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Abstract
Purpose of Review This review seeks to detail the clinical and pathologic features specific to BRAFV600E colorectal cancer.
Application of novel preclinical findings translated into the clinic for the development of new therapeutic options for patients
with BRAFV600E metastatic colorectal cancer will be detailed.
Recent Findings While BRAF inhibitors as monotherapy do not have the same clinical activity for colorectal cancer relative to
other solid tumors harboring an oncogenic BRAFV600Emutation, combination approaches targeting BRAF +MEK + EGFR hold
promise for patients with BRAFV600E colorectal cancer.
Summary Simultaneous targeting of multiple drivers along the MAPK pathway improves clinical outcomes for patients with
BRAFV600E colorectal cancer. Targeted therapies and immunotherapy hold great promise in the years to come for patients with
this subtype of colorectal cancer.
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Introduction

In 2018, it is estimated that almost 50,000 Americans will
succumb to colorectal cancer (CRC) [1]. For the majority of
patients presenting with metastatic CRC, systemic chemother-
apy remains the mainstay of treatment. However, targeted
therapies, personalized to the genomic profile of a given co-
lorectal tumor, have demonstrated clinical benefit for patients
whose tumors are wild-type at the KRAS and NRAS loci (anti-
EGFR antibodies) [2], harbor microsatellite instability (im-
mune checkpoint blockade therapies) [3•], or contain an
NTRK fusion (Trk inhibitor) [4].

BRAF mutations define another distinct molecular
subentity of the CRC population in whom remarkable treat-
ment advances have occurred within recent years. These alter-
ations are present in approximately 8–10% of metastatic CRC
cases and are most frequently characterized by valine-to-

glutamic acid substitutions at codon 600 of the BRAF gene
[5]. These BRAFV600E mutations activate oncogenic signaling
of the MAPK pathway via eventual downstream phosphory-
lation of ERK and result in heightened proliferative and anti-
apoptotic behavior for the tumor cell [6]. This review high-
lights the relevant clinical advances in the context of the
unique underlying tumor biology for patients with metastatic
BRAFV600E CRC.

Characterization of BRAFV600E CRC Tumors

Clinically, BRAFV600E mutations have been linked with fe-
male gender, history of tobacco exposure, and advancing
age [7–9]. Pathologically, they occur more commonly as prox-
imal (right-sided), poorly differentiated, mucinous CRC tu-
mors [9–11]. In addition, BRAFV600E CRC tumors are more
likely to have deficient mismatch repair (dMMR) and be clas-
sified asMSI-high (MSI-H) [12]. Here, microsatellite instabil-
ity arises not from a germline mutation in the dMMR genes
associated with hereditary non-polyposis colorectal cancer
(HNPCC) syndrome but rather from epigenetic silencing de-
rived from promoter hypermethylation of theMLH1 gene [13,
14]. In general, BRAFV600E CRC tumors are characterized by
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extensive methylation across the genome not typically ob-
served across other molecular subpopulations of CRC [15].

Hypermethylation across promoter regions of specific gene
foci enriched with cytosine-guanine regions, termed CpG-
island methylator phenotype (CIMP)–high tumors, drives tu-
morigenesis in precancerous, dysplastic cells along the sessile
serrated adenoma pathway [16, 17]. This pattern of colorectal
tumor development, to whichBRAFV600Emutations are linked
[18–20], is distinct from the traditional adenoma pathway
from which the majority of colorectal cancers arise. While
an oncogenic driver in many other tumors (including, but
not limited to, melanoma, thyroid cancer, and non-small cell
lung cancer), the introduction of a BRAFV600E mutation into a
normal colorectal cell does not transform the cell into a cancer
[21, 22]. Capitalizing on the CIMP-high biology, methylation
(and subsequent loss of function) of tumor suppressor genes in
a sessile serrated polyp with a preexisting BRAFV600E muta-
tion creates the synergistic interaction necessary to generate a
malignant colorectal lesion [23]. Here, the interplay between
the complex, coexisting pathogenic drivers parlays into the
aggressive clinical phenotype seen with BRAFV600E CRC tu-
mors relative to their BRAFwild-type (BRAFWT) counterparts.

