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Abstract
Purpose of Review  The intricate interplay between inflammatory and reparative responses in the context of heart injury is 
central to the pathogenesis of heart failure. Recent clinical studies have shown the therapeutic benefits of anti-inflammatory 
strategies in the treatment of cardiovascular diseases. This review provides a comprehensive overview of the cross-talk 
between immune cells and fibroblasts in the diseased heart.
Recent Findings  The role of inflammatory cells in fibroblast activation after cardiac injury is well-documented, but recent 
single-cell transcriptomics studies have identified putative pro-inflammatory fibroblasts in the infarcted heart, suggesting 
that fibroblasts, in turn, can modify inflammatory cell behavior. Furthermore, anti-inflammatory immune cells and fibro-
blasts have been described. The use of spatial and temporal-omics analyses may provide additional insights toward a better 
understanding of disease-specific microenvironments, where activated fibroblasts and inflammatory cells are in proximity.
Summary  Recent studies focused on the interplay between fibroblasts and immune cells have brought us closer to the  
identification of cell type–specific targets for intervention. Further exploration of these intercellular communications will 
provide deeper insights toward the development of novel therapeutics.
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Introduction

Heart failure is a clinical syndrome defined as the inability of 
the heart to pump an adequate amount of blood to meet meta-
bolic demands. It is a leading cause of mortality and morbid-
ity throughout the world [1]. Multiple cardiovascular diseases, 
including myocardial infarction, hypertension, valve disease, 
and cardiomyopathies, can cause heart failure. Extracellular 
matrix (ECM) proteins are normal components of the myo-
cardium that provide stability for dynamic contractions and 
insulate electrical activity, and some expansion of ECM is part 
of myocardial healing, for example, to prevent life-threatening 
complications such as cardiac rupture. Accumulation of ECM 
proteins in the heart interstitium results in fibrosis, a requisite 
component of cardiac remodeling. This excess ECM deposition 
leads to reduced compliance of the ventricular wall, leading to 
diastolic dysfunction. Furthermore, progressive remodeling of 
fibrotic tissue changes the geometry of the heart, producing 

less efficient contraction and reduced cardiac output. It can also 
disrupt normal conduction, leading to arrhythmias [2]. Thus, it 
would be useful to control fibrosis, obtaining its benefits while 
limiting its less desirable effects [3].

Cardiac fibroblasts that reside in the heart interstitium 
play central roles in cardiac remodeling because of their 
capacity to produce ECM proteins. They balance the secre-
tion and degradation of ECM proteins [4]. Once tissue injury 
occurs, cardiomyocyte stress and inflammatory processes 
activate fibroblasts, promoting the reparative program that 
includes proliferation, migration, and increased ECM-
related production [5, 6]. At the same time, tissue injury 
triggers inflammatory cascades, which induce the infiltra-
tion of immune cells [7]. Because these cellular components 
are also key players in fibrosis, it is imperative to elucidate 
the interactions between fibroblasts and immune cells and  
to develop a complete understanding of cardiac fibrosis with 
a goal of therapeutic manipulation.

Here, we provide an overview of the pathophysiology of 
inflammation and fibrotic heart disease by describing the 
immune cell populations associated with cardiac inflammation 
and the fibrotic process. We then outline how fibroblasts par-
ticipate in the inflammatory process, highlighting that future 
research is needed to discover potential avenues for intervention.
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Inflammation in Cardiac Diseases

Inflammation is an indispensable response to injury and is 
needed for the clearance of harmful stimuli and damaged 
tissue. In the heart, resident immune cells serve as first 
responders. Both innate and adaptive immune components 
contribute to the cardiac inflammatory response [7, 8].

