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Abstract The prevalence of type 2 diabetes is increasing
worldwide, and while numerous treatments exist, none of
the current pharmacologic therapies is curat ive.
Pharmacologic approaches that increase beta cell mass may
present an avenue for actual cure. There have been numerous
reports on factors that can induce beta cell proliferation in
rodents, whereas there are still very limited data on the occur-
rence of beta cell proliferation in humans. The recent discov-
ery of the hormone betatrophin, which in mice counteracted
glucose intolerance induced by insulin resistance by potently
stimulating beta cell proliferation, has boosted the hope for a
new target for drug development for the treatment of diabetes
mellitus in humans. With the encouraging preclinical findings
as a background, this review presents the available clinical
data on betatrophin and discusses its possible role in humans.

Keywords Betatrophin . Diabetes . Humans . Beta cell
proliferation . Islet . Liver

Introduction

In 2011, the global prevalence of diabetes was estimated
by the International Diabetes Federation to be 366 mil-
lion, and the number is estimated to reach 552 million
by 2030 [1]. A common denominator for both type 1
and type 2 diabetes is the loss of functional beta cell
mass. In humans, a curvilinear relationship between beta
cell mass and fasting blood glucose concentration has
been shown [2]. Autopsy studies of patients with type
2 diabetes have demonstrated a mean beta cell deficit of
40–60 % [3, 4], but there are also reports on unaltered
anatomical beta cell mass in type 2 diabetes [5, 6]. At
onset of type 1 diabetes, beta cell mass has regularly
decreased to 20–40 % of normal [7], and the number of
beta cells continues to decrease. However, worthy to
note is that small numbers of insulin-producing beta
cells persist and function in a significant percentage of
patients with type 1 diabetes even decades after onset of
disease, which suggests either cessation of immune at-
tack or the existence of a pool of beta cells resistant to
destruction [8–10]. In both type 1 and type 2 diabetes
research, the means to obtain human beta cell prolifer-
ation are therefore of enormous interest. A hormone or
drug that could be administered in order to induce beta
cell proliferation and thereby restore beta cell mass
would be a potential cure for both type 1 and type 2
diabetes. There have been numerous reports on hor-
mones and drugs that can induce beta cell proliferation
in mice and rats, whereas there are still very limited
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data on the occurrence of beta cell proliferation in
humans.

Beta Cell Proliferation

Studies of rats and mice have provided many insights into the
development and physiology of the mammalian beta cell, but
with regard to proliferation, marked differences exist between
species [11–13]. In humans, the peak of beta cell proliferation
at any point during life is approximately 2 %, whereas in
rodents, this peak is considerably higher, with neonatal beta
cell replication in the range of 20 % [14]. Proliferation of
human beta cells begins shortly after birth, continues at its
highest rate during the first year, and then rapidly declines
already during early childhood, reaching a proliferation index
that approaches zero in adulthood [15–17]. Tested stimuli
known to remarkably induce beta cell proliferation in adult
rodents such as different growth factors, laminins, partial pan-
createctomy, pregnancy, and high-fat feeding have proven in-
effective to induce proliferation of adult human beta cells
[18–21]. In fact, merely a few factors such as glucose [22],
γ-aminobutyric acid [23], and signals from inflammatory cells
[24, 25] or neural crest stem cells [26] have this far been
reported to have some human beta cell mitogenic effects.
Only by the use of gene therapy techniques, where cdk6 and
cyclin D1 were overexpressed, it has in vitro been shown that
adult human beta cells can be induced to strongly proliferate,
and in a regulated manner without de-differentiation of cells
[27–29]. Although being proof-of-principle studies, gene ther-
apy techniques are unlikely to be directly acceptable for hu-
man diabetes therapy, and other approaches are clearly
needed.

