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Abstract Diabetic neuropathies (DNs) are one of the most
prevalent chronic complications of diabetes and a major cause
of disability, high mortality, and poor quality of life. Given the
complex anatomy of the peripheral nervous system and types
of fiber dysfunction, DNs have a wide spectrum of clinical
manifestations. The treatment of DNs continues to be chal-
lenging, likely due to the complex pathogenesis that involves
an array of systemic and cellular imbalances in glucose and

lipids metabolism. These lead to the activation of various bio-
chemical pathways, including increased oxidative/nitrosative
stress, activation of the polyol and protein kinase C pathways,
activation of polyADP ribosylation, and activation of genes
involved in neuronal damage, cyclooxygenase-2 activation, en-
dothelial dysfunction, altered Na+/K+-ATPase pump function,
impaired C-peptide-related signaling pathways, endoplasmic
reticulum stress, and low-grade inflammation. This review
summarizes current evidence regarding the role of low-grade
inflammation as a potential therapeutic target for DNs.
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Introduction

Diabetic neuropathy (DN) ultimately affects up to 50 % of pa-
tients with type 1 diabetes (T1DM) and type 2 diabetes (T2DM)
[1, 2]. The prevalence of diabetes and prediabetes in the USA
and worldwide has reached epidemic proportions [2, 3]. For
instance, between 2001 and 2009, there was a 23 % increase
in the prevalence of T1DM among children in the USA [4, 5],
and recent data from NHANES reported almost a doubling in
the prevalence rates of total confirmed diabetes in the adult
population [3]. As the prevalence of diabetes increases, so too
will the prevalence and morbidity of DNs increase.

DNs have a wide spectrum of clinical forms and manifes-
tations based on the type and anatomical distribution of the
nerve fibers involved. Among the various forms of DNs, distal
symmetrical polyneuropathy (DSPN) and cardiovascular au-
tonomic neuropathy (CAN), a manifestation of autonomic
neuropathy (AN), are by far the most prevalent [6•, 7].

DNs are a major cause of disability, high mortality, and
poor quality of life [1, 2]. For instance, patients with DSPN
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have a 25 % cumulative risk of a lower extremity amputation.
The 3-year survival in patients with DNs is 20 % less than in
age- and sex-matched diabetic patients without DN [8]. Using
a newly developed accelerated failure time model which in-
cludes alcohol consumption, proteinuria, race, retinopathy,
sex, smoking, type of diabetes, body mass index (BMI), du-
ration of diabetes, hemoglobin A1c (HbA1c), and DN, it was
found that DN most significantly contributed to mortality [9].
CAN, although silent in earlier stages, is a significant cause of
morbidity due to a high risk of cardiac arrhythmias, silent
myocardial ischemia, and myocardial dysfunction [7,
10–15]. Strong evidence also demonstrates that CAN is an
independent predictor of mortality [11]. Due to its high mor-
bidity and mortality, the socio-economic costs of DN and
CAN are staggering and are estimated to be $22 billion/year
in the USA.

Despite the high morbidity associated with DN and CAN,
results from randomized clinical trials assessing the efficacy
of various therapeutic agents in established DN and CAN
have been disappointing. The Diabetes Control and
Complications Trial (DCCT) demonstrated that intensive glu-
cose control designed to achieve near-normal glycemia was
essential in reducing the risk of DN and CAN in T1DM [16,
17]. Initial optimism over the DCCT results was tempered
when long term follow-up of the cohort in the Epidemiology
of Diabetes Interventions and Complications (EDIC) study
revealed a high prevalence of DN and CAN 13–14 years after
DCCT closeout in all subjects [18, 19]. These compelling
results suggest that intensive glycemic control, although nec-
essary, is insufficient to prevent adverse nervous system ef-
fects, justifying a critical need to identify new drug targets to
treat DN and CAN early in their course.

Thus, the treatment of DNs, especially its reversion, con-
tinues to be very challenging, likely due to the complex path-
ogenesis of DNs which involves an array of systemic and
cellular imbalances in glucose and lipid metabolism. These
may lead to the activation of various biochemical pathways,
including increased oxidative/nitrosative stress, activation of
the polyol and protein kinase C pathways, activation of
polyADP ribosylation, and activation of genes involved in
neuronal damage, cyclooxygenase-2 activation, endothelial
dysfunction, altered Na+/K+−ATPase pump function, im-
paired C-peptide-related signaling pathways, endoplasmic re-
ticulum (ER) stress, and low-grade inflammation [20, 21•].