Resident macrophages and mast cells initiate innate 
inflammation via the NOD-like receptor family pyrin 
domain–containing 3 (NLRP3) inflammasome pathway. 
Under pathological conditions, stressed or dying cells release  
cytoplasmic components such as ATP, mitochondrial DNA, 
sarcomeric proteins, and heat shock proteins [9–12]. Such 
molecules termed damage-associated molecular patterns 
(DAMPs) are recognized by the pattern recognition recep-
tors (PRRs), which are expressed on resident cells, includ-
ing fibroblasts and immune cells. Engagement of DAMPs 
and PRRs promotes the nuclear factor-κB (NF-κB) pathway, 
followed by the recruitment of the NLRP3 inflammasome 
complex composed of the apoptotic speck protein contain-
ing a caspase recruitment domain (ASC) and pro-caspase 
1. The activated inflammasome is responsible for the pro-
duction of inflammatory molecules including interleukins, 
IL1 and IL18, and Gasdermin D (GSDMD) [13]. IL1β and 
IL18 rapidly recruit neutrophils to the site of injury [14,  
15]. Additionally, the p38-mitogen activated protein kinase 
pathway is activated, leading to the production of inflam-
matory mediators such as tumor necrosis factor-α (TNF-α) 
and IL6 [16, 17]. Multiple heart conditions can trigger these 
inflammatory cascades. We describe a few below.

Ischemia

Ischemia is one of the most common and well-studied car-
diac injuries in humans. Hypoxia and accumulation of toxic 
metabolites induce cardiomyocyte stress and death, initi-
ating DAMP-related pathways (Fig. 1). In animal injury 
models, the first 3 days after insult is referred to as the 
inflammatory phase, during which neutrophils, monocytes, 
and macrophages play prominent roles. These immune cells 
produce not only pro-inflammatory cytokines/chemokines 
but proteolytic enzymes that degrade ECM structures. 
Inflammatory mediators such as IL1β and IL6 also stimu-
late the proliferation and migration of resident fibroblasts 
[18, 19]. The following 2 weeks is called the proliferative 
phase. During this period, phagocytosis by neutrophils and 
macrophages removes cell and ECM debris. Lymphocytes 
are recruited and activate the adaptive immunity [20]. Neu-
trophils rapidly decrease by apoptosis and are largely gone 
by day 7 [21]. Macrophages shift from pro-inflammatory 
to anti-inflammatory [22]. Activated fibroblasts and myofi-
broblasts display a peak of proliferation and secrete ECM 

to stabilize the tissue. As the proliferative phase gives way 
to the maturation phase, ECM cross-linking and inflam-
matory cell apoptosis occur [23]. Some fibroblasts return 
to a quiescent state, while some in the scar produce ECM-
modifying proteins [24].

In addition to responses to acute injury, inflammation 
associated with fibrosis is linked to the pathogenesis of 
chronic heart failure, even in the absence of obvious tis-
sue damage or infection. Low-grade inflammation occurs 
in the diseased heart regardless of the etiology [25]. Indeed, 
inflammatory cytokines including IL1β, IL6, and TNF-α 
are upregulated in the serum of patients with heart failure 
[26]. Histologically, the end-stage failing heart of transplant 
recipients contains infiltrating macrophages, lymphocytes, 
and mast cells [27]. The cause of persistent inflammation is 
not always clear, but one finding implicates angiotensin II. 
Angiotensin II is commonly elevated in the serum of patients 
with chronic heart failure, and not only activates fibroblast 
directly but also induces the NLRP3 inflammasome, con-
tributing to sustained inflammation and fibrosis [28]. Oxi-
dative stress induced by reactive oxygen species (ROS) is  
another contributor to inflammation in failing hearts [29].

