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Abstract
Purpose of Review Sudden cardiac death (SCD) is a major public health burden accounting for 15–20% of global mortal-
ity. Contemporary guidelines for SCD prevention are centered around the presence of low left ventricular ejection fraction, 
although the majority of SCD accrues in those not meeting contemporary criteria for SCD prevention. The goal of this 
review is to elaborate on the contemporary landscape of SCD prediction tools and further highlight gaps and opportunities 
in SCD prediction and prevention.
Recent Findings There have been considerable advancements in both non-invasive and invasive measures for SCD risk 
prediction including clinical morbidities, electrocardiographic measures, cardiac imaging (nuclear, magnetic resonance, 
computed tomography), serum biomarkers, genetics, and invasively assessed electrophysiological characteristics. Novel 
methodological approaches including application of machine learning, incorporation of competing risk, and use of compu-
tational modeling have underscored a future of personalized risk prediction.
Summary SCD remains a vital public health challenge. Emerging methods highlight opportunities to improve SCD predic-
tion in the majority of those at risk who do not meet contemporary criteria for SCD prevention therapies. Future efforts will 
need to focus on easily deployed, multi-parametric risk models that enrich for SCD risk and not for competing mortality.

Keywords Sudden cardiac death · Risk prediction · Left ventricular ejection fraction · Epidemiology · Cardiac magnetic 
resonance imaging

Introduction

Sudden cardiac death (SCD) is a major public health chal-
lenge, estimated to account for up to 20% of deaths worldwide 
[1]. Coronary heart disease is the most common underlying 
substrate for SCD which is often secondary to ventricular 
arrhythmias. For patients with symptomatic heart failure and 
depressed left ventricular ejection fraction (LVEF; < 30–35%), 
implantable cardioverter-defibrillator (ICD) therapy improves 
survival [2]. Importantly, up to 70% of the global burden of 
SCD occurs in patients with an LVEF greater than 35% [3] 
for whom there is no consensus strategy for SCD prediction 
or prevention. Furthermore, the survival benefit of ICD ther-
apy even in those who qualify for ICD therapy—including,  
for example, patients with non-ischemic cardiomyopathy 
(NICM)—has more recently been called into question on the 

basis of randomized clinical trials [4] and observational evi-
dence suggesting attenuating rates of SCD in the contemporary 
era of heart failure pharmacotherapy [5]. Taken together, there 
remains a critical unmet need to improve SCD risk prediction 
to tackle this ongoing public health burden.

Left Ventricular Function as Predictor—Limitations

Abnormal LVEF has been long recognized as a major risk 
factor for SCD, initially in patients with myocardial infarc-
tion [6] and subsequently in patients with NICM [7]. Low 
LVEF was a consistent inclusion criteria for seminal tri-
als establishing the efficacy of ICD therapy [2] and is a 
cornerstone of contemporary guidelines for SCD primary 
prevention [8]. There are, however, limitations to the use 
of LVEF as a predictor of SCD and its role in identifying 
those who may benefit from ICD therapy. As our group and 
others have shown [9], there is a continuous, inverse rela-
tionship between LVEF and SCD risk suggesting that the 
contemporary paradigm dichotomizing LVEF at 30–35% for 
ICD candidacy underestimates risk across the range of LV 
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function. Furthermore, a low LVEF is not only a predictor of 
SCD but also a predictor of competing, non-SCD mortality 
[9]. When considering the association of LVEF with com-
peting risk mortality, reliance on LVEF to identify patients 
likely to benefit from SCD prevention therapies is less clear. 
These limitations help frame the unmet scientific needs in 
SCD risk prediction which include (1) identifying markers 
of SCD risk across the spectrum of LV function as well 
as (2) markers that are specific to SCD and not competing 
modes of death.

