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Abstract Type 2 diabetes (T2D) is a chronic non-
communicable disease that is driven by insulin resistance as
a result of increasing obesity and decreasing activity levels
that occur with increasing age. This disease generally de-
velops after the age of 40, but it is now increasingly diagnosed
in children and young adults. Increasing evidence, however,
suggests that T2D can originate during early development. It
has been repeatedly found that malnutrition during the gesta-
tional period can result in intrauterine growth restriction and
low birth weight, which in combination with postnatal catch-
up growth may subsequently lead to the development of T2D.
There is ample evidence that T2D may also be programmed
by maternal substance abuse (the harmful use of psychoactive
substances such as illicit drugs or alcohol) during pregnancy
and/or lactation. The research activity in this field is currently
mainly focused on the childhood health problems following
prenatal exposures to substance abuse. The delayed program-
ming effects on adult-onset disorders, including metabolic
syndrome and T2D, however, have been reported only rarely.
This review provides animal and human evidence that early-
life exposure to substance abuse, including alcohol, nicotine,
and cocaine, may program not only childhood health out-
comes but also life-long metabolic health status, including risk
of T2D and related conditions.
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Introduction

Type 2 diabetes (T2D) is a chronic non-communicable disease
that is driven by insulin resistance as a result of increasing
obesity and decreasing activity levels that occur with increas-
ing age. This disease generally develops after the age of 40,
but it is now increasingly diagnosed in children and young
adults [1]. There is increasing experimental and epidemiolog-
ical evidence that T2D and obesity, which is an important risk
factor for T2D, may originate during critical windows of pre-
natal and early postnatal development [2]. These findings are
consistent with the developmental programming of health and
disease (DOHAD) hypothesis which proposes that physiology
and structure of the developing fetus may be adapted in re-
sponse to adverse developmental conditions, such as poor
nutrition, predisposing to various pathological conditions later
in life [3]. In the case of T2D, fetus likely can be adapted to
poor nutritional environment in a way to reduce capacity to
produce insulin and increase insulin resistance thus providing
short-term survival benefit but predisposing to the develop-
ment of T2D in conditions of postnatal food abundance. The
precise mechanisms underlying developmental programming
of obesity and T2D are far from being completely elucidated.
However, recent studies suggest that epigenetics (heritable
changes in gene function that do not involve changes to the
DNA sequence) is the most plausible mechanistic pathway for
the relationship between adverse developmental conditions
and health outcomes in later life [2].

Maternal malnutrition and gestational diabetes were shown
to be the most important contributors to obesity and metabolic
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dysfunction in offspring [3]. A relation between birth weight,
which is an indicator of fetal growth, and later-life risk of T2D
was shown to be not linear but rather U-shaped, and high birth
weight is associated with an increased risk of T2D to the same
extent as low birth weight [4]. Along with malnutrition, sub-
stance abuse (the harmful use of psychoactive substances such
as illicit drugs or alcohol) during the prenatal developmental
stages is likely another important determinant of the process of
developmental programming in modern human beings. Sub-
stance abuse is currently among the major public health con-
cerns facing many nations around the world due to its high
prevalence and long-term health consequences for the next
generations [5]. Presently, the research activity in this field is
mainly focused on the childhood and adolescent outcomes,
primarily cognitive, neurophysiological, neurological, and
psychosocial problems, following prenatal exposures to sub-
stance abuse [6, 7•]. The delayed programming effects on
aging-associated diseases, including metabolic disorders,
however, have been reported only rarely.

This review aimed to provide the evidence that exposure to
substance abuse in early life may program not only health
outcomes during childhood but also life-long health status,
including risk of T2D and related conditions in adulthood.

