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Abstract
Purpose of Review Cardiac arrests constitute a leading cause of mortality in the adult population and cardiologists are often 
tasked with the management of patients following cardiac arrest either as a consultant or primary provider in the cardiac 
intensive care unit. Familiarity with evidence-based practice for post-cardiac arrest care is a requisite for optimizing outcomes 
in this highly morbid group. This review will highlight important concepts necessary to managing these patients.
Recent Findings Emerging evidence has further elucidated optimal care of post-arrest patients including timing for routine coronary 
angiography, utility of therapeutic hypothermia, permissive hypercapnia, and empiric aspiration pneumonia treatment.
Summary The complicated state of multi-organ failure following cardiac arrest needs to be carefully optimized by the clini-
cian to prevent further neurologic injury and promote systemic recovery. Future studies should be aimed at understanding if 
these findings extend to specific patient populations, especially those at the highest risk for poor outcomes.

Keywords Cardiac arrest · Intensive care unit · Targeted temperature management · Neuro-prognostication · Post arrest 
care · Outcomes

Introduction

The rising incidence of cardiac arrest (CA) contributes sub-
stantially to cardiovascular mortality and reduced quality of 
life [1, 2]. The American Heart Association (AHA) 2022 
Annual Update and Cardiac Arrest Registry to Enhance 
Survival (CARES) data report a surge in the annual inci-
dence of CA with reduced survival for out-of-hospital car-
diac arrests (OHCA) compared to pre-pandemic statistics 

[1, 3]. Understanding the pathophysiologic, metabolic, and 
reperfusion-injury cascades post-arrest is imperative to pro-
vide optimal care and improve survival. Cardiologists with 
or without critical care training are often engaged in the care 
of these complex patients as consultants or the primary care 
team. Early in-hospital care requires a knowledge of when and 
in whom revascularization and circulatory support strategies 
should be used, ventilation techniques, and therapies for multi-
system organ dysfunction. Additionally, the post-resuscitation 
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care continuum requires close neurological monitoring, tar-
geted temperature management, supportive care, and neuropro-
gnostication (Fig. 1). In this review, we explore evidence-based 
practices and multimodal perspectives in post-arrest cares in 
the intensive care unit (ICU).

Cardiovascular Specific Interventions

Timing of Coronary Angiography

Acute coronary syndrome (ACS) is a common etiology 
of CA, accounting for 59–71% of OHCA cases presenting 
with a shockable rhythm [3–7], and 30–35% of in-hospital 
cardiac arrest (IHCA) cases [8, 9]. The current guidelines 
recommend emergent coronary angiography (CAG) for 
OHCA with suspected cardiac etiology and ST-elevation 

myocardial infarction (STEMI), cardiogenic shock (CS), or 
recurrent arrhythmias. There is no delineation on timing of 
CAG among patients with non-ST segment elevation myo-
cardial infarction (NSTEMI) [10••, 11••, 12]. The likeli-
hood of coronary artery disease (CAD) increases up to 73% 
in patients with shockable refractory CA [13] potentially 
increasing the benefit of CAG regardless of EKG findings 
in this subgroup. Because serologic and echocardiographic 
markers of coronary ischemia may not be reliable immedi-
ately post-arrest [14, 15] and outcomes are heavily reliant on 
neurologic recovery [16•], predicting who will benefit from 
early CAG can be difficult. Several trials have compared a 
delayed (24–96 h or following neurologic recovery) versus 
an immediate (< 2 h) strategy for timing of CAG in patients 
without STEMI after OHCA with shockable [17–20] and 
non-shockable [18–20] rhythms. Neither these trials nor 
meta-analyses have shown a difference in outcomes with 

Fig. 1  Post Cardiac Arrest Care in the Cardiac ICU. Created with BioRe nder. com

https://www.BioRender.com/
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either strategy [17–22]. These findings can be reconciled 
with a non-emergent CAG strategy among OHCA survi-
vors without STEMI, evidence of post-arrest CS, or refrac-
tory/recurrent arrhythmias following resuscitation. A more 
nuanced assessment of ACS risk in conjunction with the 
use of early neuroprognostication scores may better iden-
tify those patients most likely to have neurologic recovery 
that would allow them to benefit from an early intervention 
approach (Table 1) [23].

Hemodynamic Management

Post-arrest hypotension and shock occurs in 50–70% of 
patients [24–26]. Hypotension and malperfusion are multi-
factorial, owing to a combination of acute myocardial injury, 
myocardial stunning, vascular dysfunction due to systemic 
inflammatory response, reperfusion injury, metabolic per-
turbations related to poor perfusion peri-arrest, trauma from 
cardiopulmonary resuscitation (CPR), and relative adrenal 
insufficiency. Laurent et al. described the hemodynamics 
associated with this combination of early myocardial stun-
ning paired with vasoplegia in great detail [27].

