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Abstract Obesity, metabolic syndrome, and type 2 diabetes
(T2D) are related disorders with widespread deleterious ef-
fects throughout the body. One important target of damage is
the brain. Persons with metabolic disorders are at significantly
increased risk for cognitive decline and the development of
vascular dementia and Alzheimer’s disease. Our review of
available evidence from epidemiologic, clinical, and basic
research suggests that neural dysfunction from T2D-related
disease results from several underlying mechanisms, includ-
ing metabolic, inflammatory, vascular, and oxidative changes.
The relationships between T2D and neural dysfunction are
regulated by several modifiers. We emphasize 2 such modi-
fiers, the genetic risk factor apolipoprotein E and an age-
related endocrine change, low testosterone. Both factors are
independent risk factors for Alzheimer’s disease that may also
cooperatively regulate pathologic interactions between T2D
and dementia. Continued elucidation of the links between
metabolic disorders and neural dysfunction promises to foster
the development of effective therapeutic strategies.
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Introduction

The related conditions obesity, metabolic syndrome, and type
2 diabetes (T2D) have significant independent and combined

effects on metabolic, inflammatory, and other pathways,
which in turn have wide ranging deleterious effects on numer-
ous organ systems including the cardiovascular and endocrine
systems [1]. A rapidly accumulating literature also identifies
the nervous system as a target of obesity, metabolic syndrome,
and T2D. We discuss evidence that this collection of metabol-
ic disorders results in increased risks for both cognitive de-
cline and dementia. There remain numerous unresolved is-
sues, including the relative importance of several different
degenerative mechanisms to the observed neuropathologies
and whether observed impairments represent a continuum of a
single degenerative process or a collection of separate pathol-
ogies that are differentially expressed.

Among the many harmful neural effects of T2D and its
precursor conditions is an increased risk for Alzheimer’s
disease (AD). The most common form of dementia, AD has
a high and rapidly growing prevalence in the aging popula-
tion. In the US alone, the number of persons afflicted with AD
is estimated to be 5.1 million, a figure that is anticipated to rise
to approximately 7.7 million by 2030 [2]. Given that obesity
and T2D also exhibit high prevalence with increasing trajec-
tories, the interaction of these diseases poses a serious health
threat. Thus, while we broadly discuss the range of neural
effects of T2D on the brain, we will emphasize the impact of
metabolic disorders on AD.

Metabolic Dysfunction Increases Risk of Cognitive
Impairment

Cognitive function is adversely affected by the prediabetic
risk factors central obesity and metabolic syndrome. Longitu-
dinal studies indicate worsening performance on measures of
global cognitive function in some, but not all, specific abilities
including working memory in persons with metabolic syn-
drome [3, 4]. In some populations, there is evidence that

This article is part of the Topical Collection on Pathogenesis of Type 2
Diabetes and Insulin Resistance

A. Jayaraman :C. J. Pike (*)
Davis School of Gerontology, University of Southern California,
3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
e-mail: cjpike@usc.edu

Curr Diab Rep (2014) 14:476
DOI 10.1007/s11892-014-0476-2



women with metabolic syndrome may be particularly vulner-
able to cognitive decline [5]. In the absence of T2D, impair-
ment in glucose regulation and increased serum insulin can
lead to mild cognitive impairment (MCI), suggesting that lack
of glycemic control may contribute to the observed cognitive
decline [6, 7]. Another key factor contributing to worsening of
cognitive abilities in aging populations is obesity. Central
obesity is associated with impairment in various aspects of
cognitive functioning [8, 9]. This relationship may be most
important during middle age [8] and diminish during ad-
vanced age [10].

