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Abstract
Purpose of Review  The pace of identifying cardiomyopathy-associated mutations and advances in our understanding of sarcomere 
function that underlies many cardiomyopathies has been remarkable. Here, we aim to synthesize how these advances have led to 
the promising new treatments that are being developed to treat cardiomyopathies.
Recent Findings  The genomics era has identified and validated many genetic causes of hypertrophic and dilated cardiomyopathies. 
Recent advances in our mechanistic understanding of sarcomere pathophysiology include high-resolution molecular models of 
sarcomere components and the identification of the myosin super-relaxed state. The advances in our understanding of sarcomere 
function have yielded several therapeutic agents that are now in development and clinical use to correct contractile dysfunction–
mediated cardiomyopathy.
Summary  New genes linked to cardiomyopathy include targets with limited clinical evidence and require additional investigation. 
Large portions of cardiomyopathy with family history remain genetically undiagnosed and may be due to polygenic disease.

Keywords  Cardiomyopathy · DCM · HCM · Sarcomere · Myofilament

Introduction

Cardiomyopathy encompasses a group of discrete diseases 
that result in impaired function of cardiac muscle and can 
be caused by genetic factors, environmental insults to the 
heart, or a combination of the two [1–3]. Genetic cardiomyo-
pathies have been described since the 1950s, with clinical 
documentation of clear familial inheritance of a range of 
phenotypes [4, 5]. Basic and clinical research categorized 
these diseases based on their morphological and functional 
phenotypes [6]. The most common cardiomyopathies are 
hypertrophic (HCM) that occurs in 1:200–1:500 people [1], 
dilated (DCM) that occurs in 1:500 people [7], and others 
including arrhythmogenic cardiomyopathy [8], syndromic 
cardiomyopathies, and emerging classification like atrial 
myopathy [9].

Before the genes that caused cardiomyopathy were identi-
fied, cardiomyopathy was a diagnosis of exclusion, defined 

as pathological myocardial structure and functional changes 
without an obvious cause (termed idiopathic at the time) 
[6]. The first genes were identified as causative for HCM 
and DCM in the 1990s [10–14]. Cardiomyopathy muta-
tions were initially considered to be inherited in a mono-
genic autosomal dominant manner [5]. However, after the 
birth of genetic testing of cardiomyopathy patients, it was 
observed that these mutations showed variable penetrance, 
with carriers of the same cardiomyopathy-causing mutation 
showing fulminant disease or asymptomatic presentation 
[15]. Additionally, cardiomyopathies tend to have a long 
time of onset (pediatric cardiomyopathies excluded [16]) 
and are typically identified in the second or third decade of 
life [1]. Genotype-positive individuals with an asymptomatic 
phenotype require lifelong vigilance, as the mechanisms that 
enable the pathological manifestation of mutations are not 
well understood [17•]. However, the gradual onset of disease 
also presents a long therapeutic window for the prevention 
or mitigation of disease [17•].

Mutations in the contractile machinery of the heart (i.e., 
the sarcomere and myofilaments) cause a majority of famil-
ial HCM and account for ~ 30% of familial DCM [17•, 18]. 
Genomic approaches have yielded a variety of candidate 
genes in DCM, although the evidence for many of them is 
still minimal and requires further investigation (Table 1) 
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[17•]. Over the past 30 years, the physiological mechanism 
for many sarcomere proteins has been established and many 
pathophysiological consequences linked with cardiomyopa-
thy are well understood (Fig. 1) [18, 19]. This knowledge has 
recently culminated in the development of small molecule 
therapeutics that specifically target sarcomere proteins to 
treat cardiomyopathy [20•, 21••]. In this review, we will 
cover the recent advances in our understanding of the mech-
anisms and treatment of cardiomyopathy arising from muta-
tions in sarcomere proteins.