Tobacco Smoking

Nicotine is a psychoactive plant alkaloid responsible for the
addictive properties of tobacco. Current statistics indicate that,
in spite of medical advice, 20–30 % of smoking women con-
tinue to smoke during pregnancy, representing about 10 % of
all pregnancies [8]. Tobacco smoking during pregnancy was
repeatedly shown to be associated with a number of adverse
effects on in utero development, including intrauterine growth
restriction (IUGR) and shortened gestation [9]. The effects of
maternal smoking can, however, be extended beyond the de-
velopmental period and affect health status in adulthood and
later life [8, 10••]. An association between a maternal exposure
to nicotine during pregnancy and lactation and different as-
pects of metabolic syndrome in offspring, including altered
glucose homeostasis, increased blood pressure, and obesity,
has been demonstrated in rat studies [11]. The hypertrophy of
adipocytes, leptin and insulin resistance, as well as thyroid and
adrenal dysfunction in adult life were observed in rodents ex-
posed to nicotine during the lactation period only [12, 13].
Remarkably, the consequences of early-life exposure to nico-
tine have been shown to be not limited to the first generation
but were also manifested in the second-generation offspring
who exhibited hypertension, enhanced levels of fasting serum
insulin, and elevated insulin response to oral glucose load [14].

In humans, it has been repeatedly shown that nicotine ex-
posure in utero may cause adverse neonatal outcomes [15]. In
particular, it may influence the birth weight which is a good
predictor of metabolic health in adult life [16]. For example, in

examining data on 366,886 Danish singletons, it has been re-
vealed that both birth weight and abdominal circumference
decreased with maternal smoking [17]. Data from several stud-
ies also indicate that maternal smoking during pregnancy may
cause an elevated risk of hypertension, obesity, and diabetes, as
well as cholesterol development alongwith a tendency towards
a detrimental lipoprotein profile during childhood [18–20]. In a
meta-analysis of 14 observational studies (n=84,563), odds of
having overweight or obese children at 3–33 years of age were
1.5 times greater in mothers who smoked during pregnancy
compared to those who had never smoked [21].

A causal relationship between prenatal exposure to nicotine
and various aspects of metabolic syndrome and T2D in adult-
hood was also reported in several studies [10••, 22–24]. In the
Norwegian Mother and Child Cohort Study (MoBa), includ-
ing 74,023 pregnancies from 1999 to 2008, after adjusting for
age, education, and personal smoking, the adjusted odds of
obesity, hypertension, and T2D in women 14–47 years of age
who were exposed to tobacco smoke in utero were 1.53, 1.68,
and 1.14, respectively, compared to those in unexposed wom-
en [10••]. In several studies, the relationship betweenmaternal
smoking during pregnancy and cardiovascular complications,
which are known to be associated with metabolic syndrome
[25], has been found. The most significant findings were re-
ported in the 1958 British birth cohort study [22–24]. Remark-
ably, in terms of causal explanation, that offspring of mothers
who smoked during pregnancy had, in this cohort, a lower
birth weight than offspring of non-smoking mothers, but from
adolescence, they demonstrated a tendency to have an in-
crease of BMI with age [22]. At age 33, the ORs for obesity
associated with maternal smoking were 1.41 and 1.56 for
women and men, respectively. These findings were robust to
adjustment for early-life, childhood, and adulthood factors
[22]. After adjustment for sex and family history of T2D,
maternal smoking during pregnancy was associated with
glycated hemoglobin (HbA1c) levels at 45 years of age
(OR=1.33) [23]. Offspring of smoking mothers were shown
to be more likely to have a more adverse cardiovascular risk
profile in mid-adulthood which is manifested by elevated
levels of blood pressure, HbA1c, and triglycerides, as well
as by higher adult BMI and waist circumference, compared
to offspring of non-smoker mothers [24]. These associations,
however, were abolished, except for BMI and waist circum-
ference, after adjustment for postnatal influences across the
life span. The association with exposure to nicotine during
gestation was observed also for vascular damage such as com-
mon carotid artery intima-media thickness in young adulthood
[26]. In the British longitudinal birth cohort, those persons
who were born to medium, variable, and heavy smoking
mothers had, after adjustment for sex, mother’s age at birth
of cohort member, age mother left school, family social class
at birth, birth weight, own smoking at age 16 years, and BMI
at age 33 years, 1.11, 4.13, and 4.55 times higher odds to have
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diabetes between 16 and 33 years of age, respectively, com-
pared to non-smoking mothers [27••]. The corresponding ORs
for obesity associated with maternal smoking during pregnan-
cy were 1.34, 1.35, and 1.38, with a statistically significant
trend for medium, variable, and heavy smokers, respectively.
More recently, similar findings were obtained in research
using data from the Swedish Medical Birth Register [28•].
After adjustment for maternal parity, age at pregnancy and
mode of delivery, as well as for personal smoking, those
daughters who were moderately or heavily exposed to mater-
nal smoking in utero had 1.62 and 1.52 times higher odds to
have gestational diabetes, respectively, than daughters of non-
smoking mothers. The corresponding adjusted ORs for obesi-
ty were 1.36 and 1.58. In US Nurses’ Health Study II [29], it
has been found that after adjustment for behavioral and socio-
economic covariates, prenatal exposure to maternal smoking
was associated with adiposity at the ages of 5–10, 18, and in
adulthood. The ORs for obesity during adulthood were 1.26,
1.46, and 1.43 for those daughters whose mothers smoked 1–
14, 15–24, and 25+ cigarettes per day, respectively, compared
to offspring of non-smoking mothers. Interestingly, women
whose fathers smoked during their intrauterine life also had
an elevated risk of being overweight and obese during adult-
hood [29]. The relationship between secondhand smoking in
childhood and adolescent periods and T2D in adulthood was
revealed in a prospective French cohort study (n=37,343),
where it has been demonstrated that women, who had at least
one smoking parent during their childhood and adolescence,
had subsequently 18 % higher odds to have T2D than women
with never-smoking parents [30].