In recent years, the DN research field has evolved from a
glucocentric viewpoint to a more broad understanding that
DN is a complex disorder secondary to multiple linked meta-
bolic and inflammatory insults. Evidence that low-grade in-
flammation plays an important role in the pathogenesis of DN
is emerging from both experimental and clinical studies.

Below, we summarize the current evidence regarding the
role of low-grade inflammation as a potential therapeutic tar-
get for DNs.

Inflammation, Diabetes, and Vascular Complications

A potential link between inflammation and diabetes was first
suggested more than a century ago based on observations that
high doses of sodium salicylate (>5 grams/day) diminish gly-
cosuria in diabetic patients having Bthe milder form of the
disease,^ presumably T2DM [22•]. More recently, several ep-
idemiological studies found that increased levels of markers
and mediators of inflammation and acute-phase reactants such
as fibrinogen, C-reactive protein (CRP), interleukin (IL)-6,
plasminogen activator inhibitor-1 (PAI-1), sialic acid, and
white cell count correlate with incident T2DM [22•, 23–25].
Eventually, several groups of investigators demonstrated acti-
vation of distinct molecular pathways mediated by adipocyte-
derived pro-inflammatory cytokines, including activation of
the transcription factor nuclear factor-κB (NF-κB) and IκB
kinase-β (IKKβ)/NF-κB axis [22•] and links to ER stress
[26••]. The interplay between chronic inflammation, obesity,
insulin resistance, and T2DM is now established, was amply
discussed previously [22•, 26••], and is beyond the scope of
this review. Targeting the NF-κB pathway with salsalate, a
salicylate prodrug, in patients with T2DM, was initially
shown in few proof-of-principle studies to have beneficial
effects on blood glucose, triglyceride, free fatty acid (FFA),
and C-reactive protein (CRP) concentrations and to improve
glucose utilization [27]. Most recently, the NIH-funded
targeting inflammation using salsalate in type 2 diabetes
(TINSAL-T2D), a randomized, placebo-controlled parallel
phase 3 clinical trial further confirmed these observations
reporting a significant improvement in glycemia and decrease
in mediators of inflammation in patients with T2DM after
48 weeks of treatment [28].

More than a decade ago, seminal work by Libby et al.
[29••] also unveiled that chronic inflammation plays a critical
role in the pathogenesis of atherosclerosis and vascular com-
plications, participating in all stages of atherogenesis and en-
dothelial dysfunction directly via multiple mechanisms. These
mechanisms include activation and increased expression of
vascular cell adhesion molecules (VCAM-1, ICAM-1) and
E-selectins on the endothelial cells, recruitment and binding
of leukocytes, particularly monocytes and T lymphocytes,
further release of pro-inflammatory cytokines like tumor ne-
crosis factor-α (TNF-α), IL-6, IL-1, and IL-18, migration of
macrophages, wall stress augmentation, arterial smooth mus-
cle cells proliferation, and lipid oxidation that further promote
inflammatory responses [29••, 30]. Chronic inflammation
may also reduce the local production of endothelium-derived
nitric oxide (NO) and increase production of angiotensin II,
PAI-1, free fatty acids (FFAs), and advanced glycation end
products (AGEs) [29••, 30].