Cumulative research has demonstrated that beta cells in
rodents require a connection with surrounding cells and or-
gans for development, for proliferation, and to maintain func-
tion and mass homeostasis [30, 31]. Therefore, the description
of the hormone betatrophin in mice, produced predominantly
in liver and fat tissues in insulin-resistant conditions and
acting as a very potent stimulator of beta cell prolifera-
tion [32••], has recently attracted considerable interest.
Such signal would be a logic feedback to the pancreatic
islets during insulin-resistant conditions causing a com-
pensatory increase in beta cell mass. Indeed, an in-
creased beta cell mass has been observed in autopsy
pancreas specimens from obese humans, although no
concomitant beta cell proliferation has been observed
[33]. The latter finding may, however, be erroneous
due to a postmortem decline in replication markers such
as Ki67 [34]. There are studies showing that adult hu-
man beta cells may proliferate in response to an
obesogenic environment when transplanted in mice
[35, 36].

Betatrophin

The hormone betatrophin was initially described under the
name hepatocellular carcinoma-associated protein TD26
[37]. It has also been described under the names lipasin [38],
refeeding-induced fat and liver (RIFL) [39], and angiopoietin-
like protein 8 [40]. In this review, we will, however, refer to
the hormone as betatrophin, a name given byYi et al. due to its
stimulatory effect on beta cell proliferation [32••]. The hor-
mone belongs to the angiopoietin-like protein family and is
encoded by the C19orf80 gene (in a mouse named Gm6484).
In mouse, it is predominantly expressed in the liver, white
adipose tissue, and brown adipose tissue, whereas in human,
it is expressed mainly in the liver only [38–40]. The expres-
sion of betatrophin in mice is regulated by both nutrition (in-
creased expression in response to a high-fat diet) and temper-
ature (increased expression in a cold environment) [41]. Yi
et al. treated the mice with an insulin receptor antagonist
(S961) for 1 week to induce glucose intolerance and
hyperinsulinemia [32••]. Concomitantly, there was a dose-
dependent increase in beta cell proliferation, as evaluated by
Ki67 immunohistochemical staining. Four days after the S961
treatment was stopped, proliferation rates returned to baseline
levels. No effect on proliferation was observed when isolated
islets from the mice were incubated with S961. Microarray
analysis of the liver, white adipose tissue, skeletal muscle,
and pancreatic islets identified the gene encoding betatrophin
in the mouse (Gm6484), and by real-time PCR, the mRNA
expression was found to be increased in liver and white adi-
pose tissue in the animals treated with S961. The mRNA
expression of betatrophin was also examined in ob/ob mice,
db/db mice, and in pregnant mice and was found to be in-
creased in all of these conditions. However, no increase in
betatrophin was observed in mice with acute loss of beta cells
due to beta cell specific diphtheria toxin expression. The au-
thors also showed that betatrophin is a secreted hormone that
can be detected in human plasma. Finally, by overexpressing
betatrophin in the liver of mice, the authors recorded a 17-fold
increase in beta cell proliferation, which lead to a threefold
increase in beta cell mass. The betatrophin-overexpressing
animals had a lower fasting glucose, a better glucose toler-
ance, and a normal insulin tolerance response.

Subsequent publications from the same and another lab
have also reported on the stimulatory effects of betatrophin
on murine beta cell proliferation with much more modest ef-
fects [32••, 42]. However, other preclinical studies have raised
questions about betatrophin. Studies of betatrophin-deficient
mice have shown that (1) they have a normal glucose toler-
ance [43•] and (2) their beta cells undergo normal expansion
in response to insulin resistance caused by high-fat diet or
from the administration of S961, thus questioning the impor-
tance of betatrophin for beta cell mass expansion [44••].
Furthermore, no increase in beta cell mass was observed when
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betatrophinwas overexpressed in normal mice in two different
studies, although an increase in triglyceride levels was ob-
served [44••, 45••]. In the betatrophin-deficient mice, a de-
crease in body fat and triglyceride levels after feeding was
instead recorded [43•]. Finally, thus far, a receptor for
betatrophin on beta cells, or any other cell, has not been
described.