Post-arrest myocardial dysfunction or myocardial stun-
ning can occur in addition to or in the absence of myocardial 
ischemia and may be considered a form of stress-induced 
cardiomyopathy occurring in up to 69% of survivors of CA 
[28, 29]. Risk factors include the history of hypertension, 
prior myocardial infarction (MI), cardiac etiology of arrest, 
duration of resuscitation, repeated defibrillations, and higher 
cumulative epinephrine dose [30]. Post-arrest myocardial 
stunning and associated reduction in cardiac output (CO) 
may be completely reversible within 48–72 h following 
ROSC [27, 30]. Vasoplegia following global ischemia–rep-
erfusion injury can compound myocardial stunning. Eleva-
tion in cytokines including TNF-α and IL-6 [31], neutrophil 
activation, coagulation cascade activation, and translocation 
of endotoxins [32] leads to endothelial cell dysfunction, 
activation of inducible nitric oxide-synthase, and result-
ant vascular smooth muscle relaxation [33]. Lactic acidosis 
from poor end-organ perfusion and respiratory acidosis from 
hypoventilation during CA may result in reduced respon-
siveness to endogenous and exogenous catecholamines [34]. 
This sepsis-like state results in micro-circulatory failure and 
contributes to post-arrest hypotension [31]. In addition to 
cardiogenic and vasodilatory shock, Hékimian et al. reported 
that 42% of post-arrest patients have relative adrenal insuf-
ficiency [35] due to direct ischemic adrenal injury and/or 
inhibitory effects of circulating cytokines [36]. Despite 
relative adrenal insufficiency among these patients, there 
is conflicting data regarding the benefit of exogenous ster-
oids [37–40] and current guidelines do not recommend their 
routine use [10••].

Initial management of post-arrest shock begins with 
identifying the presence of cardiogenic and/or vasoplegic 
components. As with traditional septic shock, post-arrest 
vasoplegia is treated with fluid resuscitation and vasopres-
sors. There is little evidence comparing vasopressor agents 
for post-arrest patients; however, guidelines recommend nor-
epinephrine as a first-line agent [10••]. A recent observa-
tional comparing epinephrine and norepinephrine in patients 
with post-arrest shock found epinephrine administration was 
associated with higher all-cause mortality [41•]. When CS 
contributes to hemodynamic compromise, either in isolation 
or with vasoplegia, the addition of inotropes and temporary 
mechanical circulatory support (tMCS) may be warranted. 
Dobutamine’s inotropic properties mitigate left ventricular 
systolic and diastolic dysfunction that occurs as part of post-
arrest myocardial stunning [42] while milrinone has not been 
well studied in this population. Dobutamine having a shorter 
half-life is better suited for post-arrest management of CS 
where rapid uptitration is necessary, and as discussed later, 
renal failure is highly prevalent in this population making 
milrinone a less ideal agent as its excretion is highly depend-
ent on renal function [43, 44]. As a more established treat-
ment, dobutamine is the inotrope of choice per the European 
Resuscitation Council guidelines [10••].

Invasive Hemodynamic Monitoring Devices

The approach to hemodynamic monitoring varies based on 
institutional expertise. Given fluctuations in hemodynamics 
during the post-resuscitation period, patients often necessi-
tate invasive hemodynamic monitoring including peripheral 
arterial catheterization, central venous catheterization, arte-
rial pulse waveform analysis, and pulmonary artery cath-
eterization (PAC).

While PAC use has not specifically been studied follow-
ing CA, its use in the management of undifferentiated shock 
in ICUs and decompensated heart failure has not shown sig-
nificant differences in outcomes [45–47]. However, more 
recent data offers a nuanced view of the utility of the PAC in 
a modern cardiac ICU (CICU) [48, 49]. The use of PAC in 
patients following CA may provide nuanced hemodynamic 
profiling in mixed shock states as vasoplegia and myocardial 
dysfunction are often concomitant [29]; however, more data 
in this population is necessary.

Temporary Mechanical Circulatory Support

In patients where fluid resuscitation, vasopressor agents, and 
inotropes are not sufficient to maintain adequate perfusion, 
and treatable syndromes such as cardiac tamponade and pul-
monary embolus have been addressed, the addition of tMCS, 
including intra-aortic balloon pump (IABP), percutaneous 
ventricular assist device (VAD) (Impella©), or veno-arterial 



38 Current Cardiology Reports (2024) 26:35–49

Ta
bl

e 
1 

 V
al

id
at

ed
 se

ve
rit

y 
sc

or
es

 p
re

di
ct

iv
e 

of
 p

oo
r p

ro
gn

os
is

 fo
llo

w
in

g 
ca

rd
ia

c 
ar

re
st

R
is

k 
Sc

or
e

Po
pu

la
tio

n
Lo

ca
tio

n 
of

 a
rr

es
t

Sc
or

e 
va

ria
bl

es
/g

ra
de

s
O

ut
co

m
es

R
is

k 
of

 u
nf

av
or

ab
le

 o
ut

co
m

es

M
IR

A
C

LE
2 s

co
re

 [1
6•

]
K

in
g’

s O
ut

 o
f H

os
pi

ta
l C

ar
di

ac
 

A
rr

es
t R

eg
ist

ry
 (K

O
CA

R
)

O
H

CA
M

is
se

d 
(u

nw
itn

es
se

d 
ar

re
st)

In
iti

al
 n

on
-s

ho
ck

ab
le

 rh
yt

hm
N

on
-r

ea
ct

iv
ity

 o
f p

up
ils

A
ge

 >
 60

 o
r >

 80
C

ha
ng

in
g 

rh
yt

hm
s

Lo
w

 p
H

 <
 7.

