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Introduction
The projected worldwide increase in diabetes mellitus in the
coming decades will create a compelling need for treatments
of diabetic nephropathy. This common microvascular com-
plication of type 1 and type 2 diabetes results in chronic
kidney disease and end-stage renal disease, requiring dialysis
and transplantation. Diabetic nephropathy has become the
major cause of kidney failure in the western world and is pro-
jected to become the most frequent cause in the African con-
tinent and in developing countries in the future [1]. Using a
cost-of-illness model, the total annual medical costs for man-
aging type 1 and type 2 diabetic nephropathy in the United
States reached nearly $17 billion early in this century [2].

With few current therapies proven to prevent or slow the
progression of diabetic nephropathy [3–6], there is an ongo-
ing search for new interventions of this complex metabolic
disease. Among the irreversible effects of chronic hypergly-
cemia is the accelerated formation of advanced glycation end
products (AGEs), created by a reaction between sugars and
free amino acid groups on proteins, lipids, and nucleic acids.
Circulating AGEs and tissue AGE deposits are characteristic
of diabetic complications [7]. The role of AGEs in diabetic
nephropathy has been developed over more than 15 years of
AGE biochemistry (Fig. 1) [8•].

However, the increasingly complex and diverse AGE bio-
chemistry continues to create new challenges for AGE inhibi-
tory therapies [9]. AGEs are versatile structures with protean
potential to create toxic biological effects [10]. More AGEs
have been identified in recent years so that the role of
AGEs—including AGE biochemical mechanisms, their range
of chemical, clinical, and tissue biologic effects, and the
molecular targets and effects of therapeutic agents—have
become increasingly complex [11]. Because no AGE inhibi-
tors have entered clinical practice [12], this article empha-
sizes the current state of AGE therapeutic agents.

AGE Biochemistry
Advanced glycation end products are permanent biochemi-
cally active glucose structures formed by nonenzymatic
post-translational reactions [13]. AGE pathobiochemistry
has been intensively studied in recent years. Their forma-
tion occurs through several key steps (Fig. 2). In the core
reaction, reducing sugars react nonenzymatically with
amino groups to form Schiff bases, followed by rearrange-
ment to reversible Amadori products, relatively stable
ketoamines. Amadori products are the predominant form
of circulating glycated proteins in diabetic patients [10].
These glycated proteins then slowly undergo progressive
dehydration, cyclization, oxidation, and rearrangement to
form AGEs. More broadly, multiple sources and mecha-
nisms of AGEs exist in vivo [14], and AGE formation
involves a cascade of sequential and parallel reactions, in
some cases poorly understood.

The early stages have in some cases been well char-
acterized and identified for several proteins [15]. For exam-
ple, AGEs arise from reactions of intracellular dicarbonyls
such as glyoxal, methylglyoxal, 3-deoxyglucosone, and
glucosone. When oxidation accompanies glycation, the
products formed are glycoxidation products. The glycoxida-
tive degradation of protein-carbohydrate adducts to AGEs is
a complex pathway requiring oxygen and catalyzed by traces
of copper and iron. AGEs can also form on the amino
groups of lipids (advanced lipoxidation end products
[ALEs]), DNA, and through a number of other pathways.
Some AGE compounds may be derived from either carbo-
hydrates or lipids.

Current treatment of the nephropathy complication of dia-
betes mellitus is suboptimal in halting the progression of the 
complex disease. Among the irreversible effects of sustained 
hyperglycemia is the heightened formation of advanced 
glycation end products (AGEs). The role of AGEs in diabetic 
nephropathy has been established by years of basic research. 
This article reports progression through human studies of 
the few AGE inhibitors that have reached clinical develop-
ment, including pimagedine, pyridoxamine, and alagebrium.
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Many AGEs proceed to abnormal cross-link formation
in diabetic patients, a stage of the AGE reaction that dam-
ages proteins and other macromolecules by altering their
molecular configuration. Other AGEs are capable of trig-
gering diverse injury responses after being taken up by spe-
cific cellular receptors.