Aging

Aging is associated with the progression of heart failure with 
diastolic dysfunction. The aging heart exhibits structural 
alterations including cardiomyocyte hypertrophy and inter-
stitial fibrosis, and increased monocyte-derived macrophages 
and T cells are observed in the fibrotic area [30]. Single-cell 
RNA-sequencing of the aged, murine heart has shown that 
fibroblasts in the aged heart have upregulated inflammatory 
and osteogenic genes [31]. The osteogenic program, defined 
by the expression of bone and cartilage genes, is implicated as 
a pro-fibrotic response [32]. Somatic mutations also accumu-
late with aging. Aging-related mutations in the transcriptional 
regulators, DMNT3A, ASXL1, or TET2, are associated with 
clonal expansion of pathogenic immune cells and activated 
inflammasome pathway [33]. Patients with heart failure car-
rying these mutations have higher all-cause mortality [34•], 
which may reflect extensive chronic inflammation. Similarly, 
epigenetic alterations such as DNA methylation and histone 
modifications also accumulate with aging. The gene dysregu-
lation associated with aging-related genetic change disturbs 
homeostasis, leading to mitochondrial stress [35].

Diabetes and Obesity

Diabetes mellitus and obesity are risk factors for heart 
failure. Although the risk of heart failure can be partially 
attributed to the prevalence of ischemic heart disease and 
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hypertension, diabetes can independently contribute to the 
pathogenesis of heart failure, leading to diabetic cardiomyo-
pathy [36]. Diabetic cardiomyopathy is characterized by car-
diomyocyte hypertrophy, interstitial fibrosis, and infiltration 
of inflammatory cells. Hyperglycemia leads to ROS gen-
eration, subsequently triggering the NLRP3 inflammasome 
[37, 38]. One animal study has suggested that hyperglycemia 
stimulates ROS production in T cells, followed by transform-
ing growth factor (TGF)-β activation. Oxidants also contrib-
ute to inflammation in patients with obesity. Oxidized fatty 
acid by-products can activate apoptosis and inflammation 
[39]. Adipocytes and progenitor cells can also be a source 
of pro-inflammatory cytokines. A recent cohort study has 
shown that higher levels of IL6, IL18, CC motif chemokine 
ligand 2 (CCL2), and CCL7 were observed in patients with 
a higher body mass index [40]. Local or systemic hypoxia 

due to impaired angiogenesis, or sleep apnea syndrome in 
obesity may trigger oxidative stress driving an inflamma-
tory cascade.

HIV

Infection with the human immunodeficiency virus (HIV) 
increases the risk for cardiovascular disease and patients 
often develop heart failure in the absence of ischemic heart 
disease [41]. Several factors may elicit inflammation in 
the myocardium, aside from the response to the virus. For 
example, HIV-infected patients have dysfunctional mucus in 
the intestine, resulting in microbial translocation, and sys-
temic inflammation even when on anti-viral therapy. Indeed, 
monocytes infiltrate HIV-infected human hearts with dias-
tolic dysfunction [42]. Monocyte and monocyte-derived 
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Fig. 1   Potential cross-talk between fibroblasts and immune cells after 
the heart injury. The cellular response to tissue damage is initiated 
by resident cells that serve as first responders to damage-associated 
molecular patterns (DAMPs) and reactive oxidative species (ROS). 
Inflammasome pathway cytokines activate fibroblasts and recruit 
neutrophils and monocytes, which facilitate inflammation by the 
secretion of pro-inflammatory cytokines and proteolytic enzymes. 
Activated fibroblasts initially exhibit a pro-inflammatory phenotype 
characterized by the expression of multiple chemotactic mediators. 

CD4+ T cells secrete cytokines that enhance fibroblast functions 
such as proliferation and migration. Subsequently, neutrophils and 
macrophages undergo a transition to anti-inflammatory populations 
in response to TGF-β and concomitant with increased phagocytic 
actions. Regulatory T cells, eosinophils, and basophils also contrib-
ute to the resolution of inflammation and scar formation. Two subsets 
of fibroblasts, Wif1.+ and IFN-stimulated, are not depicted, but they 
may also interact with immune cells [101••, 102]
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macrophages persistently contribute to fibroblast activation 
and fibrosis as discussed below. Importantly, platelets in 
HIV patients are activated by the viral envelope proteins. 
TGF-β is also upregulated in platelets, contributing to the 
exacerbation of fibrosis [43, 44].