With regard to genomic alterations, BRAFV600E mutations
occur mutually exclusively in colorectal cancer to activating
mutations in the KRAS and NRAS oncogenes [24, 25], which
also drive pathogenic signaling of the MAPK pathway.
Analysis of 276 CRC specimens by the Cancer Genome
Atlas (TCGA) project found that BRAFV600E mutations co-
occur with hypermutated tumors that carry higher somatic
mutation burdens intratumorally [26]. This association is like-
ly driven by the MLH1 hypermethylation and reinforces the
interplay between the epigenome and corresponding genomic
characteristics unique to this subtype. Certainly, an under-
standing of the biology relevant and specific to BRAFV600E

CRC can inform the oncologist on the clinical manifestations
in order to optimize treatment planning.

BRAFV600E as a Clinical Biomarker in CRC

BRAFV600E mutations carry a poor prognostic implication for
patients with CRC, regardless of the stage at presentation. In
the PETACC-3 trial [27], 3278 patients with stage II or stage
III CRC were randomized to receive adjuvant chemotherapy
with 5-fluorouracil with or without irinotecan. Nearly half of
trial participants (1403, or 43%) had archival tissue available
for genomic profiling, including BRAF mutation status.
Overall survival (OS) for patients with microsatellite stable
tumors was lower when accompanied by a BRAFV600E muta-
tion for patients with stage II and with stage III disease alike.

Worsened clinical outcomes for patients with BRAFV600E

CRC also extend to patients with stage IV tumors [28–31]. For
example, one series of 524 patients with metastatic CRC

demonstrated a significantly inferior OS for patients with
BRAFV600E tumors when compared to patients with BRAFWT

tumors (10 versus 35 months, respectively) [7]. When limited
to microsatellite stable CRC, one series showed that the risk of
cancer-specific mortality was higher in the BRAF-mutated
group (hazard ratio (HR) 2.3, 95% confidence interval (CI)
1.3–4.0) [32]. Another series, however, demonstrated that,
even for patients with MSI-H metastatic CRC, progression-
free survival (PFS) with standard chemotherapy (3 versus
10 months, P < 0.001) and OS (14 versus 30 months,
P < 0.001) is shortened for patients with BRAFV600E CRC
tumors [33]. Therefore, the worsened prognostic implications
linked to BRAFV600E mutations for patients with advanced
CRC appear to be consistent regardless of microsatellite
status.

Despite these tumors lacking driver mutations in KRAS or
NRAS, there has not been benefit demonstrated with use of
anti-EGFR antibodies as a lone targeted therapy for
BRAFV600E metastatic CRC. For example, in the PRIME
study [34], patients with untreated, advanced CRC were treat-
ed with FOLFOX chemotherapy with or without the anti-
EGFR antibody panitumumab. Here, there was no benefit
with the addition of panitumumab in PFS or in OS despite
the patients having RASwild-type tumors. A separate study ex-
amined tumors from 773 patients with metastatic CRC treated
with cetuximab (another anti-EGFR antibody) as part of their
treatment for mutations in KRAS, BRAF, and PIK3CA, in or-
der to assess for a correlation with clinical outcomes [35].
Compared to their wild-type counterparts, those with
BRAFV600E tumors treated with cetuximab had lower disease
control rates (odds ratio (OR) 0.15, P = 0.001), shorter PFS
(HR 3.7, P < 0.001), and shorter OS (HR 3.0, P < 0.001).
Other series have likewise confirmed that a BRAFV600E muta-
tion does not serve as a predictive biomarker for response to
anti-EGFR therapies for patients with metastatic CRC [36•,
37–41]. Given this lack of data demonstrating a clinical ben-
efit, use of anti-EGFR antibodies as a single targeted therapy
for RASwild-type, BRAFV600E metastatic CRC is not
recommended.

Because patients with BRAFV600ECRC are expected to fare
poorly in the metastatic setting, systemic chemotherapy op-
tions have remained limited. The randomized phase III TRIBE
trial compared FOLFIRI/bevacizumab to FOLFOXIRI/
bevacizumab as frontline therapy for metastatic CRC, where
response rates were improved in the overall population by the
addition of oxaliplatin to FOLFIRI/bevacizumab [42]. Post
hoc stratification reported a non-significant trend in PFS ben-
efit with FOLFOXIRI/bevacizumab uniquely for the
BRAFV600E patients relative to the BRAFWT patients (HR
0.57, 95% CI 0.27–1.2) [43].While encouraging, the numbers
of BRAF-mutated patients here treated with FOLFIRI/
bevacizumab (N = 12) or with FOLFOXIRI/bevacizumab
(N = 16) remain small and limit definitive interpretation
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accordingly. In addition, administration of triplet cytotoxic
chemotherapy with FOLFOXIRI is associated with greater
toxicity. Therefore, these findings should be interpreted with
caution and should not yet be generalized to the entire
BRAFV600E CRC population, given the rapid clinical deterio-
ration often inherent to their underlying aggressive disease
that would not allow tolerance of this regimen. Following loss
of response to frontline systemic chemotherapy, outcomes for
patients with BRAFV600E metastatic CRC have been reported
to be especially poor. In a single-institution, retrospective se-
ries of 72 patients with BRAFV600E metastatic CRC [44], me-
dian PFS with systemic therapy in the second-line and third-
line settings were 2.5 months and 2.6 months, respectively.
Alternatively stated, patients with BRAFV600Emetastatic CRC
developed disease progression even by the time of first
restaging when treated with standard options beyond the first
line of chemotherapy.

