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Abstract People vary genetically in their susceptibility to the
effects of environmental risk factors for many diseases.
Genetic variation also underlies the extent to which people
respond appropriately to clinical therapies. Defining the basis
to the interactions between the genome and the environment
may help elucidate the biologic basis to diseases such as type 2
diabetes, as well as help target preventive therapies and
treatments. This review examines 1) some of the most current
evidence on gene × environment interactions in relation to
type 2 diabetes; 2) outlines how the availability of information
on gene × environment interactions might help improve the
prevention and treatment of type 2 diabetes; and 3) discusses
existing and emerging strategies that might enhance our
ability to detect and exploit gene × environment interactions in
complex disease traits.
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Introduction

The global prevalence of type 2 diabetes is expected to reach
around 438 million people in 2030 [1]. When diabetes takes a
grip, glycemic control often continues to decline and micro
and macrovascular complications occur; even in diabetic
patients treated with the best available therapies, most
eventually die of cardiovascular disease [2, 3].

Obesity is a major risk factor for diabetes. Although
preventive strategies involving weight loss have a
considerable favorable impact on the short-term inci-
dence of diabetes [4, 5], most at-risk persons eventually
develop the disease, irrespective of treatment [6]. A
pressing need exists therefore, to better understand the
causes, processes, and consequences of type 2 diabetes.

The genome is the conduit through which the environment
conveys many of its effects on the phenotypes involved in
health and disease. The disruption of this signaling circuit in
the form of germline DNA variation impacts the extent to
which healthful environmental exposures protect against the
development of disease and may enhance the pathophysio-
logic effects of unhealthful environmental exposures. This
concept is broadly referred to as “gene × environment
interaction” (GEI), in which the “gene” is usually one or
more DNA variants and the “environment” can be any
nongenetic factor that impacts risk.

In animal, plant, and bacterial genetics, numerous, concrete
examples of GEI exist. In drosophila, for example, there is a
critical period in which environmental temperature impacts
the development of eye facets in larvae; in general, the warmer
the environment, the fewer facets develop [7]. Interestingly,
the extent to which temperature affects eye facet develop-
ment is modified by the genetic background of the fly [7],
representing one of the first documented examples of a GEI.
Mechanistic studies of GEI were first documented in 1961
by Jacob and Monod [8] for their Nobel Prize winning work
a few years later on transcriptional regulation in Escherichia
coli [9], in which they showed that bacterial enzyme
synthesis is controlled at “structural” and “functional” genetic
levels through interactions with cytoplasmic components that
can be induced or repressed by specific metabolites.

There are also numerous tangible examples of GEI in
humans that are exploited to improve human health.
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Perhaps the most frequently cited example of a gene × diet
interaction relates to a rare autosomal-recessive mutation in
the gene encoding the hepatic enzyme phenylalanine
hydroxylase (PAH, also often referred to as PKU), an
enzyme that influences the metabolism of phenylalanine to
the amino acid tyrosine. Under normal dietary conditions,
carriers of the PAH mutation are susceptible to severe
impairments in cognitive development, but phenylalanine-
free diets substantially improve prognosis.

Many speculate that GEIs also impact susceptibility to
type 2 diabetes and that elucidating these interactions may
help improve prevention and management of the disease
[10••]. As discussed later in this review, the discovery and
elucidation of GEIs will also greatly expand our knowledge
of the genetic loci within which diabetes-associated variants
reside.

Why GEIs exist has been the topic of intense debate,
with some postulating that the loci involved conveyed a
survival advantage throughout much of human evolution
and have consequently been under positive selective
pressure [11], whereas others argue that these variants
occurred randomly and have remained in the gene pool
either because their harmful effects on reproductive fitness
have only recently been triggered by a population-wide
shift in lifestyle and the development of obesity [12•] or
because the mutation has evaded natural selection, owing to
the manifestation of disease-related deleterious consequen-
ces after the reproductive phase in the life of the affected
individual.

Although understanding the origins of GEI in diabetes
and related traits is interesting and important, it is perhaps
more important at this stage to determine which of the
many studies that have reported on this topic are likely to
be reliable, as few have been adequately replicated. Thus,
firmly establishing if, as well as why, genes and environ-
mental factors might interact in type 2 diabetes should be
prioritized.

This review examines some of the most current evidence
on GEI in relation to type 2 diabetes, outlines how the
availability of information on GEI might help improve the
prevention and management of type 2 diabetes, and
discusses existing and emerging strategies that might
enhance our ability to detect and exploit GEIs for the
benefit of human health.