20
Ep

in
ep

hr
in

e 
gi

ve
n

Pr
im

ar
y 

en
d-

po
in

t: 
Po

or
 n

eu
-

ro
lo

gi
ca

l o
ut

co
m

e 
at

 6
-m

on
th

 
fo

llo
w

-u
p 

(C
er

eb
ra

l P
er

fo
r-

m
an

ce
 C

at
eg

or
y 

3–
5)

Lo
w

 ri
sk

: 0
–2

M
ed

iu
m

 ri
sk

: 3
–4

H
ig

h 
ris

k:
 5

–1
0

Pi
tts

bu
rg

h 
C

ar
di

ac
 A

rr
es

t C
at

-
eg

or
y 

(P
CA

C
) [

13
0]

Tw
o 

te
rti

ar
y 

ca
re

 c
en

te
rs

; U
ni

-
ve

rs
ity

 o
f P

itt
sb

ur
gh

 M
ed

ic
al

 
C

en
te

r

IH
CA

 a
nd

 O
H

CA
G

ra
de

 1
: A

w
ak

e
G

ra
de

 2
: C

om
at

os
e,

 n
o 

ca
rd

io
-

pu
lm

on
ar

y 
fa

ilu
re

G
ra

de
 3

: C
om

at
os

e 
w

ith
 c

ar
di

o-
pu

lm
on

ar
y 

fa
ilu

re
G

ra
de

 4
: D

ee
p 

co
m

a +
 lo

ss
 o

f 
so

m
e 

br
ai

ns
te

m
 re

fle
xe

s

Pr
im

ar
y 

ou
tc

om
e:

 S
ur

vi
va

l t
o 

ho
sp

ita
l d

is
ch

ar
ge

Se
co

nd
ar

y 
ou

tc
om

e:
 C

PC
 a

nd
 

m
od

ifi
ed

 R
an

ki
n 

Sc
al

e 
(m

R
S)

 
at

 d
is

ch
ar

ge

4-
le

ve
l i

lln
es

s s
ev

er
ity

 sc
or

e 
as

 
de

sc
rib

ed

C
ar

di
ac

 A
rr

es
t H

os
pi

ta
l P

ro
gn

o-
si

s (
CA

H
P)

 [1
28

]
Su

dd
en

 D
ea

th
 E

xp
er

tis
e 

C
en

te
r 

re
gi

str
y,

 F
ra

nc
e

O
H

CA
A

ge
Lo

ca
tio

n 
of

 c
ar

di
ac

 a
rr

es
t

In
iti

al
 rh

yt
hm

D
ur

at
io

n 
fro

m
 c

ol
la

ps
e 

to
 b

as
ic

 
lif

e 
su

pp
or

t
D

ur
at

io
n 

fro
m

 C
PR

 to
 R

O
SC

To
ta

l E
pi

ne
ph

rin
e 

do
se

A
rte

ria
l p

H

Pr
im

ar
y 

ou
tc

om
e:

 P
oo

r n
eu

ro
-

lo
gi

ca
l o

ut
co

m
e 

de
fin

ed
 a

s 
C

PC
 3

–5
 a

t h
os

pi
ta

l d
is

ch
ar

ge

Lo
w

 ri
sk

: <
 15

0
M

od
er

at
e 

ris
k:

 1
50

–2
00

H
ig

h 
ris

k >
 20

0

O
ut

-o
f-

H
os

pi
ta

l C
ar

di
ac

 A
rr

es
t 

Sc
or

e 
[1

29
]

Fo
ur

 T
er

tia
ry

 C
ar

e 
C

en
te

rs
, 

Fr
an

ce
O

H
CA

In
iti

al
 rh

yt
hm

Es
tim

at
ed

 n
o-

flo
w

 a
nd

 lo
w

-fl
ow

 
in

te
rv

al
s

Se
ru

m
 la

ct
at

e 
at

 IC
U

 a
dm

is
si

on
C

re
at

in
in

e 
at

 IC
U

 a
dm

is
si

on

Pr
im

ar
y 

ou
tc

om
e:

 S
ur

vi
va

l w
ith

 
po

or
 n

eu
ro

lo
gi

ca
l o

ut
co

m
es

 
(C

PC
 3

–5
)

Pr
og

no
sti

c 
ca

te
go

rie
s

 >
 2.