Targeted Therapies Against MAPK Signaling
in BRAFV600E Advanced Cancers

The advent of targeted therapies against MAPK signaling in
recent years has heralded in promising new options for pa-
tients with BRAFV600E advanced cancers. Vemurafenib is a
selective inhibitor specific to the mutated BRAFV600E kinase
domain [45] which first demonstrated promising clinical ac-
tivity in patients with advanced BRAFV600E melanoma [46],
with rapid reductions of tumor burden observed even within
2 weeks of single-agent therapy [47]. The response rate for
BRAFV600Emetastatic melanomawas reported in a large phase
III trial [48] at 48%, higher than the 5% of patients with re-
sponse to dacarbazine in the control arm of the same trial.
Survival outcomes here were likewise improved with
vemurafenib, a result which led to FDA approval for this
BRAF inhibitor. Similarly, patients with BRAFV600E or
BRAFV600K unresectable melanoma participating in a phase
III trial of the reversible BRAFV600E kinase inhibitor
dabrafenib (versus dacarbazine) showed responses to the for-
mer agent in 50% of cases [49]. BRAF inhibitors as mono-
therapy have anti-tumor activity in other BRAFV600E tumors
besides melanoma, such as non-small cell lung cancer, thyroid
cancer (papillary and anaplastic), hairy cell leukemia, and
Langerhans cell histiocytosis [50–53]. Collectively, for vari-
ous solid tumors, the presence of a BRAFV600E mutation
serves as a predictive biomarker for clinical benefit with
targeted therapies against the BRAF kinase.

While inhibition of the kinase domain of the downstream
MEK has also demonstrated clinical efficacy as a single agent
in these tumors, the combination of targeted therapies against
BRAF and MEK together delays the onset of acquired resis-
tance in preclinical models of BRAFV600E tumors [54], relative
to BRAF inhibitors as monotherapies. Here, inactivation of

mutated BRAF pharmacologically can generate resistant
clones by activating mutations inMAPK1/2 and other drivers
in MAPK signaling. These findings have likewise translated
into the clinical setting for patients with BRAFV600Emalignan-
cies. BRAF/MEK combinations with vemurafenib/
cobimetinib, dabrafenib/trametinib, and encorafenib/
binimetinib have demonstrated clinical benefit in patients with
BRAFV600E melanoma [55–57], non-small cell lung cancer
[58], and anaplastic thyroid cancer [59]. In BRAFV600E mela-
noma, this combination approach has clinical superiority over
single-agent BRAF inhibitors and has been associated with
response rates in the 55–70% range. Therefore, sustained
anti-tumor activity is promoted by dual targeting of BRAF
and MEK in order to deepen blockade of the pivotal MAPK
signaling and translates to improved clinical outcomes in pa-
tients with advanced cancers harboring BRAFV600Emutations.

Targeting MAPK Signaling in BRAFV600E CRC

Pivoting upon the successes of targeted therapies for BRAF
with or without MEK inhibitors, it would be expected that a
similar pattern of clinical activity would be observed for pa-
tients with BRAFV600E metastatic CRC. However, a study of
single-agent vemurafenib in 21 patients resulted in a single
patient with a radiographic partial response (response rate
(RR) 5%, 95% CI 0–26%) [60•]. Median PFS here was
2.1 months among a pretreated population and did not appear
to prolong survival outcomes relative to historical controls.
Similarly, low response rates with BRAF inhibitors were ob-
served with dabrafenib (RR 11%, 95% CI 0–48%) [61] and
with encorafenib (RR 0%, 95% CI 0–23%) [62]. Seemingly,
the response rates are lower for patients with colorectal cancer
in this monotherapy approach than in other cancers despite
harboring the same oncogenic BRAFV600E mutation.

