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Abstract
Purpose of Review  Cardiovascular diseases are the leading cause of mortality globally. Identifying patients at risk is impor-
tant to initiate preventive strategies. Over the last few decades, the role of the endothelium and its impact on arterial stiffness 
have been recognised as playing a pivotal role in cardiovascular disease. This review will focus on the effect of arterial stiff-
ness in different patient cohorts with regard to cardiovascular morbidity and mortality, as well as its use in clinical practice.
Recent Findings  Arterial stiffness is associated with a range of cardiovascular risk factors and is an independent predictor 
of cardiovascular mortality. The gold standard for evaluating arterial stiffness is pulse wave velocity. Recently, cardio-ankle 
vascular index has been implemented as an easy and highly reproducible measure of arterial stiffness. Moreover, certain 
pharmacologic agents may modify arterial stiffness and alter progression of cardiovascular disease.
Summary  The endothelium plays an important role in cardiovascular disease. Implementing assessment of arterial stiffness in 
clinical practice will improve stratification of patients at risk of cardiovascular disease and help modify disease progression.

Keywords  Arterial stiffness · Cardiovascular disease · Cardio-ankle vascular index · Pulse wave velocity · Hypertension · 
Cardiovascular risk assessment

Introduction

Cardiovascular diseases (CVD) are the leading cause of 
mortality globally [1]. Risk factor identification is use-
ful to stratify patients at risk for the development of CVD 
and initiate therapy. However, this has proven insufficient 
to limit CVD, and hence more precise stratification of CV 
risk is needed. In fact, the lack of a unifying hypothesis 
that explains all aspects of the initiation and progression of 
atherosclerosis has limited definitive therapy. This, in turn, 
has led to raised interest in the role of the endothelium and 
its impact on arterial stiffness.

Endothelial dysfunction has been recognised as the 
first phase in the development of atherosclerosis. There 

is progressive modification of the structure and function 
of the vascular system due to a variety of CV risk factors, 
especially hypertension, in the initial phases of atheroscle-
rosis. Hypertension is a major modifiable CV risk factor, 
and a remodelling process of the vasculature is especially 
prominent with progressive elevation of systolic and dias-
tolic pressure, which predate clinically identifiable athero-
sclerosis [1, 2]. This includes hypertrophy and hyperplasia 
of smooth muscle cells within the vascular tree. Moreover, 
the continuous deposition of a variety of proteins, including 
collagen, together with progressive loss of the elastic matrix 
result in arterial stiffening. The latter is exacerbated by pro-
gressive deposition of calcium within the vascular smooth 
muscle cells; this occurs with aging but is further amplified 
in hypertensive patients with end-organ damage [3]. Fur-
thermore, the reduction in the ability of the arterial tree to 
dilate is a significant factor in the initiation and progression 
of hypertension, thus creating a vicious cycle with structural 
modification of the resistance and capacitance vessels that 
may subsequently become fixed, resulting in a progressive 
reduction of vascular compliance.

Arterial stiffness may be assessed by a variety of meth-
ods, e.g. pulse wave velocity, that provide reproducible 
measurements. These have been demonstrated to be predic-
tive of subsequent coronary events and may improve CV 

 *	 Rachel Anne Xuereb 
	 rachel-anne.xuereb@gov.mt

	 Caroline J. Magri 
	 caroline-jane.magri@gov.mt

	 Robert G. Xuereb 
	 robert-g.xuereb@gov.mt

1	 Department of Cardiology, Mater Dei Hospital, Msida, 
Malta

2	 University of Malta, Msida, Malta

http://crossmark.crossref.org/dialog/?doi=10.1007/s11886-023-01951-1&domain=pdf
http://orcid.org/0009-0006-7731-6814


1338	 Current Cardiology Reports (2023) 25:1337–1349

1 3

risk stratification and therapy in high-risk individuals [4, 5]. 
Additionally, modification of arterial stiffness could provide 
a therapeutic target for intervention to potentially reduce 
CV events. This review will focus on the underlying patho-
physiology, will give a brief outline of available methods to 
quantitate arterial stiffness and consequently discuss factors 
that alter the progression of vascular changes. These provide 
prognostic insight regarding the role of arterial stiffness as 
an emerging risk factor for the development of CVD and 
enhance its implementation in routine clinical practice.