0
 >

 17
.4

 >
 32

.5

Ta
rg

et
 te

m
pe

ra
tu

re
 m

an
ag

em
en

t 
ris

k 
sc

or
e 

[1
75

]
TT

M
 T

ria
l P

at
ie

nt
s

O
H

CA
A

ge
Lo

ca
tio

n 
of

 c
ar

di
ac

 a
rr

es
t (

ho
m

e 
or

 n
ot

)
Fi

rs
t m

on
ito

re
d 

rh
yt

hm
N

o 
flo

w
 a

nd
 lo

w
 fl

ow
 ti

m
e

Tr
ea

tm
en

t w
ith

 E
pi

ne
ph

rin
e

Pu
pi

lla
ry

 o
r c

or
ne

al
 re

fle
x

pH
 a

nd
 p

CO
2

G
C

S 
m

ot
or

 sc
or

e

N
eu

ro
lo

gi
ca

lly
 p

oo
r o

ut
co

m
e,

 
C

PC
 3

–5
 a

t 6
 m

on
th

s
Lo

w
 ri

sk
 >

 10
In

te
rm

ed
ia

te
 >

 13
H

ig
h 

ris
k >

 16



39Current Cardiology Reports (2024) 26:35–49 

extracorporeal membranous oxygenation (VA-ECMO), may 
effectively augment CO to reach hemodynamic goals [50••]. 
Device use and selection are based largely on the amount of 
cardiovascular support needed as well as provider and insti-
tutional access and expertise. In addition, device selection 
is patient specific, and patient characteristics may present 
contraindications to certain devices. For example, a prior 
mechanical aortic valve replacement or LV thrombus would 
preclude Impella© or significant aortic insufficiency will 
preclude the use of IABP and VA ECMO. More general 
recommendations regarding the decision to initiate tMCS, 
device selection, and how to escalate tMCS are available 
[50••]; however, few studies have evaluated the superior-
ity of one circulatory support device over another in the 
post-arrest setting. A retrospective study of patients from the 
PROCAT (Parisian Region Out of Hospital Cardiac Arrest) 
registry with post-arrest shock compared the use of IABP 
with Impella© and showed no difference in survival; how-
ever, patients supported with the Impella© trended towards 
higher rates of serious bleeding (26% versus 9%), albeit in 
the setting of therapeutic hypothermia (TH) [49].

VA-ECMO provides the highest level of cardiovascular and 
pulmonary support [51, 52]. There is conflicting data regard-
ing the efficacy of VA-ECMO as a salvage therapy in the set-
ting of ongoing refractory CA. With the promise of saving 
40–45% of patients with refractory shockable OHCA [53], 
there has been an increased use of VA-ECMO for extracorpor-
eal cardiopulmonary resuscitation (ECPR) [54]. The success-
ful implementation of ECPR depends on appropriate patient 
selection and dedicated centers with high levels of expertise 
[13, 55, 56]. Generally, patients who are placed on ECMO dur-
ing CA remain supported through the aforementioned cardiac 
stunning period until cardiac function improves.

Implantable Cardioverter Defibrillator

ICD implantation is recommended in patients following suc-
cessful resuscitation from VF or hemodynamically unsta-
ble VT without any completely reversible causes [57, 58]. 
Approximately, 55% of OHCA patients will have a reversible 
cause; most commonly MI (55–58%) or electrolyte abnor-
malities (10–20%) [59, 60], and do not necessarily require 
an ICD. Despite addressing reversible causes, some patients 
continue to have ventricular arrhythmias. If these tachyar-
rhythmias continue > 48 h following an MI in the absence 
of ongoing ischemia [61] patients are at an increased risk 
of death compared to those with ventricular tachyarrhyth-
mia < 48 h following MI (HR 20.7 versus 7.45) [62] requir-
ing consideration of ICDs. Current guidelines do not address 
ICD implantation in post-arrest survivors with reversible 
causes but persistent arrhythmia after > 48 h [10••, 11••].

Ventilatory Management

Pulmonary complications are common after CA and have 
a variety of etiologies including cardiogenic pulmonary 
edema, aspiration pneumonitis, ischemia–reperfusion injury, 
acute respiratory distress syndrome (ARDS), atelectasis, 
pneumonia, pulmonary contusion from cardiac compres-
sions, and ventilator-associated lung injuries [63]. In this set-
ting, lung protective mechanical ventilation is necessary for 
the optimization of lung mechanics, while simultaneously 
avoiding hyperoxemic free radical production and amelio-
rating acid–base disturbances to improve the homeostatic 
milieu for neurologically favorable survival [64].