Clinical outcomes likewise do not appear to improve with
the addition of a MEK inhibitor to a BRAF inhibitor for
BRAFV600Emetastatic CRC. In one trial [63], 43 patients were
treated with the combination of dabrafenib and trametinib.
Responses were noted in 5% of patients (RR 12%, 95% CI
4–26%), and median PFS was 3.5 months. Again, patients
receiving these two agents overall did not fare as well as other
patients with BRAFV600E tumors receiving the same treatment.

Subsequent basic science work helped to elucidate the lack
of response to these agents in a mechanism unique to
BRAFV600E CRC. In vitro, BRAFV600E CRC cell lines are in-
herently resistant to vemurafenib, but a siRNA screen revealed
that sensitivity to this drug could be restored with knockdown
of EGFR [64••]. This finding implicated EGFR activation as a
culprit responsible for de novo resistance to targeted therapies
against BRAF in this setting. Additional work in xenograft
models of BRAFV600E CRC confirmed an anti-tumor response
preclinically with a combination of agents against BRAF and
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EGFR simultaneously that was not observed with either pro-
tein was targeted alone [65, 66].

These promising preclinical findings led to a next genera-
tion of clinical trials testing BRAF and EGFR combination
approaches for patients with metastatic BRAFV600E CRC. In a
phase I trial of vemurafenib, cetuximab, and irinotecan [67],
an initial signal was observed, with radiographic responses
reported in 6 of 17 patients (RR 37%). In order to build upon
these promising early clinical findings, the randomized phase
II SWOG 1406 clinical trial was conducted [68••]. Here, 99
patients with pretreated BRAFV600E CRC were treated with
irinotecan/cetuximab with or without vemurafenib so that
the benefit of the addition of a BRAF inhibitor to an anti-
EGFR targeted therapy could be tested prospectively in this
setting. This study met successfully its primary endpoint, with
a prolongation in PFS (4.3 months versus 2.0 months, HR
0.48, P = 0.001) for those receiving vemurafenib, irinotecan,
and cetuximab. Disease control rates (DCR, defined as the
proportion of patients with stable disease or partial/complete
response as the best radiographic assessment according to
RECIST 1.1 criteria) were also more favorable in this group
(67% versus 22%, P = 0.001). Subgroup analysis here failed
to demonstrate preferential clinical activity based onmicrosat-
ellite status, sidedness (left versus right) of the primary tumor,
or PIK3CA mutation status. Overall, this trial provided the
first randomized prospective data confirming that the previ-
ously detailed preclinical data that targeted approaches against
BRAF and EGFR are effective in this population. As a result,
the combination of vemurafenib, irinotecan, and cetuximab
was updated in the 2018 NCCN Guidelines [69] as a recom-
mended therapy for patients with BRAFV600E metastatic CRC.

Other studies investigating this approach in parallel have
corroborated this strategy, with similar clinical findings as
observed with the SWOG 1406 study. In a single-arm study,
15 patients with BRAFV600Emetastatic CRC were treated with
vemurafenib and panitumumab (no cytotoxic exposure here)
[70]. This dual combination was safe and well tolerated. For
the 12 patients assessable for response, two patients (RR 13%)
had radiographic responses, with one of these participants
experiencing a 100% reduction in tumor volume from base-
line. Eleven patients (89%) had a radiographic response or
stable disease by RECIST 1.1 criteria as their best-measured
assessment on the study. Another trial of 20 patients with
BRAFV600E metastatic CRC treated with dabrafenib and
panitumumab observed radiographic responses in 2 patients
(RR 10%) [71].

Encorafenib and cetuximab were examined in 54 patients
withBRAFV600Emetastatic CRC treated with (N = 28) or with-
out (N = 26) alpelisib, a class I PI3K inhibitor [72]. Use of
alpelisib here was supported by preclinical data demonstrating
in xenograft models of BRAFV600E CRC that PI3K/mTOR
signaling may drive de novo resistance to BRAF inhibition,
and that sensitivity to targeted therapies can be restored by a

PI3K inhibitor [66]. Response rates were 18% and 19% for
those treated with encorafenib and cetuximab with or without
alpelisib, respectively. While this study was not designed sta-
tistically to compare the two treatment arms, there appeared to
be no added clinical benefit by the addition of a PI3K inhibitor
here. Although the total numbers were small, alterations in
PI3K/mTOR genes did not correlate with anti-tumor activity.