How Do Immune Cells Modulate Fibroblasts?

Neutrophils

Neutrophils and other granulocytes are rare populations 
in the healthy heart. In the setting of injury, the activated 
inflammasome signaling from resident cells stimulates the 
mobilization of neutrophils from bone marrow. IL1, granu-
locyte colony stimulating factor (G-CSF), and complement 
proteins act as attractants of neutrophils [45•]. Neutrophils 
are essential during the early inflammatory phase of car-
diac injury. They serve to remove cell and ECM debris, can 
be stimulated by DAMPs, and express pro-inflammatory 
cytokines such as TNF-α and IL6 [45•].

Pro-inflammatory cytokines from neutrophils have impor-
tant roles in cardiac fibrosis, although the evidence regarding 
direct effects on cardiac fibroblasts in vivo is still limited. 
Several in vitro studies have demonstrated cytokine activation 
of fibroblasts. For example, TNF-α stimulated the prolifera-
tion of fibroblasts, although ECM synthesis was unaffected 
[46, 47]. Also, IL-6 activates fibroblast proliferation and ECM 
synthesis [19, 48]. In addition to inflammatory cytokines,  
neutrophil granules contain anti-microbial agents (myelop-
eroxidase: MPO, lactoferrin) and matrix metalloproteinases 
MMP8 and MMP9. Recruited neutrophils release these  
components when stimulated by IL1β. MPO catalyzes ROS 
production [49], which subsequently stimulates fibroblast 
proliferation, activation, and ECM remodeling [50]. Some 
ECM fragments released during matrix proteolysis can further 
enhance fibroblast activation. Taken together, neutrophils act 
on fibroblasts through multiple mechanisms early in fibrosis.

Traditionally, neutrophils are regarded as pro-inflammatory.  
Indeed, excessive and persistent infiltration of neutrophils 
exacerbates tissue injury by the combined effect of the 
inflammatory cytokines, ROS, and proteolytic enzymes  
[51]. However, in the mouse, ablation of neutrophils resulted 
in decreased systolic function after MI, suggesting that neu-
trophils may have protective roles in the maintenance of car-
diac function [52]. Novel subsets of Ly6G+/CD206− neu-
trophils with a pro-inflammatory phenotype have been 
described after MI [53]. The same study described a Ly6G+/
CD206+ anti-inflammatory population that secretes the pro-
fibrotic cytokine, IL-10. These subsets were referred to as 
N1 and N2 populations similar to the M1-M2 nomenclature 
in macrophages described below. The polarization from N1 

to N2 can be induced by IL4, and N2 subsets were more 
abundant 7 days post-MI. Taken together, these data suggest 
that neutrophils actively stimulate fibroblast migration and 
proliferation.

Macrophages and Monocytes

Tissue-resident macrophages, characterized by the absence 
of CC motif receptor 2 (CCR2) expression, maintain heart 
homeostasis by regulating angiogenesis and tissue repair 
and removing dysfunctional mitochondria [54–56]. Abla-
tion of this population results in loss of regenerative capac-
ity in neonatal mice [57]. Recent studies in the mouse have 
shown that this resident population can be subdivided into 
two groups: a TIMD4+, LYVE1+, FOLR2+ subset and an 
MHCII+ subset, which may be conserved in humans [58].

In the setting of injury, resident macrophages detect 
ROS and DAMPs, triggering inflammatory cascades [59]. 
CCL2 secreted by cardiomyocytes, fibroblasts, resident mac-
rophages, and B cells recruits CCR2-positive monocytes 
[60, 61]. CCR2+/Ly6c+ monocytes infiltrate at the site of 
injury and differentiate into CCR2+ macrophages. These 
monocyte-derived macrophages secrete IL1β, IL6, and TNF-
α, recruiting immune cells and stimulating fibroblasts [62]. 
Like neutrophils, CCR2+ macrophages secrete proteolytic 
enzymes such as cathepsins and MMPs to yield bioactive 
ECM degradation products, promoting fibroblast prolifera-
tion and ECM secretion.