Why Search for Evidence of GEI in Type 2 Diabetes?

Disease prevention is generally better than treatment or
cure. The optimal prevention of any disease requires
knowledge of its modifiable risk factors so that they can
be intervened upon. Knowledge of salient risk factors, such
as genetic variation, can be useful for disease prevention,

especially if this knowledge helps target interventions, such
as exercise or pharmacotherapy, at the people most likely to
respond well to them or at those for whom the avoidance of
specific risk factors, such as tobacco or ultraviolet expo-
sure, has an especially marked impact on disease risk.

Type 2 diabetes is highly heterogeneous in its etiology,
clinical presentation, and pathogenesis, albeit with the
common denominators of elevated blood glucose concen-
trations and relative insulin deficiency. The syndromic
nature of the disease makes it difficult to optimize strategies
for its prevention or treatment. Ideally, both would be
achieved using uniform strategies that are effective and can
be implemented population-wide. However, the response to
primary and secondary preventive interventions differs
greatly from one person to the next. Although some of this
response variability is owing to varying levels of adherence
to therapy and methodologic factors, much is attributable to
interindividual biological differences in the way treatments
work. Exercise intervention studies in groups of families
indicate that the phenotypic response to interventions tends
to be more similar between biologically related persons
than between those who are unrelated [13], supporting the
thesis that inherited factors, such as genotypes, modify
treatment effectiveness.

Because genotypes are salient biomarkers, remaining
unchanged throughout a person’s lifespan, it may be
possible to derive genotype panels that reliably predict a
person’s level of risk given specific diabetogenic exposures
or the extent to which risk is likely to diminish with specific
preventive interventions. Clearly, the usefulness of this
strategy demands that the predictive ability of the genetic
screening tool exceeds that of conventional, low-cost
strategies and that the cost-benefit ratio associated with
the genetic screening tool is substantially better than for
conventional approaches.

The sensitivity and specificity of conventional diabetes
prediction algorithms is generally fairly good (area under
the receiver operator characteristic curve is~0.85) when
risk is ascertained in the months or years prior to diagnosis
[14], but their predictive ability diminishes as time to event
increases [15–17], which may be because the strongest
predictors of diabetes, such as elevated blood glucose
concentrations, are largely a consequence of other causal
factors, or because the primary causal factors change with
time and/or are imprecisely quantified (eg, adiposity and
family history of diabetes). Accordingly, risk markers that
do not change with time, such as genotypes, tend to
improve in their predictive ability relative to conventional
risk markers as time to event increases [15–17], a point that
has received limited attention to date, possibly because
most risk prediction studies are of fairly short duration.

Identifying and validating GEIs may extend our under-
standing of how specific environmental exposures cause
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disease by pinpointing genes through which the environmen-
tal effects are conveyed. It is also exciting to consider that
evidence of GEI might aid in the prediction of disease [18].

Approaches Used to Study GEI in Type 2 Diabetes

Biologic Candidate Gene Studies

The most widely published method for discovering GEI to
date is the biologic candidate gene approach, in which
functional evidence, often from animal or in vitro human
models, is used to identify loci that play a role in disease
etiology and that are up- or downregulated with exposure to
specific environmental factors such as dietary fats, aerobic
exercise, alcohol, or cognitive stress. Variants within these
loci are then identified and studied for interaction with
related exposures and outcomes in epidemiologic cohorts or
intervention studies.

PPARGC1A is an extensively researched biologic candi-
date gene for type 2 diabetes; the gene transcriptionally
coactivates multiple pathways involved in insulin sensitivity,
adipogenesis, hepatic glucose production, mitochondrial
biogenesis, and many other metabolic processes [19].
Ppargc1a transgenic mice have a higher density of oxidative
muscle fiber and enzymes, as well as increased time to
exhaustion following electrical stimulation of the hind limbs
[20]. Aerobic exercise in humans also increases PPARGC1A
mRNA levels in skeletal muscle [21] and studies comparing
diabetic and nondiabetic persons have reported dow-
regulation of PPARGC1A and its target genes in diabetic
skeletal muscle [22]. This evidence has prompted speculation
that the PPARGC1A–exercise axis may be an attractive target
for the prevention of diabetes and other chronic diseases [19,
23]. Common DNA variants at PPARGC1A have also been
associated with type 2 diabetes [24], although no robust
association signals in this region were found in subsequent
genome-wide association study (GWAS) meta-analyses
[25•]. Nevertheless, variants at this locus have been widely
examined in the context of GEI [26–31].