Tidal Volume

Mechanical ventilation strategies are particularly important 
post-arrest due to the complex interplay between positive 
pressure ventilation and intra-thoracic hemodynamics as well 
as right and left ventricular preload and afterload [65]. The 
majority of CA patients are supported with lung protective 
ventilation settings, including low tidal volumes  (VT), and 
minimizing driving and plateau pressures  (PPLAT) [66]. Cur-
rent evidence in post-arrest patients without ARDS is limited 
with variable findings. The Protective Ventilation in Patients 
without ARDS (PReVENT) trial randomized patients who 
received invasive ventilation for indications other than ARDS 
and comprised nearly 25% of CA patients (N = 230). Low  VT 
strategy, 4–6 mL/kg predicted body weight (PBW), did not 
result in a difference in number of ventilator-free days or 
mortality at 28 days compared to an intermediate  VT strat-
egy, 10 mL/kg PBW, decreasing by 1 mL/kg PBW per hour 
if  PPLAT > 25  cmH2O [67]. However, observational studies 
and retrospective reviews have shown that lower  VT (≤ 8 mL/
kg PBW) is associated with favorable neurological outcomes 
and more ventilator-free days among OHCA patients [68, 69]. 
Current expert consensus for post-arrest patients suggests  VT 
between 6 and 8 mL/kg PBW is reasonable [10••] with a 
primary  CO2 goal of normocarbia  (PaCO2 35–45 mmHg) and 
avoidance of hypo or hypercarbia [64].

Positive End‑expiratory Pressure (PEEP)

PEEP is the positive pressure that remains in the airway at 
the end of the respiratory cycle and has important therapeu-
tic implications following CA. Inadequate PEEP increases 
the risk of atelectasis [70] while excessive PEEP increases 
intrathoracic pressure causing an unwanted decrease in right 
ventricular venous return. In addition, PEEP has a compli-
cated relationship with RV afterload and LV hemodynamics 
that can result in a dramatic reduction in CO and hemo-
dynamic collapse. The net effect of PEEP on ventricular 
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function and CO is unique to each patient and their pathol-
ogy. Alviar et al. illustrate the principles governing these 
interactions well in their article published in JACC in 2018 
[65]. In a recent sub-analysis of the TTM2 trial comprising 
1848 post-arrest patients, PEEP alone was not an independ-
ent predictor of mortality in OHCA [71].

Plateau and Driving Pressure

PPLAT and driving pressure (ΔP) reflect end-inspiratory 
small airway pressure when there is no air movement and 
distending pressure of the lungs as measured as the differ-
ence between  PPLAT or and PEEP. Excessive  PPLAT or ΔP has 
been correlated with barotrauma and ventilator-associated 
lung injuries [72•, 73]. Changes in VT directly affect  PPLAT 
and ΔP, where direction and magnitude are dependent on 
underlying static compliance of the lung [74]. High ΔP 
has been independently associated with 6-month mortality 
among patients after CA [71]. Mechanical power (MP) is 
a measure of energy transferred from the ventilator to the 
respiratory system per unit time, computed by minute ven-
tilation, inspiratory flow, peak airway pressure, and PEEP 
[75, 76]. High MP has independently been associated with 
higher ICU and hospital mortality, fewer ventilator-free 
days, and longer ICU and hospital length of stay [77]. Addi-
tionally, high MP has shown to be an independent predictor 
of 6-month mortality in patients following CA [71].

Neurologic Support: Preventing Secondary 
Brain Injury

Neurologic injury is the largest contributor to mortality and 
poor neurologic outcomes in patients after CA [25]. As care for 
patients who have suffered CA has improved, our understand-
ing of primary and secondary brain injury has increased.

Primary brain injury occurs following cessation of cer-
ebral blood flow (CBF) due to depletion of neuronal glu-
cose and oxygen delivery. Anaerobic respiration causes 
mitochondrial dysfunction, reactive oxygen species (ROS) 
formation, ATP depletion, and intracellular  Ca2+ accumula-
tion. These processes lead to widespread cellular damage, 
loss of cell polarity integrity, cytotoxic edema, and pro-
grammed cell death.  Ca2+ release causes the release of the 
glutamate resulting in neuronal excitotoxicity and further 
injury [78–80] Secondary brain injury occurs after restora-
tion of CBF with return of spontaneous circulation (ROSC). 
Immediately after ROSC, CBF is characterized by early 
relative hyperemia followed by hypoperfusion resulting in 
endothelial dysfunction and microcirculatory abnormalities 
[78, 80, 81]. Additionally, cerebral autoregulation becomes 
significantly impaired post-arrest, leading to instability in 
CBF susceptible to fluctuations in MAP and  CO2 [82, 83]. 

Compounding the ischemic injury, endothelial dysfunc-
tion caused by cytotoxic damage leads to microthombi and 
increased cellular permeability worsening cerebral edema 
[78]. The goal of post-arrest neurologic care is to minimize 
secondary brain injury.