Clinical and Lifestyle Predictors of Sudden Death Risk

Coronary heart disease is the most common underlying sub-
strate for SCD. Other clinical risk factors associated with a 
higher risk of SCD in the general population include diabe-
tes mellitus [10, 11], hypertension [12], hyperlipidemia [13], 
obesity [14], atrial fibrillation [9, 15], and chronic kidney 
disease [16]. In addition to these clinical risk factors, a fam-
ily history of SCD has also been associated with an increased 
in SCD risk in the general population [17], although the 
association is less clear in patients with established coronary 
heart disease [9]. In terms of lifestyle factors, smoking is a 
potent risk factor for SCD and smoking cessation is associ-
ated with a lower risk of SCD [18]. Population-based cohort 
studies have shown a general relationship between alcohol 
consumption and risk of SCD [19], though the association 
with SCD may be more complex, with some studies sug-
gesting a U-shaped relationship [20]. Physical activity has 
generally been associated with a lower risk of SCD in the 
general population [21] though vigorous activity has been 
associated with SCD risk, particularly in men [22].

Non‑invasive Electrocardiographic Markers of SCD Risk

Resting 12‑Lead Electrocardiogram

There has been a long standing interest in the role of cross-
sectional and continuous rhythm monitoring as a means to 
predict sudden cardiac death. The role of the resting 12 lead 
ECG as a tool for risk prediction has been appealing given 
its low-cost and widespread deployment in a range of clini-
cal settings. As our group [23] and others have demonstrated 
[24], the ECG is able to capture domains of risk that are 
relevant to the pathophysiology of SCD. Salient ECG pre-
dictors associated with SCD risk in patients with and with-
out established cardiovascular disease include markers of 
structural abnormalities (contiguous Q waves, left ventricu-
lar hypertrophy, left atrial enlargement) [25–28], autonomic 
risk (resting heart rate) [29, 30], abnormalities of electri-
cal depolarization (QRS duration, Q wave fragmentation, 

bundle branch block) [31–35], and abnormalities of repolari-
zation (JT prolongation, T-wave inversion) [36–39]. More 
complex ECG parameters derived from signal-averaged 
ECG, including identification of late ventricular potentials, 
have also been linked to SCD in both ischemic [40] and non-
ischemic cardiomyopathy [41] though positive predictive 
accuracy in meta-analysis was poor (20%) [41]. Other more 
complex parameters including use of vectorcardiography to 
identify abnormal electrical dispersion (e.g., QRS-T angle) 
have been linked to SCD in observational studies [42, 43] 
though the practicality of these measures is uncertain given 
the complexity of measurement and variation in normative 
values noted across age and sex [44].

Dynamic Electrocardiographic Markers

In addition to cross-sectional assessment, there has also been 
interest in continuous electrical measures of autonomic func-
tion, ventricular ectopy, and dynamic repolarization abnor-
malities as markers of SCD risk. Perturbations of autonomic 
tone have been implicated in the risk of ventricular arrhyth-
mias and electrical surrogates of autonomic dysfunction 
including heart rate variability (HRV), heart rate turbulence 
(HRT), and baroreflex sensitivity (BRS) have been a focus 
of risk prediction studies. Dynamic markers of electrical 
repolarization heterogeneity have also been linked to SCD 
risk. This has most commonly been quantified as microvolt 
T-wave alternans, which reflects beat-to-beat alternation of 
the T-wave amplitude [45].

The performance of these dynamic measures as SCD risk 
predictors has been mixed and primarily studied in patients 
with established cardiovascular disease. For example, in 
patients with NICM, there was only modest association of 
these autonomic parameters (HRV, BRS, HRT) and SCD risk 
[41]. Comparatively, in the post-myocardial infarction period 
in patients with LVEF < 50%, impaired HRT and abnormal 
T-wave alternans were associated with an increased risk of 
SCD [46]. Likewise, the combination of abnormal LVEF 
and autonomic markers did improve the sensitivity of SCD 
prediction in ischemic cardiomyopathy although positive 
predictive accuracy in this population was poor (13%) [47]. 
Finally, ventricular ectopy by continuous rhythm assessment 
(generally defined as > 10 premature ventricular beats in an 
hour or the presence of non-sustained ventricular tachycardia) 
has been variably associated with an increased risk of SCD 
in the post-MI setting with some studies finding symmetric 
increases in both arrhythmic and non-arrhythmic mortality 
[48]. In non-ischemic cardiomyopathy, NSVT was associated 
with a twofold increase risk of SCD though the positive pre-
dictive accuracy of this finding was low (21%) [41].
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Cardiac Imaging and Sudden Death Risk

With advances in cardiac imaging modalities including 
computed tomography (CT), magnetic resonance imaging 
(MRI) and nuclear cardiac imaging there has been substan-
tial interest in their role in SCD prediction. Cardiac imaging 
provides the potential to elucidate substrate relevant to SCD 
risk (e.g., ventricular scar, lipomatous metaplasia), as well 
as dynamic triggers (e.g., abnormal autonomic innervation) 
of ventricular arrhythmias.