While all of these pathways have been shown to critically
affect the development of macrovascular disease, they may
also underlie the link between inflammation and development
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of microvascular complications. For instance, in diabetic ne-
phropathy, several experimental studies reported increased re-
nal expression of several pro-inflammatory cytokines and ad-
hesionmolecules, such as IL-1, IL-6, IL-18, TNF-α, ICAM-1,
and VCAM-1, with subsequent increased vascular endothelial
cells permeability, dysregulation in the generation of
hyaluronan, and initiation of glomerular hypercellularity
[31]. Evidence for the role of chronic inflammation in the
pathogenesis of diabetic nephropathy was also demonstrated
in humans when a few cross-sectional trials in both T1DM
and T2DM trials reported increased CRP and other cytokines
in patients with nephropathy [30]. In the DCCT, baseline E-
selectin and fibrinogen levels, but not CRP, independently
predicted development of nephropathy in T1DM [32], while
in a follow-up of a cohort with T1DM evaluating the natural
history of diabetic nephropathy at the Joslin Diabetes Center,
Krolewski et al. found that the presence of elevated urine
levels in more than 2 inflammatory markers among IL-6, IL-
8, monocyte chemoattractant protein-1, interferon-gamma-
inducible protein, and macrophage inflammatory protein-1δ
were more than five times as likely to have early progressive
decline of renal function [33]. Most recently, data obtained in
the same cohort showed that elevated serum concentrations of
tumor necrosis factor receptors (TNFR) 1 or 2 are strongly
associated with the risk of advanced stages of renal decline,
such as chronic kidney disease stage 3 or end-stage renal dis-
ease and with the onset of renal decline itself [34, 35]. This
supports the idea that inflammatory signals may drive disease
in DN. In T2DM, the data is less clear; however, a few studies
reported either that IL-18, a pro-inflammatory cytokine in-
volved in both innate and acquired immune responses, inde-
pendently predicted conversion from normoalbuminuria to
microalbuminuria or reduced adiponectin levels in T2DM
subjects with nephropathy independent of confounders such
as body weight, insulin resistance, or glycemic control [30].

As with nephropathy, activation of pathways of inflamma-
tion, especially increased E-selectin and adhesion molecules
and decreased adiponectin, was also linked to the pathogene-
sis of diabetic retinopathy [30].

Inflammation and Diabetic Neuropathy

Multiple pre-clinical [36–40] and clinical [15, 41, 42•, 43, 44]
studies demonstrate a pathogenic role for inflammation, espe-
cially cytokine and chemokine production, in the DN and
CAN disease course.

Although the inflammation process is quite complex, acti-
vation of the IKKβ/NF-κB axis plays a central role. NF-κB is
a redox-sensitive transcriptional factor activated by a number
of stimuli, including hyperglycemia, oxidative stress, and pro-
inflammatory cytokines [22•, 36, 45].

Several lines of evidence obtained in experimental studies
showed that activation of the NF-κB axis triggers inflamma-
tory and immune responses that may lead to cellular injury
and expression of adhesion molecules and cytokines [22•,
45–47]. In a model of streptozotocin (STZ)-induced diabetes,
ischemia reperfusion injury induced NF-κB overexpression in
the diabetic sciatic endothelial cell and Schwann cell, with
subsequent increased ICAM-1 expression and extensive infil-
tration of monocyte macrophages compared with controls,
suggesting that the enhanced inflammatory response in dia-
betic nerves was mediated by NF-κB activation [48].
Similarly, the NF-κB axis also regulates the expression of
many inflammatory genes and their downstream effects, and
the contribution of genes including cyclooxygenase-2 (COX-
2), NO-synthase, lipoxygenase, and endothelin-1 were direct-
ly tested in animal models of DN [38]. The NF-κB-derived
cytokine TNF-α induces cyclooxygenase-2 (COX-2) overex-
pression and mitogen activated protein kinase (MAPK) acti-
vation [38, 39], two phenomena implicated in the diabetes-
induced pro-inflammatory response and neuropathic changes
[40, 49]. For instance, in two experimental models of T1DM
neuropathy, our group found significantly increased levels of
TNF-α in the sciatic nerve of diabetic rats and mice which
were associated with both large and small nerve fiber dysfunc-
tion, as documented by reductions in the motor and sensory
nerve conduction velocities (NCV) and in the intraepidermal
nerve fiber density (IENFD) in the diabetic animals [40].
These changes were prevented by either COX-2 gene inacti-
vation or treatment with a COX-2-selective inhibitor [40]. In
another animal model of diabetes, 12/15 lipoxygenase inhibi-
tion improved motor and sensory NCV and mechanical
allodynia, although it did not affect thermal hypoalgesia
[38]. Our group has also reported upregulation of multiple
inflammatory mediators, including COX2, iNOS, and
TNF-α, in sensory neurons of db/db mice early in the course
of DN, when the animals are experiencing pain [50]. Blocking
the increase in these inflammatory markers blocked pain, sug-
gesting that in an experimental model of T2DM DN, inflam-
mation in sensory neurons can mediate pain [50]. However,
the activation of the inflammatory cascade with downstream
signaling and cytokines release may have dual effects.
For instance, IL-6 is often co-released with TNF-α and
is considered in general a pro-inflammatory cytokine
[29••, 30]. However, a couple of experimental studies
reported that treatment of diabetic rats with pharmaco-
logical doses of IL-6 improved motor and sensory NCV,
corrected the altered thermal nociception and tactile
allodynia, and promoted increased nerve blood flow
[38, 51, 52]. Although a clear mechanism for these ob-
servations was not provided [38, 51, 52], these data
would suggest a potentially opposing effect of IL-6,
which is yet be confirmed by other studies, particularly
in humans.
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In addition, more recent evidence links inflammation with
dysregulation of several heat-shock proteins that function as
molecular chaperones and protects cells against environmen-
tal stress. For instance, in vitro studies found that the 70-kDa
heat-shock protein (HSP)70 bound with high affinity to the
plasma membrane, activated NF-κB, and upregulated the ex-
pression of TNF-α, interleukin IL-1β, and IL-6 in human
monocytes [53]. Dobrowsky et al. performed transcriptomic
analysis of sensory neuron RNA obtained from diabetic wild-
type and Hsp70 knock-out mice using RNA-sequencing and
reported that diabetes strongly increased inflammatory path-
ways [54, 55]. In addition, modulation of Hsp70 and Hsp90
with targeted small-molecules ameliorated psychosensory,
electrophysiologic, morphologic, and bioenergetic deficits of
DPN in animal models of T1DM [54, 55]. It was also shown
that the level of circulating HSP27, which has a role in
cytoprotection and cell motility and is overexpressed in dorsal
root ganglia in experimental diabetes, perhaps as a compen-
satory mechanism, was associated with distal sensorimotor
neuropathy [56].