Pathophysiology

The arterial walls are composed of three layers; the tunica 
intima, tunica media and tunica adventitia (Fig. 1). During 
aging and arterial stiffening, the relatively soft inner elastic 
membrane degrades, and the tunica intima thickens due to 
the increased deposition of extracellular membrane (ECM) 
proteins in the basement membrane [6]. On the other hand, 
the vascular smooth muscles of the tunica media switch 
from a contractile phenotype to a proliferative phenotype 
during arterial stiffening and increase the production of 
ECM, mainly collagen I and III. This increase in collagen 
fibre deposition increases the overall thickness and stiffness 
of the media during ageing [6]. In the tunica adventitia, 
fibrillar collagens and proteoglycans are abundant in the 

healthy arteries, but during atherogenesis, they contribute 
to the pathological retention of lipids in the vessel wall. 
Furthermore, in atherosclerotic plaques, the intima and/or 
media undergo calcification, which further contributes to 
arterial stiffening [6].

The distensibility of a healthy artery at physiological 
pressures is due to the intrinsic distensibility of the ves-
sel’s elastin and collagen fibre. With increasing pressure, 
the artery distends. However, the pressure and diameter 
changes are not linear [7]. Arterial stiffness, defined as the 
change in pressure/change in diameter, gradually increases 
with increasing pressure. On the other hand, distensibility 
decreases with increasing pressure. Collagen fibres are pro-
gressively recruited with increasing pressure levels, explain-
ing the pronounced nonlinearity in the mechanical response 
of an artery when subjected to increasing pressure, with 
progressive stiffening of the artery [8]. The estimated half-
life of elastin is 40 to 50 years [9••]. As a result, large arter-
ies are naturally predisposed to stiffening with increasing 
age. As these arteries gradually lose their low-stretch elastin 
component, load is transferred to collagen, which has greater 
stiffness. These changes result in inability of large arteries to 
expand and to increase blood flow in diastole [10].

Endothelial dysfunction plays a pivotal role in the 
initiation of arterial stiffness, as depicted in Fig. 2 [6]. 
Almost all conventional risk factors for atherosclero-
sis are associated with endothelial dysfunction including 

Fig. 1   Layers of the arterial wall: tunica intima, tunica media and 
tunica adventitia layer. These layers are separated by the internal and 
external elastic membranes respectively. The tunica intima consists 
of the endothelium and a thin subendothelial layer of extracellular 
matrix (ECM), called the basement membrane. The basement mem-
brane is composed of ECM proteins, such as laminins and collagen 
IV. The tunica media is comprised of multiple layers of vascular 
smooth muscle cells and ECM. The ECM consists of elastin sheets 

and collagen fibres. Elastin contributes to the elastic properties of 
the blood vessel, whereas collagen fibres determine the expansibility 
of the blood vessel. The vascular smooth muscle cells control blood 
vessel contraction and alter vessel diameter, blood flow and arterial 
tone. The tunica adventitia contains a variety of cell types, including 
immune cells and fibroblasts. The ECM of the adventitia consists of 
fibrillar collagens and proteoglycans that contribute to the compress-
ibility of the vessel wall
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hypercholesterolaemia, increasing age [11–15], smoking 
[16••, 17], hypertension [18••, 19], type 2 diabetes mel-
litus (T2DM) and obesity [20–22]. Endothelial dysfunc-
tion is associated with decreased production of nitric oxide 
(NO); the latter plays a major role in regulating the tone of 
blood vessels by being the major vasodilator produced by 
the endothelium. NO acts to negate the actions of endothe-
lium-derived contracting factors such as angiotensin II and 
endothelin-1. Moreover, NO inhibits platelet and white cell 
activation and maintains the vascular smooth muscle in a 
non-proliferative state. Therefore, reduced production of NO 
results in reduced vasorelaxation, activation of the coagula-
tion and inflammation cascades and oxidative stress [23, 24], 
thus leading to the initiation and clinical manifestations of 
atherosclerosis [25]. Endothelial dysfunction causes contrac-
tion of vascular muscle cells, resulting in increased arterial 
stiffness [26–28].