Cardiac MRI for SCD Prediction

Cardiac MRI is one of most robust imaging modalities 
linked to SCD risk. The most commonly evaluated param-
eter is the presence of late gadolinium enhancement (LGE), 
which is thought to reflect accumulation of collagen in the 
extracellular space and therefore serve as an imaging sur-
rogate for fibrosis. Notably, LGE may also be present in 
the setting of non-fibrotic substrate including myocardial 
edema or infiltrative disease such as amyloid. LGE has 
been associated with an increased risk of SCD in patients 
with ischemic heart disease [49, 50] as well as patients 
with NICM [51–53]. In both substrates, both the presence 
of LGE (present or absent) as well as the extent of LGE 
(evaluated as a continuous function) have been linked to 
increased SCD risk. In addition to general assessment of 
LGE, other MRI features of myocardial scar such as scar 
heterogeneity (typified using various parameters includ-
ing scar border zone [54], gray zone [55], and scar entropy 
[56]) or localization characteristics (e.g., ring-like pattern 
of fibrosis [57]) have also been associated with an increased 
risk of SCD. In addition to its prognostic use in ischemic 
and non-ischemic dilated cardiomyopathy, LGE on cardiac 
MRI has also been associated with increased SCD risk in 
other cardiac substrates including acute myocarditis [58, 
59], sarcoidosis [60], hypertrophic cardiomyopathy [61], left 
ventricular non-compaction [62], and arrhythmogenic right 
ventricular cardiomyopathy [63]. Perhaps the most practical 
question related to LGE as a risk marker is the identification 
of a numeric threshold to guide clinical decision making 
such as ICD implantation. This threshold will likely vary 
in accordance with substrate. There has been limited work 
identifying such thresholds in hypertrophic cardiomyopathy 
where LGE ≥ 10% appears to be increment risk beyond tradi-
tional clinical risk markers [64, 65]. Such thresholds remain 
unknown in non-ischemic cardiomyopathy and for ischemic 
cardiomyopathy, it is possible that scar characteristics (e.g., 
gray zone, border zone, entropy) are more potent predictors 
of SCD risk than scar size to the extent that areas of trans-
mural “core” scar are less likely to be arrhythmogenic.

Another intriguing imaging feature evident on MRI is the 
presence of lipomatous metaplasia (LM). LM is thought to be 

related to the infiltration of infarcted myocardium by adipose 
cells. Given the uniquely higher impedance of LM compared 
to fibrotic scar, the increased regional resistance and reduced 
current loss at sites of LM has been theorized to be associ-
ated with a higher risk of electrical re-entry and ventricular 
arrhythmia. In the recent INFINITY (Intra-Myocardial Fat 
Deposition and Ventricular Tachycardia in Cardiomyopathy) 
study enrolling patients with ischemic cardiomyopathy and 
ventricular arrhythmias, the majority of invasively mapped VT 
circuits corresponded to sites of LM [66•], suggesting this as a 
potential exciting avenue for future risk stratification.

Cardiac CT and Nuclear Imaging for SCD Prediction

Other imaging modalities linked to SCD risk stratification 
include cardiac CT and nuclear imaging, specifically single-
photon emission computer tomography (SPECT) and posi-
tron emission tomography (PET). For cardiac CT, there is 
emerging evidence for its use to detect myocardial fibrosis 
via late enhanced multi-slice formatting [67]. This might of 
particular benefit in patients who are either not a candidate 
for cardiac MRI or for whom LGE assessment by MRI is 
obscured by imaging artifact related to indwelling cardiac 
devices. In addition, recent work has identified cardiac CT-
derived channels (i.e., areas of wall thinning adjacent to rela-
tively preserved thickness) as potent predictors of VT isth-
muses during invasive electrophysiology study in patients 
with ischemic cardiomyopathy [68].