Like obesity and metabolic syndrome, T2D is also associ-
ated with significant impairments in various aspects of cogni-
tive functioning. For example, a recent functionalMRI (fMRI)
study showed that T2D patients have altered spontaneous
neuronal activity in several brain regions that correlated with
poorer cognitive performances [11]. Other imaging studies
show increased brain atrophy in individuals with T2D associ-
ated with cognitive impairments [12, 13]. Additional factors
such as ethnicity and smoking habits can increase the associ-
ation between diabetes and cognitive impairment [14, 15].
Notably, the rate of cognitive decline in persons with T2D is
generally rather slow [16], although a subset of patients show
rapid decline [17]. Recent evidence suggests that a key factor
underlying accelerated cognitive decline among people with
T2D is depression. People with diabetes that score highest on
depression indices also show the poorest performance on a
range of cognitive tasks [18]. Unclear is whether the observed
variation in rates of cognitive decline reflect differential vul-
nerability of some patients to dementia.

Metabolic Dysfunction Increases Risk of Dementia

Obesity, metabolic syndrome, and T2D not only contribute to
impaired cognitive function, but also increase the risk of AD.
In the past several years, a wealth of data has shown that
persons with T2D and features of metabolic syndrome are at
significantly increased risk for development of dementias
including AD [19, 20]. The magnitude of the risk is a matter
of debate. For example,1 longitudinal study showed that peo-
ple with T2D have more than a 2-fold increase in risk for
developing AD compared with those without T2D [21]. How-
ever, other studies indicate a more modest relationship be-
tween T2D and AD or even the lack of an association [22]. A
recent meta-analysis of longitudinal studies suggests that the
relative risk for AD is approximately 1.5-fold higher among
persons with T2D [23]. As with cognitive decline, the in-
creased risk of dementia associated with T2D appears to be
affected by age. A longitudinal study showed that central
obesity in middle-aged people increased the risk for dementia
independent of diabetes [24]. In the aged population, obesity
and T2D appear to be only weakly related to AD risk [25].

The association between T2D and its precursor conditions
is not limited to AD. In fact, T2D appears to be more strongly
associated with increased risk of vascular dementia (VaD)
than AD. Some studies suggest that the relationship between
T2D and dementia risk largely reflects promotion of VaD and
stroke-related dementia rather than AD [26]. Findings from a
meta-analysis suggest that T2D patients have a 2.5-fold in-
crease in risk for VaD, a level significantly higher than the risk
for AD [23]. Imaging studies reveal that T2D is associated
with increased levels of lacunar infarcts [27] and white matter
hyperintensities [28]. The presence and duration of hypergly-
cemia and T2D contribute to increases in brain atrophy and
lacunar infarcts compared with non-T2D patients [29]. To-
gether, clinical and epidemiologic findings demonstrate that
T2D is associated with increased risks for cognitive decline
and dementia. Insights into the pathways underlying these
effects are provided by studies in animal models.

T2D Exacerbates Neuropathology in Animal Models
of Alzheimer’s Disease

If T2D contributes pathologic mechanisms to AD, then one
may expect some crossover between pathologies in animal
models of T2D and AD. Although it remains to be determined
to what extent AD animal models exhibit evidence of T2D-
like metabolic changes, several recent studies have demon-
strated (1) AD-like neuropathology in animal models of T2D,
and (2) accelerated AD-like neuropathology in rodent models
of AD following experimental induction of T2D-like meta-
bolic changes by dietary manipulations. For example, the
BBZDR/Wor rat model of T2D exhibits several neural chang-
es consistent with AD pathology including neuron loss, dys-
trophic neurites, increased levels of β-amyloid (Aβ), and tau
hyperphosphorylation, and decreased expression of insulin
and IGF-1 receptors [30]. Tau hyperphosphorylation is also
observed in the OLETF rat model [31] and db/db mouse
model of T2D [32]. Tau phosphorylation [33] and impaired
cognitive performance are seen in rats with insulin-dependent
diabetes induced using streptozotocin (STZ), a toxin that
results in β-cell atrophy [34]. Recent work shows that STZ
in mice causes impaired insulin signaling that results in re-
duced insulin degrading enzyme (IDE) expression in brain
with elevated Aβ, and increased tau phosphorylation [35].
IDE is a downstream target of insulin signaling and is upreg-
ulated via the insulin-PI3K-AKT phosphorylation pathway,
forming a negative feedback mechanism [36]. Therefore, im-
paired insulin signaling may result in decreased IDE levels
due to reduced AKT activation. Since IDE is also established
as a significant contributor to enzymatic Aβ degradation [37,
38], a decrease in IDE levels would lead to reduced Aβ
clearance and subsequent increased Aβ accumulation in the
brain. Similarly, in AD mouse models, insulin resistance
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induced in Tg2576 AD transgenic mice by a high fat diet
results in increased Aβ accumulation and decreased IDE [39].
APP/PS1 mice exposed to sucrose-supplemented drinking
water exhibit glucose intolerance, elevated insulin levels,
Aβ deposition, and behavioral deficits [40]. Thus, findings
from experimental paradigms link T2D-like metabolic chang-
es with promotion of AD-like neuropathology.