Although current standards suggest that M1/M2 nomen-
clature for macrophages is an oversimplification, CCR2+ 
macrophages, generally categorized as M1, are considered 
pro-inflammatory. Phagocytosis can shift macrophages to an 
anti-inflammatory mode that is broadly categorized as M2 
[52, 63]. These phagocytic macrophages are characterized 
by the MER proto-oncogene tyrosine kinase (MERTK) and 
contribute to the clearance of dead neutrophils and cardio-
myocyte debris; they are also considered pro-fibrotic. The 
M2 macrophages promote ECM synthesis in fibroblasts by 
secreting IL10 and TGF-β. IL10 treatment in the mouse MI 
model also drives macrophages toward the M2 phenotype, 
leading to increased fibroblast proliferation, migration, and 
ECM synthesis [64]. Matricellular proteins, such as osteo-
pontin produced by reparative macrophages, can also stimu-
late ECM production by fibroblasts [65, 66]. Indeed, a spa-
tial multi-omics study has suggested that SPP1-expressing 
macrophages are in proximity to activated fibroblasts in the 
human infarcted heart [67••]. Several studies have attempted 
to examine whether the ablation of macrophages is benefi-
cial after cardiac injury; these results remain inconclusive 
[65, 68–71]. Based on the complicated roles of macrophages 
during tissue repair, it may be more beneficial to target fibro-
blast/macrophage interactions than macrophages directly.
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Lymphocytes

T cells are primarily involved in the adaptive immune 
response and activated by antigen-presenting cells. Trig-
gered by chemotactic signals, from neutrophils and mac-
rophages, T cells infiltrate in the later stages of heart  
injury. The NLRP3 inflammasome and GM-CSF, CCL2, 
and CXC motif ligand (CXCL) families all serve as attract-
ants for T cells [8]. CD4+ T cells secrete interferon (IFN)-γ 
and activate additional cells at the site of injury. Ablation 
of CD4+ T cells attenuates fibrosis and adverse remod-
eling in mouse disease models, suggesting that they play 
a pro-inflammatory role [20, 72]. Additionally, a recent 
study has demonstrated that IFN-γ-stimulated fibroblasts 
may increase antigen presentation to CD4+ cells via Class 
II MHC molecules during mouse pressure overload [73]. 
Th17 cells are a minor but not insignificant population of 
CD4+ T cells, characterized by a pro-inflammatory pro-
file and abundant IL17A secretion. Studies have shown 
that IL17A stimulates fibroblast-derived GM-CSF, which 
activates monocyte recruitment and differentiation into 
inflammatory macrophages [74, 75]. Fibroblast-specific 
deficiency of the IL17 receptor is associated with a bet-
ter prognosis and a decrease in GM-CSF in a murine 
MI model. Regulatory T cells (Tregs) are also a subset 
of CD4+ T cells, identified by the expression of FOXP3. 
In contrast to Th17 cells, Tregs play reparative roles by 
secreting IL10 [76]. Interestingly, ST2, the receptor of 
IL33 on Tregs, has been implicated in the expansion of 
Tregs, and fibroblasts are the main producers of IL33 in 
the infarcted heart. In vitro experiments from this same 
study demonstrated that SPARC​-expressing Tregs stimu-
lated collagen synthesis in fibroblasts [77]. The limited 
data on the roles of T cells later in fibrosis illustrate the 
need for further studies.

B cells, a second arm of the adaptive immune response, 
can contribute to cardiac hypertrophy and tissue remod-
eling. A percentage of B cells can be found in the normal 
heart, but their roles in homeostasis are unclear. B cells 
are recruited to areas of tissue injury, producing antibod-
ies and cytokines. B cells recruit monocytes by releas-
ing chemokines such as CCL2 and CCL7, contributing 
to an expansion of pro-inflammatory macrophages [61]. 
Overall, it is likely that B cells are a pro-inflammatory 
cell type, and several studies have shown that B cell abla-
tion ameliorates cardiac function and attenuates fibrosis 
[78, 79]. In humans, the involvement of auto-antibodies 
against cardiomyocyte components has been implicated 
in the pathogenesis of dilated cardiomyopathy [80]. 
Although B cells may contribute to the sustained acti-
vation of fibroblasts through chronic inflammation, the 
details of interactions between B cells and fibroblasts are 
still unknown.