Classification of Genetic Cardiomyopathies

HCM is a condition where the ventricular walls thicken 
without obvious cause [1, 5]. HCM was described in 1957 
by Dr. Robert Teare from autopsies of eight young patients 
with asymmetrical hypertrophy of the heart [4], and Dr. 
Eugene Braunwald provided a comprehensive description of 
the HCM phenotype in 1964 [5]. HCM is diagnosed via the 
hemodynamic and morphological nature of the heart [22]. 
The left ventricle of HCM patients usually has an elevated 
ejection fraction and a reduced end-systolic volume that can 
be diagnosed via echocardiogram and exercise/stress testing 
[22]. HCM patients can be treated with beta-blockers or anti-
hypertensive drugs to alleviate hemodynamic stress [1]. Sev-
enty percent of HCM cases have an intraventricular septal 
hypertrophy that causes aortic outflow tract obstruction [1]. 
Surgical resection or septal ablation has been used to restore 
the ability of blood to exit the ventricle. A majority of HCM 
patients can live their lives well but they may be limited by 
progressing disease and the development of heart failure.

In contrast, DCM manifests with thinning and dilation 
of the ventricle, increased end-diastolic pressure, reduced 
stroke volume and cardiac output, and dysfunctional filling 
of the ventricles that often leads to heart failure [23]. DCM 
has a prevalence of 1:500 [19]. Genetic DCM accounts 
for approximately 30% of all DCM cases, as DCM is also 
caused by structural heart disease, valve disorders, hyper-
tension, and other factors [24]. DCM patients are prone to 
cardiac remodeling and cardiac fibrosis due to the left ven-
tricular dilation. In order to help DCM patients manage their 
condition, angiotensin-converting enzyme (ACE) inhibitors, 
beta-blockers, vasodilators, and aldosterone antagonists can 
be prescribed [25].

Genetic Testing for Cardiomyopathies

When a patient is diagnosed with cardiomyopathy, genetic 
panel testing is often employed to identify known pathogenic 
variants in upwards of 100 genes [17•, 26•, 27]. A genetic 
diagnosis can help inform treatment of the patient and pro-
vide information to the extended family regarding who may 
be at risk of developing disease or passing on a pathogenic 
mutation [26•, 27]. The first pathogenic mutation linked to 
HCM was discovered in 1990, with the affected members of 
two unrelated families sharing the R403Q missense muta-
tion in the MYH7 gene [10]. Currently, 33 genes have been 
linked to HCM with various levels of evidence, with the 
8 most definitive being MYBPC3, MYH7, TNNT2, TNNI3, 
TPM1, ACTC1, MYL3, and MYL2 (Table 1) [13, 18, 26•, 
28–32]. While many mutations have been clearly linked to 
an autosomal dominant inheritance pattern, the high vari-
ability in penetrance of HCM-causing mutations has led to 
studies that have shown the impact of polygenic modifiers 
on disease severity [33•].

In the age of genomics research, many variants are ini-
tially categorized one way (benign, likely benign, uncertain 
significance, likely pathogenic, pathogenic), with additional 
evidence changing the interpretation [26•]. The MYBPC3 
c.1224-52G > A intronic splice altering variant occurs in 4% 
of the South Asian population [34]. This variant is associ-
ated with HCM, although it is too prevalent to be a fully pen-
etrant pathogenic mutation. Whole-genome sequencing and 
clinical phenotyping of a South Asian population revealed 
minimal association between this variant and HCM features. 
However, a second MYBPC3 variant, D389V, was found on 
approximately 10% of the c.1224-52G > A variant alleles 
and individuals with the D389V variant had significantly 
more hyperdynamic contractile phenotypes [35]. However, 
several preclinical models have shown the common c.1224-
52G > A to cause sarcomere dysfunction by itself [36]. 
These findings illustrate the difficulty in understanding the 
mechanism by which a mutation can impact function.

Table 1   Frequencies of mutations in genes encoding sarcomere pro-
teins in HCM and DCM

P/LP pathogenic/likely pathogenic, VUS variants of uncertain signifi-
cance

Familial HCM (60% of all 
HCM)

Familial DCM (30% of all DCM)