Several pathways have been independently suggested as
linking mechanisms between T2D and AD such as
hyperinsulinemia, inflammation, vascular factors, and oxida-
tive stress. However, a combination of 2 or more of these
pathways may be working together to connect the 2 disorders.
In this following section, we consider the major mechanisms
implicated in both T2D and AD and how these pathways
contribute to the progression of AD from T2D.

Pathways Linking T2D and AD: Dysregulation of Insulin
and Glucose

Dysregulation of insulin and glucose are key characteristics of
diabetes. Insulin resistance and impaired insulin signaling also
have been linked to increases in AD pathology [41]. Insulin
and insulin receptor levels in brain decrease with normal aging
[42]. Moreover, insulin receptor expression in the brain de-
creases further with AD [43]. IDE, a zinc-binding
metalloprotease whose substrates include both insulin and
Aβ, may contribute to the interactions between T2D and
AD. In transgenic AD mice fed a high fat diet, deficient
insulin signaling correlated with decreased IDE levels and
increased Aβ levels [36, 39]. Partial loss-of-function muta-
tions in IDE are capable of inducing T2D and impairing
degradation of Aβ [44]. Although the mechanism(s) underly-
ing the T2D effect is unclear, one possibility is that the loss of
IDE function promotes hyperinsulinemia, which in the long-
termmay contribute to insulin resistance and impaired glucose
tolerance. Pharmacologic inhibition of IDE reduces the deg-
radation of insulin, islet amyloid peptide [45], and Aβ [46].
Interestingly, IDE has a higher affinity for insulin as a sub-
strate than Aβ [47]. Thus, one mechanistic hypothesis for the
role of T2D in AD risk is that the hyperinsulinemia charac-
teristic of T2D results in reduced degradation of Aβ by IDE,
leading to Aβ accumulation. In the STZ model, diminished
insulin signaling due to insulin deficiency may lead to down-
regulation of IDE levels, similarly leading to increased accu-
mulation of Aβ and elevated AD risk.

Interestingly, treatment of T2D may improve neural func-
tion and/or slow AD pathogenesis. For example, improved
diabetes control is associated with a slowing in cognitive
decline [48]. Moreover, common T2D medications such as
rosiglitazone and metformin may decrease AD-related cogni-
tive decline and Aβ levels [49, 50]. Initial results of a clinical
trial of intranasal insulin therapy in early AD andMCI patients

indicate slowing of cognitive decline [51•]. Studies in animal
models are consistent with clinical observations. In 3xTg-AD
mouse model of AD, pioglitazone improved learning and
plasticity and decreased Aβ and tau pathologies [52]. Simi-
larly, liraglutide reduced Aβ plaques and glial activation in
APPswe/PS1dE9 model of AD [53]. Still unclear is whether
the primary mechanisms of reducing AD-related pathologies
by these drugs involve glycemic control and decreasing insu-
lin resistance or other effects on adipose tissue [54], body
weight [55], and levels of proinflammatory cytokines [56].