Other Immune Populations

Although eosinophils and basophils are less abundant than 
other immune cells, recent studies have suggested that they 
contribute to tissue repair. The removal of eosinophils or 
basophils exacerbates adverse remodeling in the MI mouse 
model. They both produce the pro-fibrotic cytokine, IL4,  
that has a direct effect on fibroblast ECM production [81]. 
Mast cells reside in the baseline heart and can rapidly 
respond to tissue damage. The expansion and degranulation 
of mast cells release pro-inflammatory mediators such as 
TNF-α, histamine, and renin activating other immune cells 
and fibroblasts [7, 8]. The relative contribution of mast cells 
to the process of fibrosis is unknown because the secreted 
mediators are also produced by other cells.

The Immune Modulatory Potential 
of Fibroblasts in Tissue Injury

Fibroblasts in the quiescent state are characterized by the 
expression of PDGFRα, Tcf21, and continuous basal pro-
duction of ECM proteins [5, 6]. During tissue injury, fibro-
blasts undergo phenotypic alterations and contribute to the 
repair process. One classical characteristic of an activated 
fibroblast is expression of actin intermediate filament pro-
teins such as α-smooth muscle actin (αSMA), but more 
recent studies suggest that activated fibroblasts can exist in 
multiple gene expression states dependent on spatial and 
temporal influences. One intermediate state that has been 
described predominantly expresses inflammatory cytokines 
and ECM proteins in the absence of αSMA [5, 6]. A popula-
tion of late-injury stage fibroblasts, termed matrifibrocytes, 
is characterized by the expression of abundant matricellular 
proteins related to cartilage [24].

A wide variety of factors can trigger fibroblast activation. 
For example, the renin-angiotensin system directly activates 
fibroblasts [82, 83]. Engagement with the type 1 angiotensin 
receptor (AT1) stimulates fibroblast increases in prolifera-
tion, migration, and ECM synthesis. DAMPs, released by 
damaged cardiomyocytes, can directly trigger fibroblast acti-
vation [13]. TGF-β, appreciated for its pro-fibrotic activi-
ties, is a central regulator of myofibroblast conversion. The 
receptor complex transduces signaling by phosphorylation 
of SMAD3, leading to the upregulation of αSMA and ECM 
proteins [84]. As mentioned above, inflammation, hypoxia, 
and metabolic perturbations stimulate ROS production, 
which promotes fibroblast ECM synthesis [50, 85]. Several 
studies have suggested that the pro-fibrotic effect of TGF-β 
may be partially attributed to ROS generation [86, 87]. Addi-
tionally, changes in ECM composition and matrix stiffness 
can lead to pro-fibrotic phenotypes by activation of mecha-
nosensing receptors [88].
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Recent single-cell RNA-seq analyses have provided 
additional information regarding the diversity of fibro-
blast gene expression. An examination of interstitial cell 
transcriptomes after MI classified fibroblasts into several 
populations, including four general subsets: homeostatic, 
activated (injury-response), myofibroblasts, and matri-
fibrocytes [89]. Interestingly, this study noted that pro- 
inflammatory cytokines and chemokines such as CCL7, 
CCL2, and CXCL1 were extensively enriched in the acti-
vated fibroblasts in the early inflammatory phase, suggest-
ing a role in orchestrating immune cell recruitment. CCL2  
is a chemokine that attracts CCR2-positive monocytes [90]. 
CCL7 binds to multiple receptors including CCR2, serv-
ing as an attractant for monocytes and macrophages [91]. 
CXCL1 has been reported to recruit neutrophils, monocytes, 
and T cells via its receptor, CXCR2 [92]. A recent in vitro 
study has suggested that fibroblasts may attract macrophages 
by deformation of the ECM, thereby providing mechanical 
cues for macrophages [93]. Thus, activated fibroblasts may 
contribute to the recruitment of inflammatory cells early in 
heart injury.