Alcohol

Moderate alcohol consumption is known to reduce the risk of
developing T2D; chronic heavy alcohol consumption, how-
ever, is a prospective risk factor for the development of this
disease [31]. Alcohol consumed during pregnancy can cross
the placenta and indirectly change fetal development by
disrupting the hormonal interactions between the mother, pla-
centa, and fetus [32]. Heavy exposure to alcohol during ges-
tational period is well-known to lead to a variety of develop-
mental anomalies, low birth weight, and severely impair neu-
robehavioral and physical development, causing fetal alcohol
spectrum disorders (FASD) [33]. However, despite this
knowledge, 12 % of women continue to drink alcohol during
pregnancy [34]. Long-term neurobehavioral consequences of
prenatal alcohol exposure have been reported repeatedly [35];
lasting metabolic outcomes, though not yet thoroughly studied
in humans, have been repeatedly observed in animal models.

In rats, intrauterine exposure to alcohol was found to cause
long-term reduction in plasma levels of insulin-like growth
factor 1 (IGF1) and IGF-binding proteins [36]. This finding
is important from the etiological standpoint since IGF1

pathway is known to be substantially involved in glucose
metabolism, and both decreased or elevated levels of IGF1
are shown to increase the risk of T2D [37]. The causal link
between maternal dietary alcohol consumption and risk of
metabolic complications during adulthood was evident from
the data obtained in the study by Pennington et al. [38], where
exposure to alcohol during in utero development resulted in
hypertriglyceridemia along with an increase in the very low-
density lipoprotein fraction of serum, both known to be asso-
ciated with metabolic syndrome and T2D, in adult rat off-
spring. The links between maternal alcohol exposure during
pregnancy and beta cell dysfunction, abnormal glucose ho-
meostasis, and insulin resistance during adulthood were evi-
dent in a line of studies [39–43]. In addition, insulin resistance
was also evident after exposure to alcohol during lactation
[42]. Prenatal exposure to alcohol resulted in insulin resistance
along with enhanced expression levels of hepatic
gluconeogenic genes, explaining the increased gluconeogen-
esis in adult rats, in the Yao et al. [44] study. Prenatal alcohol
exposure has been shown to increase susceptibility to high-fat
diet-induced MS in adult male rat offspring [45••], as well as
to high-fat diet-induced non-alcoholic fatty liver disease (a
condition known to enhance the risk of the development of
T2D [46]) in adult female offspring rats [47]. Remarkably, the
programming effects of alcohol consumption during pregnan-
cy were shown to be able to persist across generations. In the
study by Harper et al. [48], the effects of grandmaternal expo-
sure to alcohol on insulin and functional glucose responses in
the second-generation offspring were observed, possibly ow-
ing to the effect of alcohol on the germ line of the F1 fetus.