AGEs and the Kidney
A significant body of evidence now implicates early, as well
as advanced, glycation products in the pathogenesis of
advanced diabetic nephropathy [16]. Normal rats exposed to
Amadori products in infused plasma develop glomerular
hyperfiltration, an early feature of diabetic nephropathy [17].
The AGE content of the kidney is increased when normal rats
are infused with AGEs over several months. Glycated proteins
injected into normal mice produce glomerular basement
membrane thickening and glomerular lesions suggestive of
diabetic glomerulopathy [18]. In diabetic animal models,
AGEs accumulate in expanded mesangial matrix and nodular
glomerular lesions. A growing list of AGE compounds has
been determined in the diabetic kidney [19], either as a result
of mesangial trapping of circulating AGEs, through tubular
reabsorption of AGE peptides, or by AGEs formed intrins-
ically in the diabetic kidney. AGE receptors are known to exist
in the kidneys [20].

Both of the dominant histologic features of diabetic
nephropathy, mesangial expansion and basement thickening,
could result from changes in mesangial matrix composition.
Accumulation of extracellular matrix proteins in the glomeru-
lar mesangium is characteristic of diabetic nephropathy. Nor-
mal collagen and matrix-cell interactions may be damaged by

AGEs [21•]. Cross-linking of basement membrane proteins
may increase permeability and lead to glomerular passage of
proteins (eg, microalbuminuria, proteinuria). AGEs may also
induce formation of profibrotic mesangial calls and release of
proinflammatory cytokines and adhesion molecules.

Pharmacologic inhibitors of AGE formation or ultimate
cross-linking have been pursued in experimental models of
diabetic nephropathy for several years. No common structure
exists in compounds being evaluated as AGE inhibitors.
Mechanisms of AGE inhibition by therapeutic drugs include
trapping of carbonyls, carbon-centered radicals, or hydroxyl
radicals, chelating transition metal ions, inhibiting post-Ama-
dori AGE formation, or breaking cross-links. Only a few eval-
uated inhibitors have reached clinical development (Table 1).

Pimagedine
Pimagedine, the prototype therapeutic agent for prevention
of AGE formation, entered clinical development several
years ago [22]. In animal models, the drug inhibited the for-
mation of AGEs [23] and was effective in reducing the sever-
ity of the structural and functional alterations of diabetic
nephropathy [24•]. Pimagedine is a competitive inhibitor of
the AGE pathway that reacts with dicarbonyl compounds as
well as other biologic molecules [25].

The pivotal phase 3 pimagedine trial, which reached
publication in 2004 [26], enrolled 690 patients with type 1
diabetic nephropathy in a randomized placebo trial with an
average drug treatment time of 2.5 years. Pimagedine (20%)
produced no significant difference from placebo (26%) in
the primary outcome, doubling of serum creatinine. Pim-
agedine did produce some reduction in urinary protein

Figure 1. Role of advanced glycation end products (AGEs) in diabetic nephropathy. RAGE—receptor for advanced glycation end product; 
TGF-β—transforming growth factor-β; VEGF—vascular endothelial growth factor.
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excretion and lipid levels, and appeared to limit progression
of diabetic retinopathy. The protocol was not powered to
take into account the beneficial effects of angiotensin-con-
verting enzyme inhibitors (ACEIs)/angiotensin receptor
blockers (ARBs), which the majority of enrolled patients in
both groups received. Furthermore, the study drug pimage-
dine was associated with a high rate of complications and
discontinuations. Relevant pimagedine-related adverse
events included transient flu-like syndrome, anemia, and
induction of antinuclear and antineutrophil cytoplasmic
antibodies (ANCAs). Three patients on pimagedine in the
higher dose arm developed crescentic glomerulonephritis,
associated with very high ANCA levels. As a result, the clini-
cal development of pimagedine is now suspended.

Pyridoxamine
The AGE inhibitor pyridoxamine has entered clinical
development as an effective inhibitor of the formation of
AGEs that arise from Amadori products. Pyridoxamine is a
derivative of vitamin B6. It inhibits both the formation of
AGEs and the development of complications in animal
models of diabetes. Pyridoxamine inhibits AGE and ALE
formation in vitro, and inhibits the chemical modification
of proteins in both hyperglycemic and hyperlipidemic
animal models [27]. Unlike other known AGE inhibitors,
pyridoxamine is known to inhibit the degradation of
protein-Amadori products to protein-AGEs (ie, it is a post-
Amadori inhibitor).