The NLRP3 inflammasome pathway has also been  
implicated in the pro-inflammatory actions of fibro-
blasts [94]. Cardiac fibroblasts also express PRRs such as  
TLRs, and activate the inflammasome pathways, poten-
tially contributing to the initiation of inflammation [95]. 
Fibroblast-derived IL1β and IL18 can recruit neutrophils 
and monocytes, leading to further activation of fibroblasts 
[14, 96]. Because the NLRP3 inflammasome pathways 
can be activated in other immune cells which solicit the 
pro-inflammatory program, the relative contribution of the 
fibroblast-derived inflammasome is unclear. Given the ben-
eficial effect of IL1β neutralizing antibodies in patients with 
heart failure, a better understanding of IL1β production and 
signaling is warranted [97].

Activated fibroblasts and myofibroblasts also secrete 
anti-inflammatory cytokines. TGF-β is a central regula-
tor for inflammatory and pro-fibrotic programs. Although 
the canonical role of TGF-β is the conversion of fibro-
blasts to myofibroblasts, TGF-β exerts pleiotropic effects 
on immune cells at the site of injury. In  vitro studies 
have shown that TGF-β can activate the migration and 
degranulation of neutrophils, promoting inflammation. In 
contrast, TGF-β can be anti-inflammatory by suppress-
ing the NF-κB pathway and cytokines such as CCL2 and 
IL1β in macrophages [98]. Consistent with these actions, 
TGF-β treatment attenuates inflammatory cytokines. 
Given that the upregulation of TGF-β occurs at the end 
of the inflammatory phase, TGF-β may comprehensively 
orchestrate inflammation and tissue repair. Relevant to 
TGF-β signaling, IL11 is another cytokine produced by 
cardiac fibroblasts. In human fibroblasts, IL11 is secreted 

in response to TGF-β stimulation, and recombinant IL11 
induces ECM synthesis, independent of TGF-β. Deletion 
of the IL11 receptor, IL11RA1, in an MI mouse model 
resulted in attenuation of fibrosis, suggesting a pro-fibrotic 
role of fibroblasts [99]. However, the effect on immune 
cells is unclear, as IL11RA1 is exclusively expressed by 
fibroblasts. In vitro evidence has implicated that IL11 may 
suppress inflammatory cytokines such as TNF-α and IL1β 
of macrophages [100].

Conclusion

Although the matrix producing capability of fibroblasts 
has been long appreciated, an understanding of the com-
plex interactions between fibroblasts and inflammatory 
cells is currently less understood. A growing body of 
evidence supporting the therapeutic potential of anti-
inf lammatory strategies for treating cardiovascular 
disease highlights the significance of regulatory mech-
anisms by fibroblasts. Here, we have described the intri-
cate interactions between immune cells and fibroblasts in 
the setting of heart injury. The process of inflammation 
and fibrosis involves diverse participants including mul-
tiple cell types and the extracellular microenvironment. 
In addition, many of the mediators exert pleiotropic 
effects, making it particularly challenging to elucidate 
pivotal interactions. Recent advances in transcriptomic 
technologies have enabled researchers to analyze not only 
gene expression but also the profiles of chromatin acces-
sibility, at the single-cell resolution, helping to illumi-
nate different cell states and transcriptional activities. 
Also, spatial information on transcriptomes in vivo is 
becoming available, although the resolution is not yet at 
a single-cell level. Accumulating spatial information with 
higher resolution and an understanding of the spectrum 
of fibroblast roles will provide novel insights into the 
cell–cell communication orchestrating inflammation and 
tissue remodeling processes.
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