Measurement of Arterial Stiffness

Advances in biomedical engineering have established non-
invasive and reproducible methods for assessment of arterial 
stiffness. To date, measurement of arterial stiffness remains 
for the most part a research tool that has not entered routine 
clinical practice. However, growing evidence of clinical 

value and further advances in technology will likely involve 
measurement and interpretation of arterial stiffness in clini-
cal care in the near future [29]. Techniques that have been 
used to assess aortic stiffness include point measurements, 
like magnetic resonance or ultrasound-derived distensibility, 
regional measures such as transit time pulse wave veloc-
ity (PWV) and indirect measures derived from analysis of 
features of pressure waveforms recorded in the arm using 
a standard blood pressure cuff. There are advantages and 
disadvantages of each technique; however, carotid femoral 
PWV and conventional pulse pressure are the best studied 
and have the strongest evidence supporting clinical value 
[29]. Furthermore, carotid femoral PWV is often cited as 
the gold standard measure of aortic stiffness [29]. Methods 
of assessment of arterial stiffness are outlined in Table 1. 
Studies demonstrating the impact of arterial stiffness on car-
diovascular health will be discussed below.

Pulse pressure and arterial stiffness are strongly corre-
lated because age-associated vascular calcification and elas-
tin breakdown leads to arterial stiffening, which results in 
larger forward wave amplitude, earlier reflected wave arrival 
and a greater pulse pressure [30]. Although not a direct 
measure of arterial stiffness, pulse pressure is often used 
as a surrogate marker of arterial compliance. Interestingly, 
data from the Framingham Study suggested that a wide pulse 
pressure is a major risk factor of coronary heart disease [31]. 

Fig.2   The pathophysiology underlying endothelial dysfunction and atherosclerosis
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Furthermore, this data demonstrated that the measurement 
of aortic pulse pressure appears to be an independent marker 
of CV risk in elderly subjects and those with end-stage renal 
disease (ESRD) and is more predictive of arterial stiffness 
than peripheral pulse pressure [32, 33].

Ambulatory arterial stiffness index (AASI) is a measure 
derived from a 24-h ambulatory blood pressure monitoring 
and has also been shown to be an independent predictor of CV 
mortality, especially in normotensive patients and is actually 
more accurate than pulse pressure [35]. Moreover, it has been 
shown to be a better predictor of stroke than cardiac mortality 
[35]. Nonetheless, more studies are needed to support the use 
of AASI as a therapeutic target in clinical practice.

Augmentation index is a readily available indirect esti-
mate of arterial stiffness. Augmentation index predicts the 
presence of CAD [41]. Of note, in a 2-year follow-up study 
of patients undergoing percutaneous coronary intervention, 
increased augmentation index was independently associated 
with an increased risk for death, myocardial infarction and 
restenosis [42]. Moreover, it has been shown to be predictive 
of CV and all-cause mortality in patients with ESRD [43].

The gold standard for evaluating arterial stiffness is 
by carotid-femoral PWV [44, 45]. This is the velocity at 
which the arterial pulse propagates along the arterial wall. 
PWV varies with blood pressure. PWV increases with pres-
sure for two reasons; firstly, arterial compliance decreases 
with increasing pressure due to the curvilinear relationship 
between arterial pressure and volume. Secondly, volume 
increases with increasing pressure (as the artery dilates), 
directly increasing PWV. Therefore, PWV is proportional 
to arterial stiffness and inversely proportional to arterial 
compliance. In clinical practice, PWV is most commonly 
calculated as PWV = ΔL/ΔT, where ΔL is the distance 
between two sites and ΔT is the time taken for the arterial 
pulse to travel from the proximal to the distal measuring site 
[46]. As the aorta is the major vessel, aortic PWV is likely  
to represent the most accurate measurement. However, the 
most feasible, non-invasive method is the carotid-femoral 
PWV [47]. First, the arterial pulse wave is recorded through 
a tonometer applied on the skin surface from the carotid and 
femoral sites sequentially. The time delay between carotid 
and femoral waves is then calculated by comparing the 
two recordings with a continuous ECG tracing. The length 
between the recording points must be measured. The tran-
sit time is usually measured as the time between the start 
of the upward stroke of the pulse wave at the two measur-
ing points. The rapidity of the transmission of the pressure 
wave is increased in stiffer vessels. Carotid femoral PWV 
is reliable due to the large body of evidence demonstrating 
its association with incident CV disease independently of 
traditional risk factors and in various populations. Therefore,  
it is the gold standard method to measure arterial stiffness  
[48, 49•]. Addition of carotid-femoral PWV to standard  

Framingham risk factors in the group at intermediate risk 
improved classification of those who experienced a CVD 
event in a 10-year follow-up period by 13%, thus suggesting 
that increased aortic stiffness, as assessed by carotid-femoral 
PWV, is a true risk factor, rather than just a marker of risk 
for CVD [50•]. Furthermore, a single assessment can pro-
vide important information regarding blood pressure (BP) 
progression and susceptibility to end-organ damage. This is 
useful in patients at intermediate CVD risk, including those  
with borderline hypertension [49•].