Mean Arterial Pressure Goals

Optimal blood pressure targets in this population are 
unknown; however, they may be of particular importance 
to ensure adequate CBF in the setting of abnormal cer-
ebral autoregulation and cerebral edema that occurs after 
anoxic brain injury [84••]. Guidelines recommend avoid-
ing hypotension, SBP < 90 mmHg, or mean arterial pres-
sures (MAP) < 65 mmHg, but lack specific MAP targets. 
Some have hypothesized MAP targets > 80 mmHg may 
improve cerebral perfusion [85]; however, the Neuropro-
tect trial randomized 112 OHCA patients to “early goal-
directed hemodynamic optimization” (EGDO) defined as 
MAP 85–100 mmHg and SvO2 65–75% versus MAP of 
65 mmHg. The EGDO group showed improved estimates 
of cerebral perfusion and oxygenation but failed to reduce 
anoxic brain injury on MRI or improve neurologic outcomes 
when compared to the standard-of-care group [86]. Simi-
larly, the BOX trial evaluated MAP targets of 63 mmHg 
versus 77 mmHg in comatose adults after OHCA and noted 
no difference between the groups for all-cause death, severe 
neurological disability, or coma [84••]. This suggests that 
at a population level, elevated MAP goals do not improve 
outcomes; however, there are ongoing studies to identify 
patients who may benefit from higher MAP goals [87]. Gen-
erally, hemodynamics should be maintained to optimize end-
organ perfusion as demonstrated by urine output > 0.5 mL/
kg/h and normal or decreasing lactate [10••, 11••].

Therapeutic Hypothermia and Targeted 
Temperature Management

TH has been theorized to mitigate secondary brain injury 
with several experimental models and early human studies 
suggesting improved neurologic outcomes [88–92]. How-
ever, these results have not translated to large randomized 
human studies. The Targeted Temperature Management 
(TTM) and TTM2 trials showed no difference in all-cause 
mortality when comparing TH (32-34°C) versus normo-
thermia (36–37.5°C) for 28 h following ROSC [93, 94••] 
(Table 2). Hyperthermia is associated with worse neurologic 
injury following CA [95, 96]. As such, avoidance of hyper-
thermia has been considered a standard of practice; however, 
the optimal duration of strict fever avoidance is unknown 
[97–100]. Hassanger et al. investigated the role of device-
based hyperthermia prevention for 24 h versus 72 h. Their 
randomized control trial (RCT) of 393 patients showed no 
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difference in mortality or severe disability/coma between 
the groups (33.6% versus 32.3%) [101]. The guidelines syn-
thesize this data by advocating for TTM with a target tem-
perature of 32 to 36 °C for at least 24 h followed by fever 
prevention for at least 72 h though adjudication with TTM 
trial data is expected in future iterations [10••, 11••].

Oxygenation and Ventilation Targets

Post-arrest oxygen targets balance the deleterious effects of 
tissue hypoxia and reperfusion-related oxygen-derived free 
radicals. Observational evidence demonstrates higher in-hos-
pital mortality among OHCA patients with hypoxemia (par-
tial pressure of arterial oxygen; PaO2 < 60 mmHg) related to 
organ tissue hypoxia and hyperoxemia (PaO2 > 300 mmHg) 
within 24 h following ROSC [102, 103]. In the BOX trial, 
Schmidt et al. observed similar composite outcomes of death 
and severe disability/coma, among patients who were treated 
with restrictive oxygen target (PaO2 68–75 mmHg) after 
ROSC versus liberal oxygen targets (PaO2 98–105 mmHg) 
[104••]. Current guidelines recommend a 100% fraction 
of inspired oxygen (FiO2) initially followed by titration to 
SpO2 94–98% or a PaO2 75–100 mmHg after reliable pulse 
oximetry or blood gas values are available [10••, 11••].

Partial pressure of arterial carbon dioxide  (PaCO2) is a 
key determinant of cerebral hemodynamics [105]. Acute 
hypocapnia induces cerebral vasoconstriction, a rise in cer-
ebral vascular resistance, and a fall in cerebral perfusion 
[105]. In contrast, an acute rise in  PaCO2 induces the oppo-
site effect with increased blood flow to the brain increasing 
the total intracranial volume potentially exacerbating cer-
ebral edema’s compressive effects [106, 107]. The TAME 
trial, a large RCT, showed that targeted mild hypercapnia 
(PaCO2 50–55 mmHg) did not lead to better neurologic 
outcomes compared to targeted normocapnia in OHCA 
patients [108••]. A meta-analysis by McKenzie et al. sug-
gested both hyper and hypocarbia were associated with an 
increased mortality compared to normocarbia in post-arrest 
patients [109].

Sedation

Sedation selection post-arrest has not been well studied. 
Guidelines recommend short-acting sedatives and analge-
sics to not interfere with neuroprognostication [10••, 64]. 
Ketamine has been described as neuroprotective through its 
action as an NMDA receptor antagonist [110–113]. It may 
be useful in preventing secondary brain injury driven by 
the upregulation of NMDA receptors, increased intracellular 
 Ca2+, ROS production, and activation of programmed cell 
death. Several small preclinical studies have shown promise 
[110, 114]; however, no human trials have investigated this 
potential mechanism.

