFR during follow-up compared to those receiv-
ing cell infusion—particularly for those with higher base-
line eGFR (>30 mL/min/1.73/m?) and higher serum IL-6
concentration (>3.5 pg/dL). A Phase 0 trial of autologous
bone marrow MSCs in 20 subjects with type 1 DM and
nephropathy has completed enrolment in Iran. To our
knowledge, results for this study have not yet been report-
ed. Finally, the authors of this review, along with partner
institutes from five other European countries (UK,
Belgium, the Netherlands, Germany and Italy) have recent-
ly initiated a project (www.nephstrom.eu) which will
conduct a multi-site, placebo-controlled, dose-escalating
Phase I/II clinical trial of a prospectively isolated bone
marrow-derived allo-MSC therapy in subjects with pro-
gressive, proteinuric DKD (eGFR 30-50 mL/min/1.73/
m?) despite optimal medical therapy (see Table 2). Thus,
while it has been almost 10 years since the first promising
animal model study [51], the clinical translation of MSC
therapies for DKD is in its infancy and further develop-
ment of the field may well be dependent on encouraging
results from such early phase trials.

@ Springer

Conclusion: What Are the Key Challenges
and Unanswered Questions?

Of the many diseases for which MSCs are considered to be of
potential benefit, progressive DKD represents one of the most
significant worldwide health challenges. As described in this
review, the therapeutic model which has been evaluated in
pre-clinical models to date consists of a single, timed interven-
tion by which multiple elements of disease pathogenesis are
favourably modulated. The efficacy of this model rests pre-
dominantly upon MSC-associated paracrine mechanisms
which result in alterations to the systemic and intra-renal mi-
lieu with consequent slowing or reversal of key pathogenic
pathways including glomerular barrier dysfunction, pro-
inflammatory cellular infiltration, tubular epithelial cell stress
and progressive interstitial fibrosis. Thus, the clinical niche for
MSC administration in DKD could be viewed as a broad re-
programming of chronic nephrotoxic processes occurring in
DM which may “reset the clock” of progression toward
ESRD in responsive individuals. Of additional significance,
MSC administration has also been demonstrated to improve
glycaemic control as well as the advancement of other diabetic
end-organ complications in some experimental settings.
Furthermore, MSC therapy is conceptually compatible with
established pharmacological and lifestyle-based treatments for
DKD and with a model of intermittent administration that has
proven to be highly effective for other “biological agents”.
However, as we make clear here, small animal models of
DM and DKD provide, at best, only a partial reproduction of
human disease pathogenesis and progression. Therefore, the
design and outcome of early phase clinical trials in this area
represent a critical juncture in the evolution of cellular thera-
pies for diabetic complications. Confirmation of the safety of
autologous and allogeneic progenitor cell therapy is para-
mount. However, the identification and interpretation of
“efficacy signals” from these studies may well determine
whether the necessary investment of funding, resources and
expertise can be secured to proceed with trials of sufficient
scope to robustly prove therapeutic value.

To conclude this review, we highlight the following
areas for which ongoing and new research efforts will be
needed to maximise the likelihood of widespread future
clinical application of MSCs and other stem/progenitor cell
therapies to DKD: (a) Further efficacy and mechanism of
action studies in emerging animal models of DKD. (b)
Development of in vitro systems and potency assays to
optimise MSC production and patient selection for cell
therapy intervention. (c) Identification of biomarkers
linked to DKD progression and to in vivo MSC mechanism
of action for application to Phase II/III clinical trials. (d)
Economic analysis and modelling of the delivery, reim-
bursement and cost-effectiveness of MSC administration
in DKD at varying stages of severity.


http://www.who.int/ictrp/en/
http://www.clinicaltrialsregister.eu/
http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
http://www.nephstrom.eu/
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