Unfortunately, despite many hundreds of publications
using the biologic candidate gene approach, few have been
followed up with independent studies replicating or refuting
the initial findings. Although replication of interactions is
often implied [32], it is important to consider whether the
replication study tested the same hypothesis to the original
report: did both studies focus on the same genetic locus,
environmental exposure, and outcome, were the effects
comparable in direction and magnitude, and were the
analytical approaches similar?; and if the study reported
negative results, was it statistically powered to be confident
these are not false-negative findings? In other words, we
need to carefully weigh up how strong the evidence for or

against replication is before accepting or rejecting the
validity of a reported interaction effect. The same level of
rigor that is applied to genetic association studies per se
should be applied when appraising studies of interaction.

Overall, the biologic candidate gene approach has not
been successful in identifying robust examples of GEI in
type 2 diabetes. As such, continued investment in this
approach is probably unjustified unless combined with
other more promising methods, such as those discussed
below.

Following Up on GWAS Association Signals

An increasingly favored approach for studying GEI is one in
which loci discovered in main-effect GWAS meta-analyses
are examined as putative effect modifiers of environmental
risk factors for diabetes and other traits. Providing the relevant
environmental data are also available, these tests can be easily
performed, as investigators can often use the same cohort
collections that were included in the initial main-effects meta-
analyses, thus allowing a fairly quick in silico analysis of
interaction effects. Moreover, because these loci are known to
be reliably associated with relevant disease traits, this might
strengthen causal inference for an interaction and some
believe that this may be a useful screening step that improves
power to detect interactions [33].

We recently reported evidence of an interaction between
an HNF1B variant (rs4430796) and physical activity in type
2 diabetes incidence [34•]. Our study suggests that in
people carrying neither copy of the diabetes risk allele, the
rate of progression to diabetes is significantly higher in
persons who reported low versus high levels of baseline
physical activity, an association that is consistent with data
from other epidemiologic studies and clinical trials that
disregarded the effect modifying roles of genotypes. By
contrast, in persons carrying both copies of the diabetes risk
allele, there was no apparent protective effect of physical
activity on diabetes incidence. Although this specific
example awaits replication and should be interpreted with
some caution, data such as these highlight that some risk
factors are substantially better predictors of diabetes in
certain population subgroups than in others, and that it
might be possible to identify these subgroups using
genotypes. Moreover, the integration of data on GEI into
risk prediction algorithms might substantially improve their
effectiveness in specific subgroups of the population.

The DPP (Diabetes Prevention Program) is a randomized
clinical trial of intensive lifestyle modification, metformin
treatment, and placebo control undertaken in more than
3000 adults at high-risk of type 2 diabetes from the five
major ethnic groups in the United States. Moore et al. [35]
reported tentative evidence that the minor allele at the
CDKN2A/B locus modified the effect of the DPP lifestyle
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intervention on improved β-cell function (Pinteraction=0.05)
and on type 2 diabetes incidence (Pinteraction=0.01). Our
group conducted a follow-up study in approximately
9,000 adults from southern Sweden and reported com-
parable gene × physical activity interaction effects for
the same CDKN2A/B variant on 2-hour glucose concen-
trations [28]. However, a third small North American trial
(N~400) called HERITAGE found no evidence that this
variant is associated with changes in glucose disposal,
insulin sensitivity, or β-cell function following exercise
training [36•].

Probably the most widely studied example of GEI
relevant to type 2 diabetes is for the PPARG Pro12Ala
variant and dietary fat intake. The seminal report on this
hypothesis came from a UK-based study [37], quickly
followed by a confirmatory paper from the United States
[38]; the authors observed that the relationship of dietary
fats with plasma insulin levels and body mass index (BMI)
differed by Pro12Ala genotype, such that no relationship
was observed in Pro12Pro homozygotes and an inverse
association was seen in carriers of the Ala12 allele. Many
replication attempts have since been reported (summarized
in [39]). The authors of the original paper recently
attempted to meta-analyze all available published data, but
concluded that results from such analyses are likely to be
unreliable [40••] owing to inconsistencies in the definition
of exposures and outcomes, study designs, statistical
analyses, and presentation of results, as well as publication
bias and other sources of bias and confounding inherent in
epidemiology.