Finally, there has been long standing interest in the role 
of nuclear SPECT imaging to identify abnormal autonomic 
or sympathetic innervation as a risk marker for SCD. Sev-
eral studies including the ADMIRE (AdreView Myocardial 
Imaging for Risk Evaluation in Heart Failure) [69] and 
PARAPET (Prediction of Arrhythmic Events with Positron 
Emission Tomography) [70] studies identified associations 
between abnormal SPECT imaging and SCD risk in both 
ischemic and non-ischemic cardiomyopathy. Other nuclear 
modalities such as PET are known to identify metabolically 
active tissue and have been shown to be potent predictors of 
ventricular arrhythmia risk in particular cardiac substrates 
such as cardiac sarcoidosis [71]. Given the expanding recog-
nition of myocardial inflammation and PET abnormalities in 
non-ischemic cardiomyopathy [72] and genetic cardiomyo-
pathy [73, 74], it will be of interest to see the role of PET as 
a risk marker in these expanded populations.

Emerging Markers of Risk—Circulating Biomarkers, 
Genetics, Computational Modeling, and Invasive 
Cellular Phenotyping

There are several emerging tools for SCD risk prediction 
including novel circulating biomarkers, genetic risk scores, 
computational modeling, and invasive phenotyping.
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Circulating Biomarkers of SCD Risk

To the extent that circulating biomarkers exert physiological 
effects on the myocardium—either structurally or electrically— 
there has been interest in identifying signatures of SCD risk 
from the blood. Recent proteomics analysis of survivors of 
cardiac arrest identified 6 novel biomarkers—implicated in 
extracellular matrix formation, coagulation cascades, and 
platelet activation—associated with SCD [75]. Our group 
similarly identified three circulating microRNAs (miR-150, 
miR29a-3p, and miR-30a-5p)—implicated in apoptosis, 
fibrosis and inflammation—associated with a nearly fivefold 
gradient of SCD risk in patients with coronary disease and 
low normal LVEF compared to healthy controls [76]. Other 
biomarkers that have been linked to SCD include markers of 
inflammation including interleukin-6 and C-reactive protein) 
[77, 78], dietary markers (e.g., circulating long-chain n-3 fatty 
acids) [79], metabolic markers (e.g., cystatin C) [80], and 
neuro-hormonal markers (e.g., renin) [81]. These markers 
have been evaluated in a range of substrates from the general 
population without prevalent heart disease to those with 
established ischemic heart disease. The utility of serum markers 
for risk stratification may be hampered by their associations 
with non-SCD risk, as well as the generally low magnitude of 
risk elevation for any individual biomarker.

In addition to enhancing risk of SCD, biomarkers may 
also identify competing mortality risk and therefore be use-
ful identifying patients unlikely to benefit from SCD pre-
vention. For example, in a recent analysis of a randomized 
trial of ICD therapy in non-ischemic cardiomyopathy [4], 
ICD survival benefit was only seen in patients with a low 
NT-proBNP (< 1177 pg/ml; 40% relative risk reduction in 
mortality), whereas no survival benefit was seen in those 
with an elevated NT-proBNP for whom competing mortality 
risk rendered ICD efficacy null [82].

Genetic Predictors of SCD Risk

In addition to circulating biomarkers, there has also been 
substantial efforts evaluating the role of cardiovascular genetics 
as a risk predictor for SCD [83]. Initial approaches leveraged 
our existing understanding of SCD pathophysiology with a 
focus on genetic variants associated with factors thought to be 
on the causal pathway to SCD, including for example coronary 
heart disease and longer QT interval. With respect to ECG 
parameters, given that genetic variation accounts for only a 
minority of variance in ECG parameters, this approach has not 
identified meaningful risk elevations in the general population 
[84]. Conversely, genetic variants associated with coronary 
heart disease have been associated with SCD in both the general 
population [85] and in patients with established ischemic 
heart disease [86]. Other approaches have sought to identify 
common genetic variants implicated in SCD pathophysiology 