Two predominant mechanisms for decreasing the for-
mation of AGEs have been proposed: carbonyl trapping

[28], and scavenging of metal ions in vivo. It has been pro-
posed that the drug blocks Amadori-to-AGE conversion by
interfering with the catalytic role of redox metal ions
required for this glycoxidative reaction. The original discov-
erers of pyridoxamine have recently proposed, based on in
vitro studies, that the compound primarily blocks conver-
sion of Amadori intermediates to AGE-carboxymethyllysine.
The mechanism of inhibition involved interference with the
catalytic role of redox metal ions required in vitro for the
glycoxidative reaction. The inhibition of pyridoxamine by
binding to required redox metal ions and blocking their cat-
alytic role occurred in vitro under concentrations of glucose
found in the diabetic state [28].

Because carboxymethyllysine is not the sole product of
degradation of Amadori intermediates, additional mecha-
nisms may apply in vivo. One alternative is the chemical
trapping of low molecular weight reactive carbonyl products
of glucose and lipid degradation. It was recently proposed
that pyridoxamine is a potent scavenger of 1,4-dicarbonyl
compounds, and that the structural phenolic group of pyri-
doxamine was essential to its reactivity for dicarbonyl com-
pounds [29]. In vivo, the relative contributions of these
mechanisms may be influenced by local concentrations of
redox metal ions and of reactive carbonyls [30].

Pyridoxamine is also known to be an effective inhibitor
of ALE in vitro [31]. In analogy to the above mechanisms,
trapping of intermediates of AGE formation has also been
proposed for pyridoxamine inhibition of lipid peroxidation
reactions [26]. Adducts of linoleate and arachidonate were
formed after in vitro incubation and also in the urine of
pyridoxamine-treated animals in one recent study [26].

Figure 2. Simplified advanced glycation end 
product (AGE) formation pathways and 
inhibitory actions of candidate therapeutic 
AGE inhibitors.
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Several preclinical studies have now demonstrated that
oral pyridoxamine is protective in a preventative model of
type 1 (streptozocin rat model) [32] and type 2 (db/db
mouse model) diabetic nephropathy. As an inhibitor of
ALEs during hyperlipidemia [33], pyridoxamine lowers
both plasma cholesterol and triglycerides, and prevents the
chemical modification and cross-linking of renal and vas-
cular collagen in diabetic and Zucker obese rats. The com-
pound protects against the pathologic changes of early
diabetic nephropathy induced by injections of AGE-modi-
fied rat serum albumin.

In 2003, pyridoxamine advanced into clinical studies
of diabetic nephropathy. A phase 2 study in the United
States was undertaken to determine the safety and tolera-
bility and provide preliminary observations on its efficacy,
in patients with type 1 and type 2 nephropathy with base-
line serum creatinine ≤  2.0 mg/dL and overt proteinuria
[34]. Baseline demographic and laboratory characteristics
were comparable, and most patients were already receiving
ACEI/ARB therapy. The drug was well tolerated, and the
percentage of patients who experienced treatment-related
adverse events was low and comparable in both treatment
and placebo groups. Preliminary efficacy analysis indicated
that a rise in serum creatinine of less than 0.5 mg/dL was
more common in patients on placebo (22%) than on pyri-
doxamine (12%). Post hoc analysis indicated that statisti-
cally significant reductions in the rise of serum creatinine
and urinary albumin excretion were seen in the treatment
group. In another trial, preliminary evidence of efficacy for
pyridoxamine on kidney function was again demonstrated
[35], and the treatment group exhibited a decrease in uri-
nary transforming growth factor-β, the profibrotic cytokine
[36], which has been associated with glomerulosclerosis
[37]. A longer phase 3 trial properly designed to evaluate
drug efficacy in diabetic nephropathy is planned.

Alagebrium
Protein cross-linking is mediated by AGEs and involves gly-
cated molecules bound together. Collagen cross-linking, for
example, occurs at an accelerated rate in diabetic patients.
Cross-link breakers may have therapeutic potential to
reverse already formed cross-links, and correct glycation
damage, even in the presence of inadequate glucose control.
Specific mechanisms of cross-link activity may involve
breaking of bonds between two carbonyl groups in com-
pounds responsible for cross-link reactions [14]. However,
activity in vitro to cleave model cross-links experimentally
may not apply to diverse AGE cross-links in vivo.