Despite the strong association between hyperinsulinemia,
hyperglycemia, and AD pathogenesis, other compelling find-
ings argue against a primary mechanistic role of metabolic
factors in AD. For example, diet-induced obesity in 3xTg-AD
mice increases Aβ burden and impairs behavior, although in
female mice this acceleration of AD-like pathology occurred
in the absence of significant changes in fasting levels of
glucose and insulin [57]. Consistent with these data is the
observation that induction of insulin resistance and
hyperinsulinemia via a mutated insulin receptor failed to
significantly accelerate the rates of Aβ accumulation and
cognitive decline in a transgenic AD mouse model [58].
Similarly, knockout of insulin receptor substrate 2 in AD
transgenic mice predictably yields significant metabolic dys-
function but reduces rather than accelerates AD-related pa-
thologies [59, 60]. Thus, obesity-related factors other than
insulin resistance may be central to the mechanism by which
obesity, metabolic syndrome, and T2D increase AD risk. One
such factor is inflammation.

Pathways Linking T2D and AD: Inflammation

Pro-inflammatory pathways may also contribute to interac-
tions between T2D and AD. It is well established that central
obesity, metabolic syndrome, and diabetes all involve chronic
systemic inflammation [61]. Increased levels of several pro-
inflammatory cytokines are observed in T2D [62] and several
anti-inflammatory drugs have been shown to reduce this effect
[63]. Among persons with metabolic syndrome, those with
relatively higher inflammation are more likely to develop
cognitive impairment than those with low inflammation [64].

Obesity causes an increase in inflammatory cytokines not
only in adipose tissue [65] but also in the nervous system. In
animal models, diet-induced obesity induces an increase in
inflammatory responses in many brain regions, including
cerebral cortex [66] and hypothalamus [67•]. Recent studies
from our laboratory demonstrate higher levels of the pro-
inflammatory cytokines TNF-α and IL-1β in the cortex of
mice maintained on high fat diet as well as in primary mixed
glial cultures generated from these mice. We also show that
the increase in pro-inflammatory factors seen both in the
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central and the peripheral nervous system reduces neuronal
health (unpublished data).

In AD, inflammatory pathways have been widely hypothe-
sized to directly contribute to disease initiation and progression
[68]. A classic neuropathologic characteristic of AD brain is
the abundant presence of activated astrocytes and microglia
[69], the neural cell types most responsible for inflammatory
responses in brain. Elevated levels of pro-inflammatory cyto-
kines are observed in AD [70] as well as in transgenic models
of AD [71, 72]. Consistent with a primary role of inflammation
in AD are the results of recent genome-wide association stud-
ies, in which several genes linked with AD function in innate
immunity [73]. Unclear is whether the same genetic polymor-
phisms contribute to T2D. Although the literature remains
undecided, there is evidence from observational studies that
use of nonsteroidal anti-inflammatory drugs (NSAIDs) may
decrease the risk for developing AD [74]. Given the
established pro-inflammatory profiles of obesity, metabolic
syndrome, and T2D and the presumed role of these pathways
in AD pathogenesis, inflammation is likely a key mechanism
contributing to the interactions across the diseases.

Pathways Linking T2D and AD: Other Factors

Among the other possible mechanisms that contribute to the
relationship between T2D andAD are those involving vascular
risk factors, lipoprotein receptors, and oxidative stress. Vascu-
lar risk factors include hypertension, cerebrovascular diseases,
and hypercholesterolemia. Studies have shown that the pres-
ence of a combination of these vascular factors promote the
development of AD and AD-related neuropathology [30, 75].
Defects in brain vasculature and blood-brain barrier are also
seen in AD patients [76] suggesting that vascular factors in the
nervous system are important in AD pathogenesis. Lipoprotein
receptors and lipoprotein receptor-related protein-1 (LRP-1)
are another set of factors involved in metabolic syndrome
and AD. Lipoprotein receptors and LRP-1 aid in Aβ clearance
from liver as well as brain [77, 78]. LRP-1 is also involved in
intracellular cholesterol and fatty acid storage [79] whereas
LRP-6, has been shown to regulate body weight and glucose
homeostasis [80]. Pathways regulating LRP-1 have been
shown to improve Aβ-induced learning and memory impair-
ments in rats [81]. Oxidative stress pathways play key roles in
several pathologic disorders including T2D and AD. One such
pathway is advanced glycation resulting in the production of
advanced glycation end products (AGEs) [82]. In addition to
AGEs, the receptor for advanced glycation end products
(RAGE) has been identified to be a ligand for Aβ fibrils [83,
84] and may be involved in the neurotoxic effects of Aβ in
neurons and microglia [85, 86]. Further, RAGE regulates the
accumulation and transport of Aβ across the blood-brain bar-
rier [87]. RAGE is known to be upregulated in both T2D and