β is another measure of arterial stiffness. Stiffness param-
eter β has been shown to predict coronary atherosclerosis 
[51–53]. Recently, β has been applied to develop a new arte-
rial stiffness index, the cardio-ankle vascular index (CAVI) 
[54]. CAVI is easy to measure and highly reproducible. 
Moreover, it is independent of BP at the time of measure-
ment [55]. CAVI increases with age and is higher in males 
compared to females [56]. Studies have shown that CAVI 
is significantly related to coronary artery disease (CAD), 
cerebral infarction, carotid atherosclerosis, chronic kid-
ney disease and factors linked to atherosclerosis including 
hypertension, diabetes mellitus, dyslipidaemia, smoking and 
metabolic syndrome [57–60]. Furthermore, weight loss is 
associated with CAVI reduction [57]. The main advantages 
of CAVI include BP independence at the time of measure-
ment, inclusion of the ascending aorta in the area of meas-
urement and hence arterial function that might have a closer 
relationship to cardiac function, relative simplicity of the test 
and low cost [57]. CAVI provides additional information in 
comparison to traditional risk factors [58], and in view of its 
ease in measurement, it could be applied to clinical practice 
as a new independent risk factor for outcomes in CVD [58]. 
This will be discussed in further detail hereunder.

Arterial Stiffness and CV Risk

Arterial stiffness is associated with a range of CV risk fac-
tors, including increasing age [61], hypertension [62–64], 
hypercholesterolaemia [65, 66•], smoking [67], T2DM [68], 
impaired glucose tolerance [69] and visceral adiposity [70]. 
Increased arterial stiffness has been correlated with the 
presence and extent of atherosclerosis in the general popu-
lation [44, 71–74]. Thus, in the Framingham Heart Study, 
aortic PWV was found to be predictive of the development 
of cardiac events, following adjustment for gender, systolic 
BP, lipid profile, antihypertensive medication, smoking and 
diabetes mellitus [75•]. This study included 2232 partici-
pants (mean age 63 years, 58% women) who were followed 
up for a total of 7.8 years. Results showed that an elevated 
PWV was associated with a 48% relative risk increase in  
CV events (95% CI 1.16–1.91), which was highly statisti-
cally significant (P = 0.002). The observational nature of the  



1342	 Current Cardiology Reports (2023) 25:1337–1349

1 3

Framingham study resolved the controversy with regard to 
the cause-and-effect relation between hypertension and arte-
rial stiffness. In fact, interestingly, this study demonstrated 
that a high aortic stiffness was associated with a signifi-
cantly increased risk of developing hypertension in previ-
ously normotensive individuals [62, 75•, 76•]. Likewise, the 
Rotterdam study, an observational prospective study com-
prising 2835 subjects without established CVD who were 
followed up for 4.1 years, showed that PWV > 14.6 m/s in 
men and > 14.2 m/s in women was significantly associated 
with risk of CVD (HR 1.93, 95% CI 1.16–3.21, P = 0.001) 
and CAD (HR: 2.17, 95% CI 1.08–3.98, P = 0.02); however, 
no correlation with the risk of stroke and overall mortality 
was noted [77•].

Arterial stiffness is one of the leading risk markers for 
hypertension. Masked uncontrolled hypertension (MUCH), 
defined as the presence of normal office BP but elevated 
ambulatory BP, is a challenging condition. A study includ-
ing a total of 155 hypertensive patients were divided into 
controlled hypertension (CH), MUCH and sustained uncon-
trolled hypertension (SUCH) groups, respectively. SUCH is 
diagnosed with both uncontrolled office and ambulatory BP. 
Both MUCH and SUCH groups had a significantly higher 
CAVI than the CH group (p < 0.017 and p < 0.002 respec-
tively). Multinomial logistic regression analysis showed 
that, compared with the CH group, increased CAVI levels 
were positively associated with the presence of MUCH and 
SUCH after adjusting for confounders. Therefore, CAVI may 
be used as a non-invasive indicator to identify patients with 
MUCH [82••]. Moreover, aortic PWV was also shown to 
independently predict CV events and fatal stroke [79] in a 
cohort of 710 patients with essential hypertension. Further-
more, at any given age, aortic PWV was the best predictor 
of CV mortality in hypertensive patients.