Neuroprognostication

Neuroprognostication is a challenge for clinicians and a 
dynamic process requiring frequent evaluation and multiple 
testing modalities. Prognostication should be delayed at least 
72 h post ROSC and rewarming if TH is used and residual 
sedation and metabolic abnormalities should have resolved 
[115••]. Persistent coma 72 h post-arrest does not necessar-
ily equate with poor neurologic prognosis. About 10–22% 
of patients will awaken after 72 h post-arrest [116–121]; 
with case reports of awakenings after 2 and even 4 weeks 
[121–127]. While survival with neurologically favorable 
outcomes remains modest in the post-arrest population [1, 
3], a meticulous understanding of neuroprognostication may 
help prevent premature withdrawal of life-sustaining treat-
ment in patients who may go on to have a favorable recovery.

Many factors determine the extent of brain injury including 
time without CPR, time to first responder, length and quality 
of CPR, comorbid conditions, baseline neurologic function, 
and post-arrest care during the vulnerable period for second-
ary brain injury. Many scores have been developed to quantify 
initial risk which include the CAHP, OHCA, MIRACLE2, and 
PCAC scores (Table 1) [23, 128–130]. Patients with catastrophic 
brain injury or signs of neurologic recovery may declare them-
selves early with catastrophic findings on head imaging such as 
herniation and/or wakefulness respectively. Thus, the goal of 
neuroprognostic tools focuses on those indeterminate comatose 
patients without a clear neurologic trajectory.

Neurologic Examination

The neurologic exam remains one of the most useful tools 
for patients following resuscitation and a daily exam is rec-
ommended [10••]. The level of consciousness, pupillary and 
ocular findings, best motor response, and myoclonus are 
clinical exam features used in prognostication post-arrest.

Bilaterally absent pupillary light response at least 72 h 
following ROSC and rewarming, if applicable, portends 
poor neurologic outcomes. Bilateral absence of the corneal 
reflex at 72 h is less specific and should not be considered a 
reliable predictor of outcome due to the high false positive 
rate [115••]. Similarly, 72 h after ROSC, an absence of the 
ability to follow commands or extension response should not 
be considered a reliable predictor of poor outcome [115••].

Myoclonus is the sudden and involuntary contraction of 
muscle frequently seen in ICU patients [131]. In post-arrest 
patients, it was once thought to be a sign of extremely poor 
neurologic outcomes [132, 133]. However, it is now clear 
this is not the case [134], and myoclonus is not a reliable 
predictor of poor outcomes [115••]. Status myoclonus, a 
similar but sustained entity, is defined as spontaneous repeti-
tive generalized multifocal myoclonus in comatose patients 
lasting ≥ 30 min within 72 h of CA involving the face, limbs, 
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and axial musculature and has traditionally been associated 
with a poor prognosis [133]. Electroencephalography (EEG) 
may be able to help identify salvageable subgroups with 
early or status myoclonus [135].

Neuroimaging

Shortly (< 2 h) after ROSC, a computer tomography (CT) 
may be obtained to assess for a neurologic etiology of the 
arrest and signs of catastrophic neurologic injury [11••]; 
however, early scans are often too soon to see ischemic 
changes from anoxic injury. Guidelines recommend imaging 
within 72 h to assess for brain edema which can be quanti-
fied with the ratio of the density of the grey matter and the 
white matter at pre-specified locations [136, 137]. A dif-
fuse pattern of loss of grey-white differentiation with sulcal 
effacement at least 48 h from ROSC is a moderately reliable 
predictor of poor outcome [115••].

Similarly, MRI studies can detect neuronal cytotoxic 
edema. Hyperintensities on diffusion-weighted images 
(DWI) days 2–7 after ROSC are a moderately reliable pre-
dictor of poor outcomes [115••]; however, this modality is 
limited by conditions such as hyperammonemia, seizures, 
and status epilepticus as these can also cause cytotoxic 
edema and DWI hyperintensity [115••].

Electroencephalography

EEG is recommended in all post-arrest patients [10••, 
11••, 138]. EEG suppression (background voltage < 10 µV 
[139]) and burst suppression pattern have been classified 
as “highly malignant” at 72 h following CA with high 
specificity (100%) for poor neurologic outcomes but 
lacked sensitivity (50%) [115••, 140]. The presence of 
status epilepticus and status myoclonus are no longer 
invariably associated with poor outcomes [115••]. EEG 
tracings must be interpreted in the absence of confound-
ers such as hypothermia, ongoing sedation, and metabolic 
derangements.

Seizures are common in survivors of CA occurring 
in 10–35% of this population [64, 78, 141]. Aggressive 
treatment of seizures based on current practice guide-
lines [142] is recommended [10••]. The TELSTAR trial 
showed that suppressing rhythmic and periodic EEG 
activity (non-seizure activity) with the use of anti-sei-
zure medication in survivors of CA showed no benefit 
[143].

Somatosensory Evoked Potential (SSEP)

SSEP testing is a recommended neurophysiologic study used 
to neuroprognosticate following CA [10••, 11••, 113]. SSEPs 

assess the afferent functionality of thalamocortical connec-
tions in comatose patients. At least 48 h after ROSC bilateral 
absence of the cortical response with preservation of the cervi-
cal spine response is associated with poor outcome with high 
specificity and variable sensitivities [115••].