Sarcomere P/LP +  42% Sarcomere 19–36%
MYBPC3 24% TTN 12–25%
MYH7 13% MYH7 3–4%
MYL2 2% TNNT2 1–3%
TPM1 1% TPM1 1–2%
TNNT2 < 1% TNNC1 < 1%
TNNI3 < 1% ACTC1 < 1%
MYL3 < 1% Non-sarcomere 16–22%
ACTC1 < 1% Other genes/limited 

evidence
Unknown

Sarcomere VUS +  9% Familial DCM + , 
genotype − 

40–60%

Sarcomere P/LP/VUS- 49%



475Current Cardiology Reports (2023) 25:473–484	

1 3

Genetic DCM is not exclusively caused by mutations 
in sarcomere genes. Mutations in proteins involved in the 
cytoskeleton, nuclear envelope, sarcolemma, ion chan-
nels, calcium handling, and others are also involved [25, 
37]. While the genetic causes of DCM are more varied than 
of HCM (Table 1), 19–36% of cases are linked to muta-
tions in sarcomere proteins, including mutations in titin that 
accounts for ~ 20% of familial DCM [38]. The diversity in 
genetic causes of DCM is remarkable, as is the consider-
able amount of genetic disease with no known variant asso-
ciated. In DCM, genetic screening can include over 100 
genes but only provides a genetic diagnosis for about 50% 
of patients [39]. A negative genetic screening can be due to 
an unknown gene or variant, or a combination of genes that 

are not pathogenic on their own but combine to ill effect 
[39]. Variant curation has focused primarily on gene cod-
ing regions, while regulatory regions are also capable of 
contributing to some of the missing genetic linkage for car-
diomyopathy [40].

In keeping with the hypothesis that a proportion of DCM 
is polygenic, patients with DCM-causing mutations in MYH7 
have been shown to have significantly more non-synonymous 
single-nucleotide polymorphisms in approximately 100 car-
diomyopathy-related genes than MYH7 mutation carriers 
with HCM [41•]. This study provides evidence that cumula-
tive, normally benign changes in proteins linked to contractile 
regulation may influence the severity of disease elicited from 
a primary pathogenic mutation [41•]. Polygenic modifiers of 

Fig. 1   Schematic of the sar-
comere proteins linked with car-
diomyopathy. A Half sarcomere 
from Z-disk to M-line with 
isotropic (I) and anisotropic (A) 
bands labeled. The C-zone is 
defined as the ~ 350-nm-wide 
portion of the myosin thick fila-
ment where cMyBP-C is local-
ized in ventricular sarcomeres. 
The H-zone is the region with 
no actin overlap and no myosin 
heads. B Schematic with gene 
and protein names of the cardiac 
thin filament with general 
mechanism of cardiomyopa-
thies listed. C Schematic of the 
cardiac thick filament. Phos-
phorylatable regulatory regions 
are marked with 6-point stars, 
with yellow stars indicating 
phosphorylation. Mechanisms 
of cardiomyopathy-causing 
mutations listed below the gene 
names
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disease may also account for some of the variable penetrance 
of HCM and DCM mutations [42•]. There are genes that 
have enriched expression in the atria including MYL4, MYH6, 
and MYBPHL that may alter atrial function and exacerbate 
a mildly pathogenic mutation expressed in ventricular car-
diomyocytes [43]. Myosin light chain 4 (MYL4) frameshift 
mutations have been demonstrated to impair the actomyosin 
cross-bridge formation and cause a specific atrial cardiomyo-
pathy and atrial remodeling [44].

Sarcomere Proteins in Hypertrophic 
Cardiomyopathy

β‑Myosin Heavy Chain (MYH7)  MYH7 encodes β-myosin 
heavy chain (β-MHC), the primary myosin motor in the ven-
tricular sarcomere [45]. β-MHC contains an N-terminal motor 
domain that binds to actin and hydrolyzes ATP to power the 
cross-bridge cycle and force generation [46]. Mutations can 
affect the hydrolytic cycle of ATP or the myosin neck region 
that allows the myosin heads to swing into the interfilament 
space and interact with actin [47]. MYH7 mutations are more 
frequent in the motor domain, particularly in the “myosin 
mesa” region that is critical for actin binding [46, 48]. The 
molecular biophysical consequences of MYH7 mutations 
are varied, including increased sarcomere force develop-
ment, higher ATPase activity, increased actomyosin binding, 
decrease affinity of the myosin interacting head state, and 
faster cross-bridge cycling (Table 2) [46, 47, 49•]. Many of 
these processes are linked, and a single MYH7 mutation can 
cause a variety of these biophysical changes, but ultimately 
cause a hypercontractile left ventricle that pathologically 
hypertrophies [49•, 50•].