AD [85, 88]. Hence, RAGE acts as a progression factor that
exacerbates the immune and inflammatory pathways leading
to cellular dysfunction [89], which in turn may facilitate inter-
actions between T2D and AD.

Modifiers of T2D and AD Relationship: Apolipoprotein E

The relationship between T2D and AD appears to be signif-
icantly influenced by several factors. One modulator is apoli-
poprotein E (ApoE). The ApoE ε4 allele is the most signifi-
cant genetic risk factor for late-onset AD, the risk of AD
increasing with the number of ApoE ε4 alleles present [90].
ApoE functions in lipid transport and lipoprotein metabolism
[91] and regulates several important neuronal actions includ-
ing neuronal repair, synaptogenesis, nerve growth, and devel-
opment [91]. The severity of AD pathology is influenced by
ApoE genotype as indicated by studies showing that the
presence of ApoE ε4 alleles increases both the rate and
amount of Aβ deposition [92].

The risk for AD in T2D cases is increased in ApoE ε4
carriers [20, 93]. Further, the presence of ApoE ε4 in T2D
cases with AD is associated with increased neurofibrillary
tangles, amyloid plaques, and cerebral amyloid angiopathy
[94]. Recent clinical findings show that persons with ApoE
ε4 have higher levels of lipid-depleted Aβ, an effect that is
worsened by consumption of a high-fat, high glycemic index
diet [95]. ApoE ε4 carriers also have lower levels of insulin
degrading enzyme, which may affect both insulin signaling and
Aβ clearance in T2D and AD cases [96]. In AD mice with
sucrose-induced insulin resistance, ApoE levels are increased
2.5-fold, perhaps contributing to Aβ accumulation and in-
creased AD pathology [40]. The levels of insulin in cerebrospi-
nal fluid and plasma appear to be lower in AD patients with an
ApoE ε4 allele compared with patients with no ε4 allele [97].
Insulin administration has been found to be more effective on
aspects of memory and Aβ pathology in AD patients who were
ApoE ε4 null compared with those who were ApoE ε4 carriers
[98, 99]. Taken together these studies suggest that ApoE geno-
type acts as a positive regulator of the T2D/AD relationship.

Modifiers of T2D and AD Relationship: Low Testosterone

Normal age-related depletion of testosterone in men, com-
monly referred to as andropause, results in a constellation of
symptoms that reflect dysfunction and vulnerability to disease
in androgen-responsive tissues including brain, muscle, bone,
and adipose tissues [100]. In the past several years, research
from several groups including ours has identified andropause
as a significant risk factor for AD [101]. Men with low levels
of testosterone in either blood [102, 103] or brain [104, 105]
are at increased risk for developing AD. Importantly, low
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testosterone precedes both the cognitive [106] and neuropath-
ologic [104, 105] diagnoses of AD, suggesting that it is a
contributing factor to rather than a result of the disease.