Serum Biomarkers of Neurologic Injury

Several biomarkers have been shown to be markers for severe 
neuronal injury and poor neurologic outcomes [144]. Neu-
ron-specific enolase (NSE), from neurons and glial cells, and 
s-100B, from astrocytes, are the only serum biomarkers given 
a recommendation in published guidelines [10••]. Both are 
structural proteins released in the setting of hypoxic brain 
injury. NSE has delayed release following injury thus pre-
senting levels can be normal despite severe injury. Levels at 
24 h have the highest specificity for poor neurologic outcomes 
[145]. Several studies have shown that serial measurements at 
48 h and 72 h can be even better predictors and an increase of 
NSE between any two time points being associated with poor 
outcomes. On the contrary, patients with decreasing levels of 
NSE at 48 h are more likely to have a good neurologic recov-
ery [144–146]. The ERC/ESICM 2021 guidelines state an 
NSE > 60 µg/L at 48 h may be associated with poor neurologic 
outcomes [10••]; while the other guidelines caution against the 
use of NSE alone, describing it as an unreliable predictor of 
functional outcome owing to the inconsistency of its predictive 
value related to various and unclear thresholds [11••, 113].

Multimodal Approach

Neuroprognostication is challenging for clinicians and requires 
a pragmatic approach. Guidelines strongly recommend a mul-
timodal approach as no single test has sufficient positive pre-
dictive value [10••]. This approach includes a combination of 
clinical exams, neuroimaging, neurophysiological (EEG and 
SSEP), and biomarker data. This data should be interpreted 
with assistance from experienced providers familiar with rec-
ommended testing modalities.

Other Supportive Measures

Empiric Antibiotic Use

While bacteremia may be common (13–38%) [147, 148], 
empiric antibiotic use in this setting is not well understood. 
Pneumonia is even more common occurring in up to 61% 
of patients [148, 149]. Several RCTs and meta-analyses 
indicate that the use of prophylactic antibiotics in post-
arrest patients does not significantly reduce the length of 
ICU stay or overall mortality rate [150–152]. However, an 
empiric 2-day course of amoxicillin-clavulanate decreases 
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the incidence of early-onset pneumonia in OHCA patients 
treated with TH, presumably related to aspiration events 
during the CA [150, 151]. While the 2015 AHA guidelines 
do not comment on prophylactic antibiotic use, the ERC/
ESICM 2021 guidelines advise against them [10••].

Nutrition

There is scarce data regarding the optimal timing of nutri-
tion initiation in post-arrest patients. Post-resuscitation care 
including the use of vasopressors and TH if applicable may 
lead to hypo-perfusion and ischemia of the gastrointestinal 
system [153, 154]. Furthermore, TH can result in decreased 
absorption and peristalsis leading to increased gastric resid-
uals and aspiration [155]. On the other hand, early initia-
tion of feeding (within 24 h to 72 h) in general critically ill 
patients is associated with decreased mortality, decreased 
infection, and favorable outcomes [156–159]. In the post-
arrest population specifically, studies have shown conflict-
ing results regarding the superiority of early (< 48 h after 
admission to the ICU) versus delayed (> 48 h after admis-
sion to the ICU) feeding in patients treated with TH [160, 
161]. The guidelines recommend starting enteral trophic 
feeding during TH and increasing the rate after rewarming 
if TH is implemented [10••].

Renal Replacement Therapy (RRT)

Acute kidney injury (AKI) occurs in more than 45% of 
patients after CA and at least a third of these patients 
require RRT [162, 163]. AKI has been associated with 
an increased risk of mortality; however, the relation-
ship between RRT and mortality post-arrest is not as 
clear [164–168]. Risk factors for AKI post-arrest include 
increased age, poor baseline renal function, increased 
resuscitation time, OHCA outside the public setting, ini-
tial non-shockable rhythm, and post-resuscitation shock. 
Currently, there are no specific guidelines regarding the 
timing of RRT post-arrest and general indications apply. 
Notably, renal recovery occurs in most survivors [166].

Usual ICU Care

Best practices in general intensive care management should be 
used, including deep venous thrombosis and stress ulcer prophy-
laxis [10••, 169, 170]. Optimum blood glucose concentration 
is unknown in the post-arrest period, but strict glucose control 
(72–108 mg/dL) has no survival benefit and may be harmful sec-
ondary to hypoglycemia [171]. Guidelines have recommended a 
target glucose level of 140–180 mg/dL [10••, 11••, 172].

Conclusion

Research in post-arrest care and our understanding of ideal 
management to promote neurologic recovery continues to 
grow yet much work remains. As our understanding of these 
complex patients continues to deepen, it is imperative that 
cardiologists engage in multidisciplinary team approaches 
to patient care and remain vigilant to their commitment 
to evidence-based practices and contributing to research 
endeavors that advance the field.
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