A proposed cascade of events linking the chronic inflam-
mation in diabetes to peripheral nerve fiber damage and loss is
shown in Fig. 1. Briefly, hyperglycemia coupled with loss of
insulin signaling and insulin resistance along with
dysregulations in lipid metabolism and dyslipidemia lead to
systemic inflammation and vicious cycles of oxidative/
nitrosative stress, endoplasmic and mitochondrial stress, and
accumulating cellular damage [20, 21•, 57–61]. Glucotoxicity,
insulinopenia, and lipotoxicity produce neuronal oxidative/
nitrosative stress and activate multiple downstream kinases,
such as protein kinase C (PKC), MAPK, and jun N-terminal
kinase (JNK), and redox-sensitive transcriptional factors, in-
cluding NF-κB. These factors play a critical role in triggering
a cascade of cytokine and chemokine production, including
pro-inflammatory IL-1β, IL-2, IL-6, IL-8, TNF-α, chemokine
(C-C motif) ligand 2 (CCL2), and chemokine (C-X-C motif)
ligand 1 (CXCL1) [21•, 61]. Cytokines and chemokines not
only enhance existing inflammatory and immune responses
but also promote activation of the wide array of downstream
cellular oxidative/nitrosative stress, promoting even more
neuronal damage [61].

Human studies support these pre-clinical findings. For in-
stance, a study that included more than 150 participants with
diabetes, with and without DN, and 55 healthy controls re-
ported increased serum levels of inflammatory cytokines, in-
cluding TNF-α and CRP, and markers of endothelial dysfunc-
tion in subjects with DN [41]. These markers were further
increased in those with painful DN [41], data that are in con-
cert with findings from another study that reported increased
IL-2 in participants with neuropathic pain [62]. Duksal et al.
recently reported that elevated serum levels of IL-6 and IL-10
in patients with prediabetes and T2DM correlated with
markers of large nerve fiber sensory and motor axonal damage

and with signs ofmotor nerve demyelination [63]. Since IL-10
is considered an anti-inflammatory cytokine, that negatively
regulates TNF-α, one could speculate that the observed in-
creased IL-10 levels in this study could have been a compen-
satory mechanism. In a cross-sectional sample of ~500 partic-
ipants with T1DM from the EURODIAB Prospective
Complications Study, there was an independent association
between serum HSP27 levels and distal symmetrical
polyneuropathy diagnosed based on the presence of one or
more neuropathic symptoms, the absence of two or more an-
kle or knee reflexes, and abnormal vibration perception
threshold [56]. A recent analysis of a large cohort of over
1000 participants in the population-based Cooperative
Health Research in the Region of Augsburg (KORA) F4 study
reported that serum concentrations of several inflammatory
cytokines, including IL-1β and IL-6, were positively associ-
ated with measures of peripheral DN in age- and sex-adjusted
analyses [64•].