The impact of arterial stiffness was studied in various 
patient cohorts. Thus, for example, Muhammad et al. (2017) 
showed that subjects with PWV values at the highest quartile 
(median PWV 12.3 m/s) had a significantly higher risk (HR 
3.24 [95% CI 1.51–6.97]) of developing T2DM compared 
to those in the first quartile (median PWV 9.93 m/s), after 
adjustment for baseline characteristics and CV risk factors 
(P = 0.002) [84]. Interestingly, subjects with T2DM exhibit 
progressive stiffening of central, rather than peripheral 
arteries, after adjustment for other risk factors, as opposed 
to the effects of age and systolic BP, whereby both central 
and peripheral arteries exhibit stiffening [85]. Furthermore, 
in subjects with T2DM, arterial stiffness serves as prog-
nosticator of survival as well as diabetes-associated micro-
vascular complications. With regard to the former, arterial 
stiffness as assessed using aortic PWV and HbA1c were 
the only statistically significant predictors of CV event-free 
survival in 761 subjects with T2DM aged between 55 and 
65 years and followed up for a total of 7.9 years [86]. With 

regard to microvascular complications, patients with T2DM 
and increased urinary albumin-to-creatinine ratio (UACR) 
exhibit significantly higher PWV compared to patients with 
T2DM and normal UACR [86]. Similarly, each 1 m/s incre-
ment in cf-PWV increased by 11% the incidence rate of the 
development or progression of diabetic neuropathy, underlying 
the significant prognostic value of arterial stiffness [87–89].

The assessment of arterial stiffness can also be applied 
in the setting of ESRD. A study including one hundred fifty 
patients with ESRD aged 52 ± 16 years were monitored for 
51 ± 38 months. A decrease in BP in subjects with ESRD 
was accompanied by a decline in PWV. Furthermore, a 
decrease in PWV levels by 1 m/s was associated with a 29% 
decrease in the risk for total mortality (RR 0.71, 95% CI 
0.60–0.86, P = 0.00001) and a 21% decrease in the risk for 
CV mortality (RR 0.79, 95% CI 0.69–0.93, P = 0.00001), 
independent of age and BP [83]. Interestingly, subjects with 
diabetes and ESRD exhibit higher PWV than non-diabetic 
subjects with ESRD; in this patient cohort with PWV also 
predicted CV and all-cause mortality [80, 81], thus suggest-
ing that more advanced atherosclerotic changes in those with 
diabetic ESRD contribute to the higher cardiovascular mor-
tality rate of this population.

A meta-analysis of studies analysing PWV including 17 
longitudinal studies that evaluated 15,877 subjects over a 
mean period of 7.7 years showed similar results. Several 
populations such as patients with hypertension, diabetes, 
ESRD, coronary artery disease and subjects from the general 
population or ethnic minorities were included. Age, sex and 
cardiovascular risk factors were controlled for in most of the 
studies. Results showed that the relative risk for the develop-
ment of CV events was linearly related from the first to the 
third tertile of aortic pulse wave velocity. The pooled RRs of 
total CV events, CV mortality and all-cause mortality were 
2.26 (95% CI 1.89–2.70, P < 0.01, 14 studies), 2.02 (95% CI 
1.68–2.42, P < 0.01, 10 studies) and 1.90 (95% CI 1.61–2.24, 
P < 0.01, 11 studies), respectively, for high versus low aortic 
PWV subjects. Additionally, an increase in aortic PWV by 
1 m/s corresponded to an age-, sex- and risk factor–adjusted 
risk increase of 14%, 15% and 15% in total CV events, CV 
mortality and all-cause mortality respectively [78].