There has yet been no documented effect of betatrophin on
human beta cell proliferation or mass. In the publication by
Jiao et al. [42], both human andmouse islets were transplanted
under the kidney capsule of the mice, followed by treatment
with the insulin receptor antagonist S961 to increase insulin
resistance, which previously have been shown to also increase
the hepatic expression of betatrophin. This lead to an increase
in beta cell proliferation in both the native and transplanted
mouse islets, but there was no effect on the transplanted hu-
man beta cells. Since human beta cell proliferation is highly
age-dependent and primarily occurs in very young individuals
[17], it is of interest to note that one of the five islet donors was
4 years of age, another 18 years, whereas the rest were above
40 years of age.

Betatrophin Levels in Humans Without Diabetes

To date, 12 studies have reported on betatrophin and its cor-
relates in humans without diabetes (Table 1). The largest re-
port on betatrophin levels in non-diabetic individuals (n=
1047) reported a positive association between betatrophin
and age, BMI, waist/hip ratio, fasting plasma glucose,
HbA1c, plasma levels of insulin, triglyceride levels, and ho-
meostasis model assessment of insulin resistance (HOMA-IR)
[46••].

In the first study on plasma betatrophin levels in humans,
we reported that the levels of betatrophin in adult, healthy
normal-weight individuals were positively associated with
age, whereas we observed no association with fasting glucose
levels, HbA1c, BMI, or blood lipids [47••]. This positive as-
sociation between betatrophin and age among non-diabetic
individuals has been confirmed in several studies [46••, 48•,
49, 50]. In a pediatric group, betatrophin levels were reported
to be increased in children older than 8 years of age and also to
be higher in male when compared to BMI-matched females
[51].

The association between BMI and betatrophin levels in
individuals without diabetes has been mixed across studies
with one study showing a negative association between
betatrophin and BMI [52] and others showing positive asso-
ciations [46••, 53]. Consistent with what has been reported on
the mRNA expression of betatrophin in rodents [38–40], the
circulating levels of betatrophin have been found to be in-
creased two hours after a defined meal in lean individuals
[53].

The published data on betatrophin in healthy individuals
are summarized in Table 1. All of the published studies so far
are cross-sectional.

Betatrophin Levels in Patients With Insulin
Resistance and Diabetes

In contrast to the animal model with acute loss of beta cells
[32••], we found increased levels of betatrophin among pa-
tients with type 1 diabetes when compared to age- and BMI-
matched healthy individuals [47••]; however, betatrophin
levels did not differ between type 1 diabetes patients with
detectable C-peptide levels compared to those without detect-
able C-peptide levels.

In the first report on betatrophin levels in patients with type
2 diabetes, there was no difference in betatrophin levels be-
tween those with and without type 2 diabetes [48•]. Following
this report, there have been a number of reports showing in-
creased levels of betatrophin in patients with type 2 diabetes
[46••, 49, 50, 53, 54] and also reports on unaltered or de-
creased levels of betatrophin [52, 55]. The largest study on
betatrophin levels in patients with type 2 diabetes (n=556)
reported increased betatrophin levels among those with type
2 diabetes vs. healthy controls [46••].

In the initial report on betatrophin by Melton’s group
[32••], the expression of betatrophin mRNA levels in the liver
was increased in the studied animal models of obesity and
type 2 diabetes, ob/ob and db/db mice, and the expression
increased as a response to induced insulin resistance by treat-
ment with the insulin receptor antagonist S961. Furthermore,
overexpression of betatrophin itself improved glycemic con-
trol. Based on these findings, it seems as if betatrophin itself
does not induce insulin resistance but acts as a response in
order to increase beta cell mass for the maintenance of normal
glucose homeostasis. Therefore, if betatrophin plays the same
or any role in humans, an increase of betatrophin would be
expected to occur in insulin-resistant individuals in order to
prevent the development of manifest diabetes. In the report by
Chen et al. [50], while levels of betatrophin were found to be
similar among healthy controls, individuals with impaired
fasting glucose, and impaired glucose tolerance, betatrophin
levels were increased in patients with newly diagnosed type 2
diabetes. Furthermore, it has been reported that the levels of
betatrophin are positively associated with the duration of type
2 diabetes [46••, 56], although autopsy studies have demon-
strated a decline in beta cell mass in long-standing type 2
diabetes [3, 4].