There have been several recent advances regarding the 
so-called super-relaxed state of myosin. The myosin head 
domain exists in several conformations when not bound to 
actin, including a disordered relaxed state that resides in 
the interfilament space, ready to bind to actin [50•, 51, 52]. 
The super-relaxed state involves the folding back on myosin 
heads onto the thick filament backbone. Several avenues of 
research have converged on this mechanism, including cryo-
electron microscopy of the myosin head on the thick fila-
ment backbone [53], X-ray diffraction data [54••] showing 
the movement of myosin heads towards the thick filament 
in association with the low ATPase state, and molecular 
mechanisms of modulating the super-relaxed state [49•, 
51]. Importantly, it has been shown that some MYH7 HCM-
causing mutations destabilize the formation of the super-
relaxed state and increase the number of disordered relaxed 
heads ready to generate cross-bridges, therefore increasing 
ensemble contractility [50•, 51].

Myosin Light Chains (MYL2, MYL3)  Sarcomere myosin is a 
heteromeric complex consisting of a dimer of myosin heavy 
chains with a coiled-coil tail integrating into the thick fila-
ment and two myosin motor domains in the interfilament 
space, linked with a flexible “neck” region [55]. Each myo-
sin head is associated with two light chains. In the ventri-
cle, these are the ventricular regulatory (RLC, MYL2) and 
essential (ELC, MYL3) myosin light chains. The light chains 
modulate the strength and speed of the myosin heavy chain 
motor’s ability to generate force [56]. The ELCs bind to the 
alpha helix of the myosin heavy chain neck and participate 
in cross-bridge formation [57]. The ventricular RLCs con-
tain calcium-binding EF hand motifs and are phosphorylated 
[55, 58].

Table 2   Molecular mechanisms 
associated with sarcomere 
protein mutations in HCM and 
DCM

Effect Genes References

Hypertrophic cardiomyopathy
Hypercontractility MYH7, MYL2, MYPBC3, TPM1 [46, 60•, 71••, 95]
IHM/SRX destabilization MYH7, MYBPC3 [49•, 52, 60•, 70]
Protein degradation stress MYBPC3 [96•]
Atrial dysfunction TNNT2, TPM1 [31, 75]
Arrhythmia TNNT2 [75]
Ca sensitization TNNI3, TNNT2, TNNC1, TPM1, ACTC1 [74, 76, 79, 97, 98]
Increased ATPase activity TNNC1 [49•, 50•, 71••, 97]
Reduced MHC/cMyBP-C affinity MYH7 [99•]
Dilated cardiomyopathy
Hypocontractility MYH7, MYL2, TNNT2, TNNI3, TPM1 [29, 92, 93•]
IHM/SRX stabilization MYH7 [52]
Reduced ATPase activity TNNT2, TNNI3, TMP1 [93•]
Ca desensitization MYH7, TNNI3, TNNT2, TNNC1, TPM1, ACTC1 [78, 91, 93•, 94, 98]
Protein quality control TTN [100•]
Defective sarcomerogenesis TTN [87]
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Mutations in the ventricular myosin light chains have 
been associated with hypertrophic and restrictive cardiomyo-
pathies [30, 59]. The mechanisms for this include altered 
flexibility of the myosin neck [14] and altered localization of 
the myosin heads in the interfilament space [57]. The HCM-
related MYL2 A57G mutation increases RLC phosphoryla-
tion levels and increases the percent of myosin heads in the 
disordered relaxed state, whereas the restrictive cardiomyo-
pathy-associated MYL2 E143K mutation reduced RLC phos-
phorylation and promoted the super-relaxed state of myosin 
[60•]. The ability of the myosin light chains to regulate the 
myosin super-relaxed and their ability to be phosphorylated 
and dephosphorylated makes them attractive targets for drug 
development.