Interestingly, an association has been identified between 
COVID‐19 and arterial stiffness. Patients hospitalised due 
to acute COVID‐19 infection were found to have increased 
arterial stiffness compared with COVID negative indi-
viduals, both during the acute infection and at follow 
up [90••, 91••]. Arterial stiffness as assessed by either 
PWV or by augmentation index remained elevated even 
48 weeks after COVID‐19 infection compared to controls 
[92••, 93••, 94••]. Those patients complaining of fatigue 
4 months post COVID‐19 infection had more impaired 
values of PWV compared with those without fatigue  
[95••]. The increased arterial stiffness following severe  
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acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) 
is possibly due to impairment of vascular smooth muscle 
cell function and structural changes of the extracellular 
matrix of the vascular wall that occur after viral binding to 
ACE2 receptors [90••]. Furthermore, overactivation of the 
renin–angiotensin–aldosterone system mediates increased 
arterial stiffness [90••]. The Working Group on Athero-
sclerosis and Vascular Biology together with the Council 
of Basic Cardiovascular Science of the ESC provided a 
position statement on the importance of the endothelium 
in the underlying pathophysiology behind the clinical pres-
entation in COVID-19 and identify key questions for future 
research to address. They suggest the need of more studies 
on endothelial function in this context [96••].

Effect of Medications on Arterial Stiffness

Various randomized controlled trials using different medica-
tions have been carried out to assess the effects on arterial stiff-
ness and CV outcomes. These include antihypertensive treat-
ment, body weight reduction agents, statins and antidiabetic 
drugs. Therefore, measuring arterial stiffness may not only 
identify patients at risk at an early stage, but also serve as a sur-
rogate index for treatment monitoring, as discussed hereunder.

The impact of antihypertensive medication on arterial 
stiffness was assessed in a subset of the Anglo-Scandinavian  
Cardiac Outcomes Trial–Blood Pressure Lowering Arm 
(ASCOT-BPLA). In this study, a total of 19,257 hyperten-
sive individuals were randomised to one of two treatment 
arms. Amlodipine plus perindopril was compared to stand-
ard therapy, which included the cardioselective beta blocker 
atenolol plus diuretic therapy in a prospective controlled 
randomised trial design. The administration of amlodipine 
plus perindopril was significantly more efficacious in the 
reduction of CV events (p < 0.0001), fatal and non-fatal 
stroke (p = 0.0003) and all-cause mortality (p = 0.025) than 
standard therapy, despite relatively equal modification of 
BP. The study was stopped prematurely after 5.5 years [97]. 
The results of this trial implied that clinical benefit may be 
related to other factors independent of BP modification. 
Subset analysis was thus performed to potentially provide 
insight into the mechanism of CV benefit; the Conduit 
Artery Function Evaluation (CAFÉ) trial subsequently ana-
lysed 2199 subjects enrolled in the ASCOT-BPLA study 
with determination of arterial stiffness and central aortic 
pressure. The results of the CAFÉ study showed that the 
amlodipine-based regimen reduced central aortic systolic, 
diastolic and pulse pressure and augmentation index [98]. 
Potential mechanisms include the fact that heart rate reduc-
tion with beta-blockade prolongs the cardiac ejection time, 
but has no effect on PWV. On the other hand, drugs that 
block the renin–angiotensin–aldosterone system, especially 

angiotensin II-converting enzyme inhibitors (ACEIs), are 
of particular interest as the renin–angiotensin–aldosterone 
system contributes to the modulation of arterial stiffness. 
In fact, ACEIs have been recommended by recent Kidney 
Disease Outcomes Quality Initiative (KDOQI) guidelines 
as the preferred agents to reduce arterial stiffness in patients 
with ESRD [99]. In the REASON study including 471 
hypertensive patients followed up for 1 year, only the per-
indopril/indapamide combination significantly decreased 
carotid wave reflections, resulting in a selective decrease 
in central systolic BP and pulse pressure (PP), leading to 
a related reduction in left ventricular hypertrophy (LVH), 
in contrast to the lack of reduction in carotid PP and LVH 
observed with atenolol [100].