Interactions between the Pro12Ala variant and other
lifestyle factors have also been reported. In the study by Brito
et al. [34•] described above, nominal evidence of an
interaction (Pinteraction=0.04) between the Pro12Ala PPARG
gene variant and physical activity on 2-hour glucose levels
was also described [41]; in people reporting low levels of
physical activity, the minor allele was associated with a
lesser risk of having impaired glucose regulation (OR, 0.88,
per allele; 95% CI, 0.75–1.02), whereas in persons reporting
high levels of physical activity, the opposite was true (OR,
1.05, per allele; 95% CI, 0.97–1.15). The minor Pro12Ala
allele was also associated with greater improvements in
glucose tolerance with exercise training in HERITAGE [36•],
although the study lacks a control arm, making it difficult to
distinguish gene × exercise interactions from genetic effects
that merely persists in the presence of exercise. A third,
relatively small, family-based cross-sectional study from the
United States [41] also reported tentative evidence of gene ×
physical activity interactions at the Pro12Ala locus in type 2
diabetes risk (Pinteraction=0.02), but the direction of effect
differed from those reported by Brito et al. [34•] and Ruchat
et al. [36•]. Interactions between Pro12Ala and lifestyle
intervention in type 2 diabetes risk have also been studied in

the DPP [42] and the Finnish DPS (Diabetes Prevention
Study) [43]. Neither trial reported evidence of such
interactions, although in the latter, secondary analyses
focused on gene × physical activity interactions on diabetes
incidence revealed nominal evidence of interaction [44].

One other GWAS-derived locus, which has also been
extensively studied for gene × lifestyle interactions in
relation to diabetes, is FTO. A common FTO variant
(rs9939609) has been consistently associated with type 2
diabetes across multiple populations, an effect mediated by
increased obesity risk [45]. Soon after the discovery of
FTO, two independent cross-sectional studies reported
interactions between FTO gene variants and physical
activity on obesity predisposition [46, 47]. Both studies
indicated that the obesogenic effect of the rs9939609 minor
allele is substantially diminished by physical activity. A
third study conducted by us in the DPP showed that
although the obesogenic allele was associated with a greater
gain in subcutaneous adipose mass during the first year of
the trial, the reverse was seen in persons randomized to
intensive lifestyle intervention [48]. Dozens of subsequent
studies have tested similar hypotheses, although collectively
results were in equipoise. Thus, we collected and meta-
analyzed all currently available data, published and unpub-
lished, with the objective of confirming or refuting the
hypothesis that physical activity modifies the effects of FTO
variation on obesity predisposition. The analysis comprised
almost 250,000 adults and children and showed that an
interaction effect of this nature is indeed evident, although
the magnitude of the effect varied considerably by geographic
region (Kilpelainen et al., Unpublished data).

We recently conducted several large-scale meta-analyses
of gene × diet interactions as part of the CHARGE (Cohorts
for Heart and Aging Research in Genomic Epidemiology)
Consortium. These studies have, thus far, focused on
fasting glucose- and insulin-associated loci. Analyses have
comprised approximately 50,000 participants, primarily of
European descent.In the first publication, Nettleton et al.
[49••] reported a nominally significant interaction for the
rs780094 GCKR variant with dietary whole grains and
fasting insulin levels. None of the 15 remaining variants
showed evidence of interactions on glucose or insulin
concentrations and the GCKR interaction effect did not
withstand correction for multiple testing. In a second study
from the CHARGE consortium, we assessed the same
variants for interaction with zinc intake [50••]; an SLC30A8
variant (rs11558471) yielded a nominally significant inter-
action with dietary and supplemental zinc intake on fasting
insulin concentrations (P=0.005). Although this interaction
effect was not statistically significant after Bonferroni
correction (threshold of P<0.0025), an interaction with
zinc at this locus is highly biologically plausible, as
SLC30A8 encodes a zinc efflux transporter that facilities
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zinc accumulation in intracellular vesicles and colocalizes
with insulin in the secretory pathway granules of INS-1
cells [51], thus raising the prior probability of an interaction
at this locus. The almost complete absence of interaction
effects at any of the remaining loci in such a large study,
however, suggests that these GWAS-derived loci are, for
the most part, unlikely to interact with these dietary factors
in a clinically meaningful way.