Cross-sectional studies do not demonstrate a better glyce-
mic control (e.g., lower fasting blood glucose, HbA1c) in
humans with type 2 diabetes with higher vs. lower betatrophin
levels, and some studies even show that betatrophin levels are
higher among those with worse glycemic control [49, 50, 53].
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However, these data are biased by the different treatment reg-
imens used in the different study populations, and the effect of
the most commonly used anti-diabetic drugs on betatrophin
levels are so far unknown.

In two reports, a positive association between betatrophin
and HOMA-IR was observed [50, 55] but there are also re-
ports on a negative association with HOMA-IR [54, 57, 58]. It
should be mentioned though that in the latter reports, two are
in patients with new onset type 2 diabetes [54, 57] and one in
patients with type 2 diabetes onset in the young, in which the
correlations was calculated for all study participants [58]. In a
study comparing individuals with normal glucose tolerance to
those with impaired glucose tolerance, no difference in
betatrophin levels was observed [50]. However, up to date,
there is no longitudinal study of changes in betatrophin levels
during the development of insulin resistance and diabetes.

There are many possible explanations for the discrepancy
in results between the different studies in humans, the most
obvious one being the use of different ELISA kits which either
detect full-length betatrophin (N-terminal) or total betatrophin
(both full-length and C-terminal fragments) [59•]. So far, the
ELISA kit detecting full-length betatrophin has been the most
commonly used in studies [46••, 47••, 48•, 49, 50, 56, 60].
Whether full-length betatrophin or its C-terminal fragments
exert biological effects is presently unknown. Conditions of
sampling may also contribute to discrepancy in results, since
there are effects of fasting or fed state on both the expression
of betatrophin [38–40] and the circulating betatrophin levels
in humans [53]. Moreover, differences in the handling of
blood samples, time to separation of plasma/serum, as well
as storing conditions could affect the results. Our experience
is that both full-length and total betatrophin levels in plasma
are most sensitive to freeze-thaw cycles. The published data
on betatrophin levels in individuals with insulin resistance and
type 2 diabetes are summarized in Table 2. All of the pub-
lished studies so far are cross-sectional.

Betatrophin and Triglyceride Levels in Humans

In animal models, betatrophin has been tightly linked to tri-
glyceride levels, and mice lacking betatrophin have signifi-
cantly lower triglyceride levels than normal mice [43•] where-
as overexpression of betatrophin leads to increased triglycer-
ide levels [38, 44••, 45••]. In the studies on betatrophin levels
in subjects with diabetes, there are no reports of an association
between betatrophin and triglyceride levels. In two reports, a
positive association with total cholesterol levels was observed
[48•, 50], and in one report, an inverse association was ob-
served [46••]. A possible confounding factor in the human
studies is that many of the individuals could have been treated
with lipid-lowering drugs which would affect triglyceride and
possibly betatrophin levels.

Conclusion

The prevalence of type 2 diabetes is rapidly increasing world-
wide, and currently, there are no therapies aiming to restore or
even prevent the loss of beta cell mass. The discovery of
betatrophin, a hormone that in the first study in mice
counteracted glucose intolerance induced by insulin resistance
by potently stimulating beta cell proliferation, boosted the
hope to use this hormone as a drug for diabetes treatment.
However, the findings have not been transferable to human
beta cell proliferation to date, and the original findings in mice
have also later been questioned. In humans, plasma
betatrophin levels seem to increase with age, and to be in-
creased in both patients with type 1 and type 2 diabetes.
High betatrophin levels are generally not associated with bet-
ter metabolic control, or preserved insulin production, and
may in fact be associated with worse measures of these fac-
tors. There are many discrepancies in results between studies
of betatrophin. Notably, studies of betatrophin levels in
humans have been cross-sectional and therefore cannot ad-
dress if betatrophin is a beneficial compensatory response to
the changes that occur prior to the onset of diabetes. Also,
differences in the techniques for measuring the hormone are
probably a major contributing factor. Taken together, there is
so far no evidence for betatrophin as a stimulator of human
beta cell proliferation, and its potential importance in the path-
ophysiology of type 2 diabetes is presently unclear.
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