Cardiac Myosin Binding Protein‑C (MYBPC3)  The first 
MYBPC3 mutations linked to HCM were identified in 
1995 [11, 12]. In the following years, it was established 
that approximately 70% of MYBPC3 mutations associated 
with HCM were nonsense mutations that truncated por-
tions of the Cʹ-terminal domains of cMyBP-C [61]. MyBP-
C is comprised of a linear series of immunoglobulin and 
fibronectin-like domains, with most of the penultimate 
Cʹ-terminal domain required for sarcomere incorporation 
[36, 62]. MYBPC3 truncating mutations cause haploinsuf-
ficiency, expressing an insufficient amount of cMyBP-C 
to maintain normal cross-bridge regulation that results in 
hypercontractile sarcomeres and HCM [63–66]. Additional 
evidence suggests that the truncated allele causes cellular 
stress by compromising the protein quality control system 
[67, 68•]. While nonsense mutations in MYBPC3 all result 
in a similar impairment, the pathogenic effect of MYBPC3 
missense mutations depends on the residues affected. These 
include altering myosin binding affinity [69], regulation 
of the super-relaxed state [70], ATP hydrolysis [71••], 
and actin interaction [72], which lead to hypercontractile 
sarcomeres.

Cardiac MyBP-C can be phosphorylated by a variety of 
kinase pathways and its function shifts from inhibiting cross-
bridge cycling to activating cross-bridge cycling when phos-
phorylated [73]. Dephosphorylated cMyBP-C promotes the 
formation of the super-relaxed state whereas phosphorylated 
cMyBP-C primes myosin heads for cross-bridge formation 
by promoting the myosin disordered relaxed state [70, 71••]. 
The myosin S2 region is bound by cMyBP-C to mediate 
this function, and mutations in MYH7 that alter residues in 
this region reduce the ability of cMyBP-C to bind to and 
regulate β-MHC [64]. These interactions between β-MHC 
and cMyBP-C provide a coherent picture of how both MYH7 
and MYBPC3 mutations can converge on a similar HCM 
phenotype (Table 2).

Thin Filament HCM Mutations  Sarcomere thin filament 
function consists of a chain of events starting with calcium 
binding to troponin-C (cTnC, TNNC1) causing a conforma-
tional change through troponin T (cTnT, TNNT2) that allows 
alpha-tropomyosin (α-TM, TPM1) to move, exposing myo-
sin binding sites on actin (ACTC1), allowing cross-bridge 
formation. This chain of events is regulated by troponin-I 
(cTnI, TNNI3) and depends on many key residues and pro-
tein regions to correctly translate calcium binding to cross-
bridge formation. Mutations in thin filament proteins that 
cause HCM are typically missense mutations that cause an 
increase in thin filament calcium sensitivity, allowing force 
development at relatively lower calcium concentrations and 
resulting in hypercontractility (Table 2) [74–76].

The biophysical interaction of the linker between cTnT and 
α-TM is a major regulatory region and mutations that alter 
the rigidity or position of the linker dysregulate activation of 
the thin filaments [77]. Each troponin/tropomyosin regula-
tory complex spans ~ 38 nm, with neighboring complexes 
exhibiting cooperativity of activation that is translated 
through the overlap region of neighboring α-TM molecules 
[78]. These thin filament mutations also result in hypercon-
tractility due to enhanced cooperativity [79].

Another consequence of HCM-causing thin filament 
mutations is an increased propensity for arrhythmias due 
to alteration of the calcium buffering properties of the thin 
filament. Mutations in the troponin complex can prolong 
sarcomere calcium release in diastole and promote arrhyth-
mia [75, 80•]. β-Adrenergic signaling causes phosphoryla-
tion of cTnI, desensitizing the thin filament to calcium, and 
increasing the rate of relaxation; thin filament mutations that 
affect this regulatory effect cause cardiomyopathy [76, 81].