Despite the encouraging results described above, there are
important caveats to using main-effect GWAS meta-analyses
to screen for loci involved in GEI. The GWAS-derived type 2
diabetes–associated loci discovered so far generally convey
very small, but homogeneous effects within and between
populations [25•]. The same is true for most complex traits.
The low variance relative to effect size is why the top-
ranking GWAS variants yield very significant P values (P<
5.0×10−8). However, as illustrated in Fig. 1, these character-
istics may also mitigate the possibility that the top-ranking
GWAS loci modify the effects of the risk factors for type 2
diabetes that vary in frequency within and between the index
populations. Large-scale assessments of GWAS-derived loci
generally confirm that the majority of these do not modify
the relationships of selected environmental risk factors with
diabetes-related traits [25•]. It is worth noting though, that
eventually, as GWAS meta-analysis sample sizes grow large
enough, many loci involved in GEI (or gene × gene
interactions) will exert sufficiently strong main effect signals
to be flagged as disease-associated variants. Nevertheless, in
some cases, where crossover interactions occur, the sample
size will do nothing to help detect these variants, as this type
of interaction can completely offset the main effect of the
genotype, resulting in a corresponding P value that is close
to 1.

Why Most Published Studies of GEI
Are Probably False-positive

Many small-scale, possibly underpowered, interaction
studies have been reported [52•]. In fairness to the
studies’ investigators, it has been impossible to accurately
calculate power required to detect GEIs in type 2 diabetes,
primarily because to do so requires that realistic interac-
tion effect sizes can be estimated, which has not been
possible owing to the dearth of convincing published
interaction results. The few genome-wide assessments of
GEI that have been undertaken, of which none were
published at the time of writing this review, indicate that
interaction effect sizes are likely to be very small in
magnitude, at least where common gene variants are
concerned. Correspondingly, many published reports of
gene × lifestyle interactions in type 2 diabetes or its
quantitative traits may be false-positives.

False-positive accounts of GEI may be more frequent
than for studies of genetic main effects. In part, this is
because 1) tests of interaction are often conducted as
secondary analyses, which may have involved a large
number of unreported statistical comparisons, thus inflating
type 1 error rates; 2) data transformation procedures can
sometimes produce interaction effects that are statistically
significant, but vanish when the data are reanalyzed on the
normal scale (a type of “removable” interaction); 3) studies
of GEI are no less prone to confounding and bias than
studies focused on the genetic or environment factors alone,
yet few studies of interaction have adequately controlled for
confounding; and 4) a priori biologic evidence, which
experimenters and reviewers often consider when deter-
mining whether a nominally significant interaction result is
plausible, is often less relevant than perceived (see [53••]
for further discussion of these points).

Fig. 1 a, Shows an example of an interaction between a biallelic
variant and an environmental risk factor. Gene x environment
interactions can be defined as genetic effects on [disease] traits that
differ in magnitude [and sometimes direction] across environmental
contexts. b, Shows the same data as in Panel A, but under the
assumption that the genetic effects are equal across the spectrum of the
environmental exposure (ie, no interactions exist). This assumption,
which is made in most genome-wide association studies and in this
example is incorrect, may cause clinically relevant genetic risk factors
to be overlooked
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Which Way Forward for the Discovery and Translation
of GEI in Type 2 Diabetes?

Studies that incorporate high-throughput, massively parallel
genotyping technologies such as GWAS have been rapidly
adopted as the default approach for discovering disease-
associated loci for type 2 diabetes and many other complex
traits. These remarkable technological developments and
corresponding changes in the way geneticists from around
the world work together have caused an explosion in the
density of data routinely available for genetic analyses; in
less than a decade, population geneticists have transitioned
from analyzing datasets involving just a handful of gene
variants in a few hundred individuals to those that
frequently involve the analysis of millions of variants and
multiple phenotypes in cohort collections totaling tens of
thousands of participants or more. This quantum leap in
data dimensionality has generated many novel analytical
challenges.

A major weakness of the standard approaches used to
analyze GWAS data is that the possibility of interactions
between loci and other risk factors is usually completely
ignored [54•]. If, as many agree, most complex diseases
emerge as a consequence of gene × environment and gene ×
gene interactions, this implies that there is a great deal more,
very valuable information about the genetics of human
disease remaining to be discovered than has been so far.
However, it is worth pointing out that such discoveries are
unlikely to explain any of the “missing heritability” in type 2
diabetes (ie, the discrepancy between the estimated herita-
bility of the disease and the variance in the disease explained
by specific gene variants), as the commonly cited heritability
estimates were not derived in a way that accommodates the
presence of interactions.