including autonomic function, atherosclerosis, neuro-hormonal 
activation, and electrical conduction [83]. Taken together, these 
associations have not been replicated and, given their high 
prevalence in the population, are unlikely to yield specific risk 
increments for SCD prediction. Using an inverse approach, 
genetic studies have also identified rare variants in several 
commonly known genetic arrhythmic syndromes—including 
long QT, Brugada, and arrhythmogenic right ventricular 
cardiomyopathy (ARVC)—that are associated with SCD risk 
in the general population [87]. While the prevalence of these 
variants—by definition—is rare in the general population, 
they may serve as mediator of risk for a subset of the global 
burden of SCD. To this end, more contemporary work has 
included genome-wide association studies (GWAS) to identify 
novel variants associated with SCD risk. A consistent locus of 
risk has been 21q21 which was associated with an increased 
risk of VF in patients presenting with an MI [88]. Consistent 
with the potential importance of rare genetic variants in SCD 
risk, even more recent work identified 14 variants (including 
variants associated with familial hypercholesterolemia, long QT 
syndrome, and dilated cardiomyopathy) present in ~ 1% of the 
general population that were associated with an approximate 
threefold increase risk of cardiovascular death including 
arrhythmic mortality [89].

Computational Modeling for SCD Prediction

Another emerging approach for SCD prediction has been the 
integration of cardiac imaging with computational modeling. 
This approach employs three-dimensional models which simu-
late arrhythmias in silico by integrating cardiac MRI imaging 
(and associated scar characteristics) with biophysical models 
of electrical propagation [90]. This approach has demonstrated 
utility in predicting critical sites of ventricular tachycardia induc-
tion for patients with ischemic heart disease during invasive EP 
study [91] and remains a promising paradigm for personalizing 
risk assessment. How these models will perform in patients with 
non-ischemic or genetic heart disease—where scar distribution 
is more heterogeneous and biophysical assumptions of cellular 
transduction may be less certain—remains to be seen.

Invasive Phenotyping of SCD Risk

There has also been recent work applying machine learning 
approaches to invasively assessed monophasic ventricular action 
potentials as a means to predict SCD in patients with ischemic 
heart disease and abnormal LVEF [92]. In exploratory biophysical 
cell models, perturbations in the functionality of L-type calcium 
current or the sodium-calcium exchanger yielded action potential 
phenotypes associated with higher SCD risk. Though early, these 
studies highlight the potential to personalize SCD risk assessment 
via the integration of advanced computational approaches and 
invasively determined electrical properties of the ventricle.
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Putting It Together and Gaps in Prediction—Risk 
Models for Sudden Death Prediction

Contemporary SCD Risk Models and Approaches

As highlighted, current gaps in SCD prediction include (1) 
identification of validated models in patients not currently 
qualifying for ICD therapy, (2) enriching for benefit in those 
who do qualify for ICD therapy, and (3) identifying risk 
markers that are specific to SCD and not competing risk 
mortality. In contemporary practice, there remains no vali-
dated models for SCD risk prediction in the general popula-
tion. While the absolute risk of SCD in the general popula-
tion is low (0.1–0.2%/year), the majority of global burden of 
SCD occurs in the general population. Desperately needed 
then are novel and creative approaches to enriching and cap-
turing risk in this population, which could include leverag-
ing multi-dimensional data sources such as the electronic 
heart record to dynamically screen patients for risk. These 
efforts could involve machine learning as well as advanced 
computational methods such as natural language processing 
to enhance our ability to identify risk. Models will need to 
be externally validated and, importantly, provide sufficient 
lead-time to deploy further screening and potential interven-
tion to mitigate risk.

In patients with established heart disease but not meeting 
criteria for SCD prevention (e.g., ICD therapy), there have been 
a range of proposed models with variable degrees of validation 
and performance. The most robust example has been the inte-
gration of validated SCD risk estimates in hypertrophic cardio-
myopathy [93] into contemporary ICD guidelines [94]. Salient 
features of this model include its ease of use (i.e., deployment 
of easily measurable clinical and imaging parameters), clear 
risk output (quantitative SCD risk estimates) over an action-
able timeline (5 years), and validation in an independent cohort 
[93]. There are other recent examples of SCD risk calculators in 
other substrates with established heart disease including ARVC 
[95] and patients with established coronary heart disease [96, 
97] though validation in the majority of these examples was 
internal. Another salient limitation of risk models is the often 
cross-sectional nature of their use in the context of a dynamic 
disease process. To that end, a recent analysis of an established 
SCD risk calculator in ARVC [98] showed that the ability of 
the risk calculator to predict 5 year ventricular arrhythmia risk 
worsened during follow-up, making the strong case to update 
risk inputs when evaluating patients clinically.