Sarcomere Proteins in Dilated 
Cardiomyopathy

Titin (TTN)  Titin is a sarcomere protein that interacts at its 
N-terminus with telethonin (TCAP) and α-actinin in the 
Z-disk, and then spans nearly 1 micron across a half sar-
comere where its C-terminal interacts with myomesin in 
M-line [82, 83]. Titin is the largest protein, comprised of 
approximately 17,000–26,000 amino acids depending on 
isoform and what exons are included in various transcripts. 
Titin contains a molecular spring region in the I-band that 
can include an N2B region, common in the ventricle, or the 
N2B and N2A regions, which are common in the atria. The 
longer N2B and N2A isoform (N2BA) produces a longer 
titin molecule that exhibits longer resting sarcomere lengths 
and reduced sarcomere compliance [84].
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DCM has been clearly linked with titin-truncating vari-
ants. However, as titin variants were rapidly identified in the 
early 2010s, an alarming number of titin-truncating variants 
were identified, enough that it would be impossible for titin 
truncation alone to cause disease [38]. This mystery was 
solved by the discovery that titin undergoes high levels of 
exon exclusion, primarily in exons that encode the I-band of 
titin, and truncating mutations in these frequently excluded 
exons are not included in a sufficient amount of transcripts 
to cause disease [85]. Bona-fide titin-truncating variants are 
often found in the A-band domains and are generally consid-
ered to be pathogenic due to a haploinsufficiency, although 
fragments of truncated titin have recently been identified, 
which may cause dysfunction [86, 87].

Titin’s A-band region contains several super-domains 
composed of 7–11 immunoglobulin-like and fibronectin-
like domains that are repeated across the A-band [83]. 
These repeats provide a molecular ruler that sets some of 
the thick filament’s periodic protein localization patterns 
[88]. Because of the staggering size and repetitive nature 
of A-band titin and our limited understanding of how these 
domains regulate binding of sarcomere components, mis-
sense variants in this region are both plentiful and difficult 
to interpret [89•]. Understanding the pathogenicity of titin 
missense mutations will be a challenging new frontier for 
sarcomere protein research.

β‑Myosin Heavy Chain (MYH7)  MYH7 mutations that cause 
HCM result in hypercontractility, whereas MYH7 muta-
tions that occur in some of the same functional locations 
cause loss of function and result in DCM. DCM mutations 
in MYH7 are spread throughout the molecule but are slightly 
enriched in residues associated with the nucleotide binding 
pocket on the myosin head [52, 90]. Mechanistically, DCM 
mutations in MYH7 cause defects in the cross-bridge ATPase 
cycle [91] resulting in depressed function and hypocontrac-
tile outcome [92].

Thin Filaments  HCM-causing thin filament mutations result 
in calcium sensitization whereas DCM mutations exhibit the 
opposite effect, with decreased sensitivity of thin filament 
activation from calcium [93•]. This includes mutations in 
TNNC1, TNNT2, TNNI3, TPM1, and ACTC1 [78, 93•, 94]. 
Interestingly, mutations in these genes cause decreased in 
calcium sensitivity that is uncoupled from the normal phos-
phorylation-dependent calcium desensitization mediated 
from cTnI (i.e., the mutations cause structural changes that 
result in cTnI to adopt its calcium desensitizing interactions) 
[76, 94]. Cooperativity of thin filament activation is also 
oppositely impacted, with DCM mutations in TPM1 that 
compact the α-TM overlap regions resulting in decreased 
cooperativity [78].

Novel Pharmaceutical Treatments 
for Cardiomyopathy

The advances in our understanding of the molecular and bio-
physical mechanisms of disease in sarcomere proteins have 
led to the rapid advancement of treatments to target these 
mechanisms. In the early 2010s, several companies set out to 
develop small molecules that could selectively modulate sar-
comere function. Some companies have targeted the hypercon-
tractile mechanism of disease in HCM [101]. A first-in-class 
compound, originally known as MYK-461, or mavacamten, 
showed successful reduction in the obstructive phenotype 
of HCM by reducing myosin contractility without serious 
adverse effects [21••]. After these promising phase III trial 
results, mavacamten received FDA approval in April of 2022 
for treatment of obstructive HCM, with further trials ongoing. 
Aficamten is another myosin inhibitor that has shown positive 
results in phase II clinical trials [102].