Sodium-glucose co-transporter-2 (SGLT-2) inhibitors 
have gained increasing interest over the past few years in 
view of the significant positive outcome data with regard 
to CVD, especially in patients with T2DM, such that the 
2019 ESC Guidelines on diabetes, pre-diabetes and CV dis-
eases strongly recommend their use in patients with T2DM 
and CVD to reduce CV events (class I, level of evidence 
A) [101••]. SGLT2 inhibitors improve vascular func-
tion by increasing the bioavailability of nitric oxide in the 
endothelium and modulating the proliferation, migration, 
survival and senescence of endothelial cells. They decrease 
endothelial cell activation, stimulate direct vasorelaxation 
and ameliorate endothelial dysfunction or expression of 
pro-atherogenic cells and molecules. This anti-oxidant and 
anti-inflammatory effect slows arterial stiffening process in 
patients with diabetes (Fig. 3) [102, 103••]. A study car-
ried out in aged mice, that assessed the effect of SGLT2 
inhibition on arterial dysfunction and proteins associated 
with oxidative stress, showed promising results. Mesenteric 
artery endothelial function and stiffness and aortic stiffness 
in empagliflozin treated versus control mice was assessed. 
Mice treated with empagliflozin exhibited improved mes-
enteric endothelial function compared with control and 
reduced mesenteric artery and aortic stiffness. The findings 
suggest that empagliflozin improves endothelial function 
and reduces arterial stiffness in a preclinical animal models 
[105]. Further studies are needed to assess whether SGLT2 
inhibition is a potential therapeutic alternative to reduce the 
progression of CVD in older individuals. Data from a sub-
analysis of the EMPA-REG OUTCOME trial had favour-
able effects on markers of arterial stiffness. This showed 
that treatment with empagliflozin resulted in a significant 
decrease in pulse pressure (P < 0.001), with a trend towards 
a reduction in AASI (P = 0.059) [104].

There is accumulating evidence of a favourable effect of 
statin treatment on arterial stiffness. In patients with hyper-
cholesterolaemia treated with pravastatin for 6 months, sig-
nificant decreases in PWV were seen in those with ≥ 15% 
reduction in total cholesterol levels [106]. In a similar study 
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group, the improvement in PWV with fluvastatin for 1 year 
correlated with the change in triglyceride levels [107]. 
Apart from the lipid lowering properties of statins, struc-
tural changes within the vessel wall may also contribute to 
their effects on arterial stiffness. Statins inhibit vascular 
smooth muscle cell proliferation which may decrease arterial 
stiffness [108, 109]. Interestingly, 3 months of atorvastatin 
therapy in patients with rheumatoid arthritis and relatively 
normal cholesterol levels improved systemic arterial compli-
ance [110]. Another study showed that 3 months of atorvas-
tatin therapy in patients with isolated systolic hypertension 
and normal lipid profiles resulted in a reduction in arterial 
stiffness [111]. Moreover, fluvastatin for 6 months reduced 
PWV in diabetic patients with ESRD undergoing haemodi-
alysis [112]. However, neither ezetimibe monotherapy nor 
ezetimibe added to low-intensity simvastatin treatment had 
any effect on arterial stiffness [113, 114]. Interestingly, in 
patients with familial hypercholesterolaemia, addition of pro-
protein convertase subtilisin/kexin type 9 inhibitors (PCSK9-
i) and ezetimibe to high-intensity statin improved lipid and 
PWV profiles. Patients with high-intensity statin, ezetimibe 
plus PCSK9-i versus high-intensity statin plus ezetimibe 
only were followed up for a total of six months. Patients in 
the PCSK9-i group had a greater LDL-C reduction (− 51% 
vs − 22.8% respectively, P < 0.001) and a greater PWV reduc-
tion (− 15% vs − 8.5% respectively, P < 0.01). Moreover, a 
decrease in PWV was associated with a decrease in LDL 
(P = 0.05), and this relationship appeared to be stronger in 
patients with familial hypercholesterolaemia without CV 
events (P = 0.01) [115].

Although measures of arterial stiffness provide useful 
prognostic information concerning the occurrence of CV 

events, the value of arterial stiffness for the reduction in CV 
events under treatment is yet to be demonstrated. Impor-
tantly, it needs to be determined whether a reduction in PWV 
is associated with a concomitant reduction in CV events, 
independently of the normalisation of classical CV risk fac-
tors [116]. Hence, more studies are needed.

Conclusion

Arterial stiffness and its hemodynamic consequences are 
now established predictors of adverse CV outcomes. The 
measurement of arterial stiffness has been significantly 
refined and can be performed in an accurate and repro-
ducible manner using a range of non-invasive techniques. 
Treatment options, which directly target the consequences 
of arterial stiffening, as opposed to arbitrary reduction of BP, 
have favourable outcomes. Hence, more emphasis should 
be given to the use of arterial stiffness for CV assessment 
and management in various patient populations, not only 
for research purposes but also in routine clinical practice 
to enable improved CV outcomes with reduced morbidity 
and mortality.
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