Extending Clinical Benefit for Patients With
BRAFV600E Metastatic CRC

Despite the practice-changing successes noted with BRAF
and EGFR targeted therapies here, acquired resistance to these
drugs invariably develops, a theme unfortunately common
across solid tumors. Understanding of resistance mechanisms
has led however to further advancements in the management
of BRAFV600E metastatic CRC. In the aforementioned phase I
study of vemurafenib, cetuximab, and irinotecan [67], post-
progression blood samples were analyzed for genomic profil-
ing by circulating tumor DNA in order to identify acquired
alterations not present in baseline samples which could be
implicated in resistance to treatment. Oncogenic aberrations
in KRAS, EGFR, ARAF, MAP2K1, GNAS, and ERBB2 were
all observed in this series of patients and implicated reactiva-
tion of MAPK signaling as a driver of tumor progression of
targeted therapies against BRAF and EGFR. Addition of in-
hibitors to downstream effectors of MAPK signaling like
MEK and ERK have restored sensitivity in preclinical models
of BRAFV600E metastatic CRC resistant to BRAF and EGFR
targeted therapies [73•, 74] and have provided rationale for
triple combination approaches deepening efforts to thwart this
oncogenic pathway in this subpopulation of CRC.

In a trial of dabrafenib, panitumumab, and trametinib for 91
patients with BRAFV600E metastatic CRC, complete or partial
responses were seen in 19 (21%) patients, with a DCR of 86%
[71]. Grade 3/4 toxicity profiles were worse than for those
receiving dabrafenib and panitumumab without a MEK inhib-
itor. Median PFS (both ~ 4 months) was likewise similar with
the triple combination than dabrafenib and panitumumab.
Nonetheless, these findings suggested, based upon the notable
DCR, that simultaneous targeting of BRAF, EGFR, and MEK
holds promise for this population with poor tumor biology.

Perhaps the most encouraging result to date for the treat-
ment of BRAFV600E metastatic CRC has been from the recent
report of efficacy from the safety lead-in analysis [75••] of the
BEACON trial, a randomized phase III study of irinotecan/
cetuximab versus encorafenib/cetuximab with or without
binimetinib. In the initial pilot in which 29 patients with
BRAFV600E metastatic CRC were treated with the
BRAF/EGFR/MEK combination, radiographic responses
were seen in 14 patients (RR 48%), with all 29 patients having
disease control (i.e., no de novo progression at first restaging
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according to RECIST 1.1 criteria) as the best response.
Median PFS here was 8.0 months. Final analyses of the phase
III trial are highly anticipated. However, these very encourag-
ing early results led to FDA breakthrough therapy designation
for the combination of encorafenib, cetuximab, and
binimetinib for patients with BRAFV600E metastatic CRC.
The development of improved response rates with subsequent
generations of clinical trials testing MAPK-targeting agents in
this setting are detailed in Fig. 1.

Immunotherapy in BRAFV600E Metastatic CRC

Immune checkpoint blockade agents targeting PD-1/PD-L1
and CTLA-4 have demonstrated durable clinical activity for
patients with MSI-H metastatic CRC [3•]. Given the associa-
tion between microsatellite instability and BRAF mutations in
patients with CRC, these agents are relevant in this population
as well. Indeed, although the numbers of patients treated are
small, objective responses to the anti-PD-1 antibody
nivolumab as a single agent (RR 25%) [76] and in combina-
tion with the anti-CTLA-4 antibody ipilimumab (RR 55%)
[77••] for patients with MSI-H, BRAFV600E metastatic CRC.
Therefore, immunotherapy is an attractive option with safety
and efficacy alike for those patients with MSI-H tumors and
coexisting BRAFV600E mutations.

Conclusions

Unique tumor biology specific to BRAFV600E colorectal tu-
mors generate a clinical phenotype vastly different to their
BRAFWT counterparts and cause hastened clinical deteriora-
tion and poor survival outcomes. That traditional agents for
metastatic CRC are futile from an efficacy standpoint in the
BRAFV600ECRC setting prompted preclinical efforts implicat-
ing activity from targeted therapies targetingMAPK signaling
drivers. Most recently, inhibitors of BRAF, EGFR, and MEK
have revolutionized how clinicians will approach BRAFV600E

metastatic CRC in the years to come. In doing so, the evolving

treatment of BRAFV600E CRC provides a real-life success sto-
ry of translational, bench-to-bedside science.
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