As discussed below, several novel approaches have
recently been proposed that will facilitate the analysis of
interactions within high-density datasets.

Variance Prioritization

As described earlier in this review, the approach used to
identify disease-associated variants in conventional main-
effect GWAS experiments may bias against the discovery
of loci that exert their effects through interactions with
other risk factors. A characteristic of loci that exert effects
via interactions is that the variance associated with their
main effects tend to be relatively high. Pare et al. [55••]
recently proposed a method that exploits this characteristic
to prioritize variants that are most likely to convey their
effects through interactions. An advantage of this approach
is that it does not require knowledge of the interacting
variables, which distinguishes it from almost all other
interaction analysis methods. The authors applied their

method to data from the Women’s Genome Health Study, a
study of more than 25,000 US women [56], and identified
interactions between variants at LEPR (rs12753193) and
BMI on C-reactive protein levels, ICAM1 (rs1799969) and
smoking on soluble intercellular adhesion molecule-1
(ICAM-1) levels, and PNPLA3 (rs738409) and BMI on
soluble ICAM-1 levels [55••].

Selective Sampling Methods

Numerous approaches have been described for selectively
sampling populations to minimize sample size requirements
in studies of GEI (see [52•] for overview of several
established methods). A recent development in sample
selection strategies, geared specifically toward GWAS, was
recently described by Boks et al.. Provided that interaction
effects are approximately linear, the genetic effect on
disease risk scales proportionately across the spectrum of
the environmental exposure; thus it should be possible to
select out subgroups of the population that differ substan-
tially in their exposure to the environmental risk factor,
undertake GWAS (or similar) within these groups, and then
test whether the magnitude of the genetic effect estimates
differ by environmental exposure level. Boks et al. [57]
estimate that by selecting these subgroups from the top and
bottom 10% of the environmental exposure distribution, the
required sample size can be reduced by approximately 70%
compared with conventional approaches, which would
substantially reduce costs in GWAS-type experiments. The
authors highlight that this approach depends on the initial
sampling frame being large enough to yield sufficiently
extreme environmental exposure differences between the
two subgroups, which is fundamental to the success of the
approach. Thus, the approach is unlikely to work where the
sampling frame is small or where the spectrum of
environmental exposure is narrow. An additional caveat to
this approach is that, by design, the environmental exposure
distribution and all of its correlates within the selected
subcohort will differ substantially from those of the
background population, which will limit how the dataset
can be used for subsequent analyses.

The Joint Meta-analysis Method

A major challenge to studying GEI is that the sample size
requirements are often considerably larger than in main-
effect genetic association studies [58]. Because interaction
analyses generally require information on environmental
exposures, the ability to amass sufficiently large cohort
collections is very difficult, particularly when seeking
cohorts with standardized environmental exposure data.
This challenge can become unmanageable when conducting
genome-wide interaction studies, in which more than a
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million interaction hypothesis tests are performed, because
the available cohorts are generally too small to yield
adequate statistical power. Prompted by this realization, a
number of novel innovative analytical methods to maxi-
mize statistical power in genome-wide interaction analyses
have been developed.

Manning et al. [59••] recently described one such
approach, termed the joint meta-analysis (JMA) method, that
incorporates the analysis of interaction and marginal genetic
effects into a single test. JMA, which builds on previously
described methods [60•, 61, 62], appears considerably more
powerful than conventional interaction tests [59••]. As proof
of concept, Manning et al. [59••] applied the JMA method
alongside other existing approaches to data from five
population cohort collections comprising almost 20,000
nondiabetic individuals to test for interactions between 60
PPARG tag SNPs and BMI on fasting insulin concentrations.
The JMA approach was the most powerful of the selected
methods and identified three variants that interacted with
BMI at an experiment-wide significance threshold of P<
1.67×10−5. For the top-ranked variant (rs1801282 Pro12Ala),
the JMA interaction P value was 8.29×10−9, which compared
with a P value of 1.15×10−6 for Kraft et al.’s [61] 2 d.f.
method. P values for the remaining approaches all exceeded
the experiment-wide significance threshold.

The JMA method has since been used in several
unpublished GWAS meta-analyses and has led to the
discovery of novel loci that influence glucose homeostasis
via interactions with BMI (Manning et al., Personal
communication).