Emerging evidence also demonstrates a role for inflamma-
tion in the development of autonomic dysfunction, particular-
ly CAN in diabetes. In an earlier study, we reported signifi-
cantly higher markers of inflammation, including higher
levels of TNF-α, in patients with T1DM and CAN compared
with patients with T1DMwithout CAN [44]. In a case–control
study involving nondiabetic, newly diagnosed T2DM, and
established T2DMobese subjects (15/group), Lieb et al. found
that IL-6 correlated negatively with measures of CAN while
the ratio of adiponectin to leptin correlated positively with
measures of CAN [15].

We recently expanded our assessments of serummarkers to
include microarray analyses of sural nerves from patients with
DN. Sural nerve gene expression signatures from subjects
with progressive DN are highly functionally enriched in in-
flammatory and immune response pathways, and specific up-
regulated genes include chemokines (CCL2, 5, CXCL1), cy-
tokines (IL-1β, IL-2, IL-6), and complement [42•]. In con-
trast, gene expression signatures of sural nerves with anatom-
ical evidence of regeneration from subjects with DNwho have
stable disease reveal significant downregulation of pathways
and genes associated with inflammation and the immune re-
sponse [43]. Table 1 lists 18 differentially expressed genes
(DEGs) related to the Bdefense response,^ including 14
Binflammatory response^ DEGs.

Inflammation and Charcot Neuroarthropathy

Charcot neuropathic osteoarthropathy (CN) is a rare form of
DN that causes significant morbidity and mortality to the af-
fected patients [65]. The prevalence of CN varies between 0.1
and 0.9 % [66–68]. The clinical presentation of CN is charac-
terized by an edematous, erythematous warm foot. CN often
results in severe deformities and disfigurement that contribute
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to the development of ulcerations and lower extremity ampu-
tations. Although the pathogenesis of CN is still very poorly
understood, recent evidence suggests that chronic inflamma-
tion in concert with the peripheral nerve neurogenic peptide
dysfunction induced by diabetes play important roles in its
development and progression [69]. The prodromal state of
the disease that manifests with an acutely erythematous,
edematous, and warm foot, all typical features of inflamma-
tion, supports this concept. Stimulation of the inflammatory
cycle may directly stimulate increased bone turnover [70],
which in concert with hyperglycemia leads to increased pro-
duction of AGEs and upregulation of the receptors for AGEs
(RAGE). The increase in RAGE stimulates elevated levels of
receptor activator nuclear factor K ligand (RANKL), which
promotes osteoclastogenesis [71]. The superimposed auto-
nomic dysregulation with impaired sympathetic control doc-
umented in CN with subsequent increased perfusion further
contributes, which can lead to weakened demineralized bone
that is susceptible to fracture and dislocation [72]. Koeck et al.

[73] also relate the combined components of neuropathy,
microtrauma, and neurovascular effects resulting in a pro-
inflammatory cytokine activity, including elevated TNF-α
[74] and RANK-L [75]. Several human studies using infrared
dermal thermometry in cohorts of patients presenting with
unilateral acute CN found an average 8.8±2.3 °F higher tem-
perature on the affected joint, compared to the contralateral
joint [76]. The temperature differences were found to correlate
highly with radiographic changes [76] and with markers of
bone turnover [77].