The evidence for programming effects of prenatal alcohol
exposure was also obtained in guinea pig which is a commonly
used model system in research of teratogenicity of alcohol be-
cause its prenatal development is much more similar to the
humans relative to other rodent models [49]. In this animal
model, increased whole-body and pancreatic adiposity was ob-
served in the offspring of dams exposed to alcohol during preg-
nancy [49]. More recently, the same authors extended their
findings by showing that exposure to alcohol in utero alters
both peripheral and central expression of insulin/IGF signaling
molecules at the level of mRNA, which can be linked to met-
abolic dysregulation in offspring during adulthood [50].

To date, human evidence describing the long-term effects
of alcohol exposure is scarce. By using the life course model
of self-rated health, Bauldry et al. [51] revealed that both pa-
rental alcoholism and smoking can predict obesity in off-
spring, and this association was strengthened with offspring
age.

Cocaine

According to the Substance Abuse and Mental Health
Services Administration (SAMHSA) survey conducted in
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the USA, nearly 5 % of women reported illicit drug use,
including cocaine, during their pregnancy [52]. Infants
born to mothers who used cocaine throughout pregnancy
have various health problems including low birth weight
and abnormalities of different systems such as lungs, gen-
itals, liver, and neurological system [53, 54], as well as a
number of cardiac malformations [55]. Exposure to co-
caine in utero was shown to be linked to a variety of
neurodevelopmental, behavioral, and cognitive problems
and also to numerous cardiovascular complications in
childhood [56]. Taking the latest into account, it can be
assumed that prenatal cocaine exposure may be linked to
cardiometabolic risk factors, such as hypertension, in-
creased levels of C-reactive protein and lipids, and insulin
resistance in later life [57]. Evidence for the link between
prenatal cocaine exposure and metabolic disturbances in
later childhood associated with risk for subsequent devel-
opment of T2D was obtained in research by La Gasse and
co-authors who reported elevated blood pressure and BMI
in 9-year-old children whose mothers consumed cocaine
during pregnancy [58]. Prenatally cocaine-exposed chil-
dren were also four times as likely to become obese at
9 years of age if they were not exposed to alcohol as well
[59]. These findings suggest that alcohol exposure can
attenuate the effect of exposure to cocaine during gesta-
tion on BMI and obesity. If this is true, then failure to
demonstrate a link between prenatal cocaine exposure
and later-life obesity could be in part be due to the com-
mon practice of consuming both these drugs together
throughout the pregnancy.

Summarizing, it should be emphasized that, despite the
high rate of consumption of cocaine, alcohol, and tobacco in
pregnancy and importance of this problem for the public
health care, epidemiological studies of the long-term effects
of exposure to these substances in early life on the risk of T2D
in subsequent life are scarce until now. The research of other
abused substances such as amphetamine, marijuana, opioids,
etc., had never been realized until now in this area. The po-
tential risks of long-lasting metabolic consequences of early-
life exposure to these psychoactive drugs remain to be evalu-
ated in further research.

Mechanisms Linking Early-Life Exposure to Substance
Abuse to Later-Life Metabolic Disorders

Currently, it is widely accepted that IUGR caused by maternal
undernutrition, placental insufficiency, hypoxia, infections,
etc. increases the susceptibility to metabolic complications,
including T2D, later in life. However, not linearly inverse
but a U-shaped relationship between birth weight and T2D
risk is evident in most studies, and both small-for-
gestational-age (SGA) and large-for-gestational-age (LGA)
infants are shown to be at risk for subsequent development
of T2D [4].Maternal substance abuse in pregnancy most com-
monly leads to IUGR/SGA conditions because fetus in these
circumstances is occasionally depleted in nutrients, suggesting
episodic exposure to fetal malnutrition [60]. Depletion in ox-
ygen and hypoxic stress are also possible. For example, the
rhesus monkey study showed that, penetrating through the
placenta, tobacco smoke metabolites may act as vasoconstric-
tors reducing uterine blood flow up to 38 % [61]. A risk for
developing IUGR was reported repeatedly for different sub-
stances of abuse, including nicotine, alcohol, cannabis, and
opiates, as well as for poly-drug abuse [9, 62–65].