Nested Case-cohort Studies

The ideal epidemiologic study design for the discovery of
GEI in type 2 diabetes is one in which environmental
exposure status is ascertained prior to the development of
disease, thus mitigating the effects of disease-labeling bias,
a type of bias that influences the way in which people
report disease-associated behaviors such as habitual dietary
patterns and physical activity levels [63]. We recently
conducted such a study using data from nine European
countries called the InterAct Project [10••]. InterAct is a
European Union financed nested case-cohort study com-
prised of 12,403 verified incident cases of type 2 diabetes,
which occurred during 4 million person-years of follow-up,
and a subcohort of 16,154 nondiabetic individuals for
comparison. Relative to all existing studies of gene ×
lifestyle interactions in diabetes, InterAct has a high level of
statistical power to test interaction hypotheses and its
results are likely less prone to confounding and bias than
many previous studies; as such, the study offers a unique
opportunity to verify or refute prior reports of interaction.
InterAct is also designed for the unbiased discovery of

interaction effects using GWAS and Cardio-Metabochip
(Illumina Inc. San Diego, CA) arrays.

Genotype-based Recall Experiments

A much discussed, yet rarely implemented approach to the
analysis of gene × intervention interactions, termed genotype-
based recall, involves the selection of participants with
contrasting genetic risk profiles who are subsequently
recruited into a randomized controlled trial [64]. The
approach maximizes statistical power by manipulating allele
frequency distributions in the target population, so that two
equally sized groups of participants are sampled from the
tails of a genetic risk score distribution or so that
homozygous carriers of a rare allele are compared with an
equal number of homozygous carriers of the common allele.
Genetic risk scores can be computed in various ways, but
usually this process involves weighting a series of risk alleles
for a specific disease trait by effect estimates derived from an
independent and well-powered dataset, and subsequently
summing the weighted risk alleles together to form a
continuously distributed score [65]. Genetic risk scores
published to date have focused on characterizing the main
genetic effects of loci. Nevertheless, once a series of
replicated interaction loci are known, it will be perfectly
feasible to weight these variants by genetic and environmen-
tal coefficients to construct GEI risk scores.

The genotype-based recall strategy is probably most
powerful when very rare genotypes are targeted, thus
maximizing the genetic difference between groups. How-
ever, the more infrequent the genotypes of interest, the
larger the sampling frame required to identify these
persons, with sampling frames greater than 100,000
individuals for high-fidelity selection schema (ie, those in
which the high- and low-risk subgroups carry all or none of
the risk alleles, respectively) for risk scores comprised of
the top five type 2 diabetes variants. A second caveat to the
genotype-based recall approach is that trials undertaken in
this way clearly have a very specific data structure,
rendering them of limited use for secondary analyses that
are not focused on the same genotype(s). It is these
limitations that perhaps explain why the genotype-based
recall method has not been widely implemented to date.

One way to maximize the possibility that genotype-based
recall experiments succeed might involve the collection of
muscle, adipose, or other tissue samples from participants in
the two genotype groups prior to randomizing them into a
trial. These tissue samples could be treated in vitro with a
range of compounds (eg, insulin-sensitizing drugs, specific
nutrients, or exercise-mimicking agonists such as AICAR) to
determine whether interactions between the compounds and
the selected genotypes influence relevant phenotypes, such as
glucose disposal rates and insulin sensitivity. Although there
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are clear limitations to this approach, it might help refine the
choice of interventions for subsequent in vivo experimental
studies and thus maximize the likelihood that they succeed in
demonstrating interactions.

Conclusions

Many hope that genetic information will one day help
improve the prevention and management of type 2 diabetes.
However, unless genetic risk is substantial and can be
modified through therapeutic intervention or interventions
can be targeted toward those who, because of their genetic
constitution, are most likely to respond well and/or lack
susceptibility to their side effects, genetics will be of limited
use for the primary or secondary prevention of diabetes. With
this in mind, it is difficult to perceive how in the absence of
appropriately designed studies that seek to discover and
elucidate the nature of gene × environment (or treatment)
interactions the full potential of genetics to improve human
health and reduce the burden of diabetes will be realized.
Nevertheless, merely discovering statistically reliable exam-
ples of GEI will not suffice, as epidemiologic observations of
interactions will also need to be translated into clinical
settings; the combination of genome-wide interaction analyses
set within nested case-cohort studies to identify interactions
and genotype-based recall clinical trials to translate those
findings into the intervention setting may be the optimal
combination of methods to achieve this end.
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