An established and rapidly growing body of epidemiologic
and clinical evidence indicates strong associations between low
testosterone levels in men, T2D, and metabolic syndrome.
Several studies have found a correlation between low testoster-
one and insulin resistance in men [107, 108]. Longitudinal
studies have shown that low testosterone precedes metabolic
syndrome, appearing 5–10 years prior to the development of
metabolic and cardiovascular symptoms [109, 110]. Since met-
abolic syndrome is often a precursor to development of T2D, it
is not surprising that men with T2D have significantly lower
levels of total and free testosterone in comparison with age-
matched controls with no diabetes [107]. Testosterone therapy
used for the treatment of androgen deficiency reduces features
of T2D and metabolic syndrome, including insulin resistance,
adiposity, and total cholesterol [111, 112] while improving
glycemic control [113]. On the other hand, the use of androgen
deprivation therapy for treatment of prostate cancer indicates
that testosterone depletion can increase the incidence and prev-
alence of T2D [114, 115] and metabolic syndrome [116].
Further, androgen deprivation therapy has been found to lower
insulin sensitivity and glycemic control, and increase insulin
and cholesterol levels [117]. Thus, available evidence indicates
that T2D lowers testosterone levels in men and, conversely, that
low testosterone increases indices of T2D.

Interestingly, there is compelling evidence of a signifi-
cant relationship between androgens and ApoE genotype.
In humans, circulating levels of testosterone are lower in
men with at least 1 ApoE ε4 allele [118]. In animal studies,
Raber and colleagues have shown that androgens antago-
nize behavioral deficits in ApoE ε4 mice [119]. Depletion
of endogenous testosterone following castration in ApoE ε4
mice results in behavioral impairments in some but not all
tasks [120]. Similarly, inhibition of AR function by phar-
macologic and genetic approaches results in behavioral

impairments in ApoE ε4 mice but not ApoE ε3 mice
[119, 121]. Further, lower levels of AR have been observed
in both male and female ApoE ε4 mice, although it is
unclear if ApoE ε4 is directly affecting AR levels or
otherwise interfering with androgen binding to AR [119].
Thus, ApoE ε4 genotype is associated with both lower
testosterone levels and attenuation of neural androgen ac-
tions, effects that are predicted to magnify interactions
effects of low testosterone, T2D and AD.

Conclusions

In summary, an extensive set of findings from epidemiologic,
clinical, and animal models have identified a complex set of
interactions wherein T2D and its precursor conditions obesity
and metabolic syndrome exert deleterious effects on the brain.
The primary negative outcomes of these metabolic disorders
are cognitive decline and increased risk for dementias of the
vascular and Alzheimer’s types. Although cognitive decline is
a component of all dementias, we suggest that the neural
outcomes of T2D do not reflect a single condition but rather
are manifestations of a range of pathologies. Numerous mech-
anisms are hypothesized to contribute to observed neuropa-
thologies, including metabolic, inflammatory, vascular, and
oxidative changes (Fig. 1). The magnitude and perhaps the
form of neural injury are likely influenced by a set of modi-
fiers. Specifically, we focused on age-related testosterone
depletion in men and the Apo E ε4 allele as independent and
interactive risk factors for AD and the promotion of AD
pathogenesis by T2D.

The multifaceted and interactive nature of the associations
between T2D and neural dysfunction and disease is daunting
in its apparent complexity but encouraging in terms of poten-
tial therapies. In addition to reducing neural damage by con-
ventional T2D-related approaches, promising strategies in-
clude specific interventions that target implicated pathways

Fig. 1 Obesity and metabolic syndrome are precursor disorders to type 2
diabetes. All 3 conditions independently and interactively activate a range
of metabolic, inflammatory, and oxidative changes that contribute to
deleterious effects on the brain. The damaging effects of metabolic
disorders are influenced by several modifying factors, including

endocrine changes such as low testosterone and genetic factors such as
the apolipoprotein E (Apo E) ε4 allele. In response to these damaging
pathways, the brain exhibits cognitive decline and increased risk to
Alzheimer’s and vascular dementias
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and modifying factors (Fig. 1). One example is testosterone-
based therapy including the use of novel selective androgen
receptor modulators, which are predicted to favorably affect
both T2D- and AD-specific pathways as well as their
interactions.
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