All substances of abuse are known to disrupt eating behav-
ior and cause nutrient deficiencies and malnutrition [66]. Re-
duced appetite and decreased food intake have been demon-
strated for abuse of alcohol [67], nicotine [68], and cocaine
[69]. Thereby, the appetite dysregulation appears to be a cru-
cial contributing factor in substance abuse-induced IUGR.
The important point seems to be that withdrawal of substance
use such as nicotine [70], cocaine [71], and opiates [72] causes
stimulation of appetite. In fact, if child receives substance of
abuse from the mother through the placenta or in breast milk,
but after weaning no longer receives that, the same mecha-
nism may be operative, leading subsequently to the risk of
overeating, obesity, and T2D. This may likely explain the
phenomenon of accelerated postnatal weight gain and high
prevalence of obesity reported among offspring of mothers
who smoked during pregnancy [73].

Developmental programming of hypothalamic regulation
of appetite and adipogenic signals controlling lipogenesis
has been proposed as a key mechanism underlying

Fig. 1 A hypothetical scheme of
the main mechanisms linking
prenatal exposure to substance of
abuse to development of
metabolic syndrome and T2D in
adult life
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development of obesity and T2D in offspring [74]. Such ef-
fects are most studied for maternal tobacco smoking. The
major reported effects of prenatal nicotine exposure include
(1) high rate of beta cell apoptosis, reduced size and number of
islets in the pancreas, and impaired glucose homeostasis and
(2) promotion of adipocyte differentiation and adipogenesis,
both processes known to be involved in obesity and the pro-
gression of T2D [8]. Moreover, it is commonly believed that
epigenetic regulation of the expression of transcription factors
regulating glucose and lipid metabolism plays a key role in
programming effects of prenatal exposure to substance abuse
[35]. In addition, the impairment of the fetal vessel flow has
been proposed as underlying mechanisms [9]. A hypothetical
mechanism linking prenatal exposure to substance of abuse to
development of metabolic syndrome and T2D in adult life is
presented in Fig. 1.

Conclusions

A trend to a dramatic increase in the incidence of T2D is
becoming increasingly evident across both developed and de-
veloping countries. Metabolic syndrome and related compli-
cations, such as elevated blood pressure, dyslipidemia, im-
paired glucose metabolism, and T2D, are among the major
causes of death in western societies. Consistent findings have
recently been reported, suggesting that risk for T2D may be
programmed in early development. Currently, maternal mal-
nutrition is considered to be a major factor involved in early-
life programming of the metabolic syndrome and T2D. An-
other potentially important programming factor such as the
maternal substance abuse during pregnancy has received less
attention until recently, even though its long-lasting health
effects are comparable to those of nutritional inadequacy in
early life.

It is increasingly clear that substance abuse during pregnan-
cy is among the important factors contributing to the current
epidemic of T2D around the globe. The current increasing
rates of obesity and T2D are likely caused not only by adult
lifestyle changes in both developing and developed countries,
such as westernized dietary habits and physical inactivity, but
also by inadequate conditions, including malnutrition and
stress, as well as exposure to substance abuse in early life.
Adverse conditions during developmental period may trigger
metabolic adaptations advantageous in early life but predis-
posing to chronic disease, including T2D, in adulthood [75].
Therefore, it is clear that research in this area is extremely
important for public health and preventive medicine. Howev-
er, despite the importance to health policy, research in this
field is fairly limited. An increased risk of various metabolic
complications in the offspring perinatally exposed to sub-
stances of abuse, including alcohol, nicotine, and cocaine,
has been reported in several experimental and epidemiological

studies, while impacts of other potentially dangerous psycho-
active substances, such as opioids, amphetamine, marijuana,
etc., have not been clarified so far. Unlike studies focused on
neurophysiological and psychosocial problems triggered by
early-life exposures to substances of abuse, where mechanistic
links with exposures have been sufficiently clarified [6, 7•,
35], the research of the metabolic consequences of such expo-
sures is still predominantly descriptive; the mechanistic links
remain hypothetical. In this review, it has been speculated that
appetite dysregulation may play a key role in linking early-life
exposure to substance abuse and later risk for T2D. The ques-
tions on the mechanistic basis for this link remain, however,
largely unanswered and should be addressed in future re-
search. Advances in the understanding of mechanisms linking
prenatal exposure to substance abuse to the risk of develop-
ment of T2D in adulthood might provide the scientific basis
for novel prevention and treatment paradigms.
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