Application of machine learning to dynamically updated 
data sources provides an intriguing opportunity to actual-
ize flexible risk prediction. There have been preliminary 
efforts in patients with established heart disease to apply 
this approach incorporating demographic, clinical, ECG, 
imaging, and genetic data [99••]. There are unique features 
of SCD prediction that challenge the application of machine 

learning methods, not the least of which is the inevitable rar-
ity of the outcome, yielding an event to control imbalance 
that makes traditional measures of model performance inac-
curate [99••]. This challenge and others, including external 
validation, interpretability, and ease of use, will be critical 
to overcome in future application of machine learning to 
SCD prediction.

In addition to ease of use and deployment of dynamic risk 
models, effective SCD risk prediction will entail identifying 
markers specific to SCD and not competing risk mortality. 
As our group [9] and others [100, 101] have demonstrated, 
patients at increased risk for SCD but also increased risk 
of competing mortality are unlikely to benefit from SCD 
prevention strategies such as ICD therapy. Tools such as 
the Seattle Proportional Risk Model, which estimates the 
proportional risk of SCD in patients with heart failure, have 
demonstrated external validity [102] and utility in identify-
ing patients likely to benefit from ICD therapy [101, 103]. 
These tools have primarily been applied in patients currently 
qualifying for ICD therapy and their use in a broader context 
remains to be seen.

The Future of SCD Risk Prediction

Looking ahead, how should we frame our needs and aspira-
tions in SCD risk prediction? For the general population, 
where baseline absolute risk is low (0.1–0.2%/year), the 
clinical utility of a single marker—even one, for example, 
that doubles the risk of SCD—is not likely to be useful. 
Therefore, meaningful enrichment of SCD risk will require 
integration of multiple parameters and use of data sources 
germane to the general population, such as the electronic 
health record. Given that the vast majority of those in the 
general population will not experience SCD, risk models in 
this population are likely to primarily be used as an initial 
screen to justify further non-invasive (e.g., imaging), mini-
mally invasive (blood markers, genetics), or invasive (e.g., 
electrophysiology study) testing.

For patients at intermediate risk including, for example, 
patients with ischemic heart disease and abnormal LV func-
tion not meeting criteria for ICD therapy, there are several 
potential risk parameters highlighted here that could be used. 
Needed, however, are robust studies evaluating the integra-
tion of these measures (e.g., imaging, biomarkers, genetics) 
in an externally validated sample of patients. Several of these 
markers may be associated with both SCD and competing 
mortality risk, thus blunting the efficacy of SCD prevention 
tools [9]. Therefore, future work needs to specifically evalu-
ate the association of SCD risk models with both arrhythmic 
and non-SCD mortality. The ongoing PROFID project (Per-
sonalized Risk Prediction and Prevention of Sudden Cardiac 
Death After Myocardial Infarction) is aimed at understand-
ing the role of personalized multi-parameter risk prediction in 
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identifying ICD benefit in those with ischemic heart disease 
across a range of LV function [104]. Recent work highlighting 
the role of imaging (MRI, CT), invasive electrophysiological 
phenotyping, and machine learning to predict SCD underscore 
an exciting future of personalized risk prediction and mitiga-
tion. It is worth noting that the majority of this work has been 
centered in patients with ischemic heart disease, underscoring 
the ongoing gap in knowledge and uncertainty in their utility 
in other cardiovascular disease substrates.

Finally, for patients meeting contemporary guideline criteria 
for ICD implantation, there is well-established recognition that 
the majority of patients receiving an ICD for the primary pre-
vention of SCD will not use their device over the course of their 
lifetime. Increased penetrance of validated models integrating 
absolute and proportional risk (e.g., the Seattle Proportional 
Risk Model) will be important, as will use of imaging (e.g., 
absence of LGE on cardiac MRI) or biomarkers (e.g., elevated 
NT-proBNP) to identify those unlikely to benefit.

Conclusion

Sudden cardiac death remains a critical public health burden 
and is responsible for hundreds of thousands of deaths around 
the world each year. Promising studies have identified a range 
of non-invasive and invasive tools to guide SCD risk predic-
tion and prevention. To maximize the public health impact of 
ongoing efforts, future work will need to focus on identifying 
SCD prediction strategies in a broader population than contem-
porary guidelines reliant on LV ejection fraction.
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