Many HCM-causing mutations in MYH7 have been 
shown to disrupt the super-relaxed state, and HCM-causing 
MYBPC3-truncating mutations prevent cMyBP-C from pro-
moting the myosin super-relaxed state [50•, 51, 52, 70]. The 
super-relaxed state can be stabilized or disrupted to seques-
ter or liberate populations of myosin heads to meet the con-
tractile demand [50•, 60•, 103]. This provides a common 
mechanism of action for mutations in these two proteins. 
Mavacamten reduces contractility by stabilizing the super-
relaxed state, making mavacamten and other small mole-
cules that target this pathway ideal candidates to address a 
common mechanism of disease [21••, 103, 104].

Myosin activators have also been developed with the 
goal of increasing contractility. One compound, omecam-
tiv mecarbil (OM), was designed to increase cardiomyocyte  
contractility in patients with heart failure with reduced ejec-
tion fraction [20•, 105]. OM did not meet its endpoint  
for improving contractility for heart failure patients in phase 
III trials [20•] but did significantly improve function for 
individuals with the lowest contractile function [106•]. 
While OM failed to gain FDA approval in December of 
2022, other myosin activators, such as danicamtiv, are also 
in development for treating patients with heart failure with 
reduced ejection fraction [107].

Treating Cardiomyopathy with Genetic 
Medicine

As titin-truncating variants comprise ~ 20% of genetic DCM, 
efforts have been made to identify therapeutic approaches 
to correct these mutations [108•]. Recent advances in exon 
skipping therapies and CRISPR-dependent reading frame 
repair, especially in Duchene muscular dystrophy [109], may 
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be applicable to correct TTN-truncating variant expression. 
Romano et al. observed pathogenic allele dose-dependent 
decreases in full-length titin protein isoforms for A- and 
I-band TTN-truncating variants, showing TTN haploinsuf-
ficiency. Cardiomyocyte genome editing by SpCas9 restored 
the TTN protein reading frame, increasing full-length TTN 
protein levels, and diminishing TTN truncating peptides 
[108•]. Exon skipping approaches use antisense oligonu-
cleotides to facilitate skipping of one or more exons that 
contain a mutation and have been used to repair a frameshift 
mutation in TTN exon 326 given (Ser14450fsX4) [110]. 
Skipping of TTN exon 326 improved myofibril assembly 
and stability and ameliorated the DCM phenotype.

Variations on single base editing approaches have also 
recently been used by two groups to correct a mutation asso-
ciated with HCM [111, 112]. Adenine base editing (ABE) 
uses a catalytically dead CRISPR-Cas9, a guide RNA, and 
a deaminase to convert an adenine to a guanine [113, 114]. 
The dominant-negative MYH7 R403Q causes HCM via 
increasing cardiac contractility and is caused by a 1208G > A 
mutation. These simultaneous publications both showed 
effective A > G nucleotide editing that restored the MYH7 
wild-type sequence, with minimal bystander and off-target 
editing [111, 112]. These approaches used adeno-associated 
virus to deliver the editing constructs, and the clinical utility 
of this approach and base editing are still being evaluated.

Conclusions

Over 30 years have passed since the identification of the 
first genetic causes of HCM and DCM. In this time, we 
have acquired a vast, albeit incomplete, understanding of the 
genes that drive these diseases. Biophysical mechanisms and 
contractile regulation have matured into therapeutic targets, 
although successfully translating this wealth of knowledge 
to the development of therapeutics will require extensive 
research.

While gene therapy holds great promise for correcting 
disease-causing mutations directly, the implementation and 
scalability of these approaches remain to be established. 
Even the most perfect gene therapy approach would be lim-
ited by our identification of all the pathogenic and modi-
fying genes responsible for disease. Therefore, identifying 
“missing” genetic causes of cardiomyopathy and establish-
ing the role of polygenic factors in the development of dis-
ease are crucial.

Basic science research has also delineated the mecha-
nisms responsible for many of the proteins and mutations 
linked to cardiomyopathy. As demonstrated with therapeuti-
cally targeting the myosin super-relaxed state, targeting sar-
comere protein interactions can be effective for modulating 
contractility to counter pathological processes. Additionally, 

signaling pathways like phosphorylation of ventricular myo-
sin light chains to alter the myosin super-relaxed state pro-
vide additional upstream targets that could be leveraged for 
therapeutic development.
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