Advanced glycation end product breakers have been
shown in vitro and in vivo to cleave cross-links in diabetic ani-
mal models. Alagebrium (formerly ALT-711) is a derivative of
phenacylthiazolium bromide, the prototype cross-link
breaker, and is chemically related to vitamin B1 [38]. In a rat
model of diabetes, cross-link breaking activity of alagebrium
was measured as a reduction in immunoglobulin G
covalently found to erythrocytes. Immunoglobulin G is
covalently bound to erythrocytes in AGE cross-links, which
are increased in diabetic subjects. A known clinical target of
AGE cross-linking in vivo is collagen, a matrix protein more
tightly cross-linked in the presence of diabetes. Increased
collagen cross-linking may contribute to the vessel wall and
myocardial stiffness associated with diabetes. Experimental
studies indicate that alagebrium increases large vessel compli-
ance [39] and restores left ventricular collagen solubility [40].
Additional animal studies have confirmed cardiovascular
benefit, and suggest amelioration of diabetic nephrosclerosis
[41•]. Current clinical trials, including one showing improved
arterial compliance in humans with vascular stiffness [42], are
evaluating the cardiovascular benefit of alagebrium. Little is
known about the renoprotective potential of AGE cross-link
breakers in human diabetic nephropathy [43].

Table 1. Pharmacologic AGE inhibitors and their renal effects in experimental and human studies

Class Compound In vitro Animal studies Clinical trials

AGE inhibitor Pimagedine Reacts with glucose-
derived intermediates

↑ Tissue AGE levels, ↓  AGE binding, 
prevents ↑ fluorescence in glomeruli 
and tubules, ↓  mesangial matrix 
expansion, ± ↓  glomerular basement 
membrane thickening, ↓  proteinuria, 
↑ survival in azotemic model 

Mixed results in phase 3. 
Primary renal end point 
did not reach statistical 
significance. Slight 
reduction in proteinuria. 
Poor safety profile

AGE inhibitor Pyridoxamine Inhibits AGE formation 
from Amadori 
intermediates

Protects kidney from AGE-modified 
albumin injection, ↓  glomerular 
volume, ↓  albuminuria

Phase 2 safety and efficacy 
trials completed. 
Good safety profile. 
Preliminary efficacy 
results encouraging

Cross-link 
breaker

Alagebrium Breaks AGE collagen 
cross-links

↓  Diabetic rat tail collagen cross-links, 
↓  renal tissue AGEs, restores vascular 
compliance of large vessels

Phase 2 cardiovascular 
trials completed

AGE—advanced glycation end product.
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Glycated Albumin
Serum albumin is modified by Amadori glucose adducts,
and Amadori-modified albumin is the predominant gly-
cated protein in the circulation. Over the past few years,
increasing evidence, principally from Cohen et al. [44], has
suggested that glycated albumin contributes to diabetic
kidney disease. In cultured renal cells, Amadori-glycated
albumin produces pathophysiologic effects that duplicate
exposure to high glucose levels, including stimulation of
protein kinase C, increased transforming growth factor-β
activity, and enhanced production of extracellular matrix
proteins [45]. Glycated albumin modulates signal trans-
duction and induces these alterations in renal glomerular
cells, which are felt to contribute to the development of
diabetic nephropathy [44]. Additional studies suggest that
Amadori-configurated glycated albumin may contribute to
early diabetic hyperfiltration by enhancing nitric oxide syn-
thase activity [46]. Glycated albumin also appears to con-
tribute to downregulation of nephrin synthesis, an effect
that would promote diabetic proteinuria.

Other recent work suggests that inhibition of the for-
mation of glycated albumin, akin to pharmacologic AGE
inhibition, may beneficially affect the development of dia-
betic nephropathy. In the db/db mouse model of diabetic
nephropathy, treatment with an inhibitor of the formation
of glycated albumin normalized glycated albumin concen-
trations, in association with decreased urinary albumin
excretion and decreased urinary collagen IV [47]. The test
compound also decreased renal expression of mRNAs
encoding fibronectin and collagen IV and reduced mesan-
gial matrix expansion.

Conclusions
Advanced glycation end product pathobiochemistry has
become increasingly complex, and presents several opportu-
nities for AGE inhibition. More is being discovered about the
field of AGE inhibitors as new drugs proceed through regula-
tory trials. The few drugs in clinical development vary in their
inhibitory actions, safety and efficiency profiles, and devel-
opmental strategies. Although progress has been made, the
approval of an AGE inhibitor for clinical use for diabetic
complications remains a challenge for the near future.
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