Chronic Inflammation and Impaired Wound
Healing

The superimposed impaired cutaneous wound healing further
complicates the complex clinical presentation and manage-
ment of patients with DN. A third of the burden of the eco-
nomic costs of diabetes is estimated to be due to peripheral

Fig. 1 The link between chronic inflammation in diabetes and peripheral
nerve fiber damage and loss. Hyperglycemia coupled with loss of insulin
signaling and insulin resistance, along with dysregulation of lipid
metabolism and dyslipidemia, lead to systemic inflammation and
vicious cycles of oxidative/nitrosative stress, endoplasmic and
mitochondrial stress, and accumulating cellular damage. Glucotoxicity,
insulinopenia, and lipotoxicity produce neuronal oxidative/nitrosative
stress and activate multiple downstream kinases such as protein kinase
C (PKC), mitogen activated protein kinase (MAPK), and jun N-terminal
kinase (JNK), as well as redox-sensitive transcriptional factors, including

NF-κB. These factors play a critical role in triggering a cascade of
cytokine and chemokine production, including pro-inflammatory
interleukin-1β, interleukin-2, interleukin-6, interleukin-8 (IL-1β, IL-2,
IL-6, IL-8), tumor necrosis factor-α (TNF-α), chemokine (C-C motif)
ligand 2 (CCL2), and chemokine (C-X-C motif) ligand 1 (CXCL1).
Cytokines and chemokines not only enhance existing inflammatory and
immune responses but also promote activation of the wide array of
downstream cellular oxidative/nitrosative stresses, promoting even more
neuronal damage
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wounds, a contributing factor to the high risk of lower extrem-
ity amputations in the USA and subsequent increase in 3-year
mortality rates [78–80]. BStandard therapy^ leaves 70 % of
diabetic wounds unhealed; thus, development of more effec-
tive treatments is imperative. It is recognized that obesity, DN,
and T2DM are linked and associated with chronic systemic
inflammation [22•, 81–85].

Diabetic wounds are likewise characterized by a chronic
inflammatory state maintained by imbalances between pro-
and anti-inflammatory cytokines produced by immune cells
[86–89]. Macrophages are the key immune cell that drives
wound inflammation and are defined by the expression of
specific surface markers and gene phenotypes [88, 90, 91].
Classically activated macrophages (M1) express a defined
set of pro-inflammatory mediators, while alternatively activat-
ed macrophages (M2) display an anti-inflammatory pheno-
type [92–98]. In normal wound healing, first-responder mac-
rophages mobilized from the circulation exhibit an M1 phe-
notype and secrete pro-inflammatory mediators, including IL-
12, which participate in antimicrobial functions [99, 100].
This stage is followed by an M2 anti-inflammatory response
that promotes tissue repair [101]. This M2 dominated wound
repair phase appears to be markedly attenuated in diabetes
[102, 103]. Given that monocyte/macrophages isolated from
patients with diabetes constitutively secrete elevated levels of

pro-inflammatory cytokines [104, 105], one approach to im-
prove diabetic wound healing would be to reset the balance
between M1 and M2 macrophage subsets. The production of
these phenotypically distinct cell types facilitates the develop-
ment of a tailored immune response to particular stimuli such
as infection and injury.

It is also accepted that bone marrow (BM) hematopoietic
stem cells (HSC) give rise to a number of multipotent progen-
itors which in turn generate common myeloid progenitors
(CMP). CMP generate granulocyte-macrophage progenitors
(GMP), which differentiate into monocytes/macrophages in
the circulation and peripheral tissue, respectively [93,
106–108]. Thus, BM-derived monocytes in peripheral blood
are mobilized to tissue in response to injury or inflammation
[94, 109, 110]. Evidence suggests that epigenetic regulation
(e.g., DNAmethylation, histone modification) of gene expres-
sion plays a key role in influencing immune cell phenotypes
[111]. Epigenetic modifications have been documented in in-
flammation in animal models, where chromatin modifications
have been shown to regulate downstream immune-mediator
expression in monocyte-derived macrophages [112, 113]. The
notion that gene expression patterns can be maintained over a
period of time and are heritable is due to the fact that the DNA
is not completely stripped of its nucleosomes during replica-
tion, and hence, the remaining modified histones can act as

Table 1 DEGs related to defense response and inflammatory response (upregulated genes in progressors)

Entrez ID Symbol Description P value Fold-change

Defense response 136 ADORA2B Adenosine A2b receptor 0.01 1.4

2788 GNG7 Guanine nucleotide binding protein (G protein),
gamma 7

0.03 1.2

7033 TFF3 Trefoil factor 3 (intestinal) 0.01 1.5

23601 CLEC5A C-type lectin domain family 5, member A 0.02 1.7

57817 HAMP Hepcidin antimicrobial peptide 0.002 2.4

81035 COLEC12 Collectin sub-family member 12 0.02 1.2

Inflammatory response 140 ADORA3 Adenosine A3 receptor 0.03 1.3

624 BDKRB2 Bradykinin receptor B2 0.03 1.2

3075 CFH Complement factor H 0.001 1.2

4282 MIF Macrophage migration inhibitory factor
(glycosylation-inhibiting factor)

0.03 1.1

4973 OLR1 Oxidized low density lipoprotein (lectin-like)
receptor 1

0.0003 1.6

7852 CXCR4 Chemokine (C-X-C motif) receptor 4 0.04 1.3

10344 CCL26 Chemokine (C-C motif) ligand 26 0.0004 3.2

10630 PDPN Podoplanin 0.02 1.2

25824 PRDX5 Peroxiredoxin 5 0.02 1.1

53833 IL20RB Interleukin 20 beta 0.02 1.3

57834 CYP4F11 Cytochrome P450, family 4, sub-family F,
polypeptide 11

0.03 1.4

148022 TICAM1 Toll-like receptor adaptor molecule 1 0.03 1.2

(Modified with permission from Hur, J, et al. The identification of gene expression profiles associated with progression of human diabetic neuropathy.
Brain, 2011. 134(Pt 11): p. 3222-35) [42•]
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templates to initiate identical modification during replication.
Thus, any modifications can be transferred to daughter cells
and more differentiated cells [114]. Presently, there is little
data on epigenetic-based mechanisms that regulate macro-
phage phenotype in diabetic wounds. Work by Gallagher et
al. demonstrates that epigenetic changes in the form of histone
methylation may alter macrophages and skew them towards
an inflammatory phenotype in the periphery. Although the
concepts that chronic inflammation is due to changes in mac-
rophage phenotype and is associated with impaired diabetic
wound healing have been well accepted, no approach to date
has been clinically effective in restoring the normal wound
healing cascade in diabetic wounds. The current treatment in
wound management is fundamentally passive, and despite
significant advances in the medical treatment of diabetes,
wound healing rates have not changed over the past 30 years.

Targeting Inflammation as a Potential DN Therapy

The findings described above demonstrate that elevated levels
of inflammatory and endothelial dysfunction biomarkers ac-
company the development of DN in a manner frequently in-
dependent of hyperglycemia alone. Although most of the data
reports associative relationships only, some prospective stud-
ies suggest that inflammatory cytokines, and the NF-kB/
IKKβ axis in particular, are predictive of DN.

In vitro and in vivo studies and short-term human trials
have shown that salicylate therapy markedly lowers circulat-
ing glucose, triglycerides, and FFAs, as well as CRP levels,
effects mediated by inhibition of the IKKβ/NF-κB pathway
[27, 115, 116]. Salicylates are also reported to have inhibitory
effects on the production of chemokines, interleukins, and
complement, all of which are upregulated in human sural
nerves from subjects with progressive DN [117–119]. In a
large observational cohort of patients with T1DM, serum
lipids were independently associated with development of
DN [120]. We reported that elevated triglycerides were the
primary clinical parameter that correlated with a loss of mye-
linated fiber density, independent of disease duration, age,
diabetes control, or other variables [121].

An agent that targets low-grade inflammation via modula-
tion of the IKKβ/NF-κB pathway would therefore address
several critical pathways involved in the pathogenesis of DN
and of the DN associated pain.

Conclusions

A unifying hypothesis posits that inflammation occurs early in
the development of diabetes, and in the presence of additional
risk factors such as increased adiposity and insulin resistance,
contributes to further metabolic deterioration and imbalance,
and a complex inflammatory/endothelial dysfunction that

targets both small and large nerve fibers to result in the pe-
ripheral nerve dysfunction characteristic of DN. Collectively,
the data from experimental diabetes and from both serum and
neural gene expression studies in patients with DN strongly
support a role for inflammation in the onset and progression of
DN. We contend that targeting inflammation is a
mechanism-based strategy critically needed in the field
of DN and it may be the missing link in finding a new
viable therapy for DN.
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