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Abstract
Purpose of the Review  The definition of arrhythmogenic cardiomyopathy (ACM) has expanded beyond desmosomal 
arrhythmogenic right ventricular cardiomyopathy (ARVC) to include other genetic cardiomyopathies with a significant 
arrhythmia burden. Emerging data on genotype–phenotype correlations has led recent consensus guidelines to urge genetic 
testing as a critical component of not only diagnosis but also management of ACM.
Recent Findings  Plakophilin-2 (PKP2) ARVC/ACM is most likely to meet ARVC Task Force Criteria with right sided 
involvement and ventricular arrhythmias, while desmoplakin (DSP) ACM may have a normal electrocardiogram (ECG) 
and has a subepicardial LV scar pattern. Extra-desmosomal ACM including ACM associated with transmembrane protein 
43 and phospholamban variants may have characteristic ECG patterns and biventricular cardiomyopathy. Lamin A/C and 
SCN5A cardiomyopathy often have heart block on ECG with DCM, but are distinct from DCM in that they have signifi-
cantly elevated arrhythmic risk. Newer genes, especially filamin-C (FLNC) also may have distinct imaging scar patterns, 
arrhythmia risk, and risk predictors.
Summary  Recognition of these key differences have implications for clinical management and reinforce the importance of 
genetic testing in the diagnosis and the emerging opportunities for genotype-specific management of ACM patients.

Keywords  Genotype · Arrhythmogenic cardiomyopathy · Risk stratification · Arrhythmogenic right ventricular 
cardiomyopathy

Introduction

Arrhythmogenic cardiomyopathy (ACM) is an evolving  
diagnosis that has grown in recent years to encompass  
both the narrowly defined arrhythmogenic right ventricular  
cardiomyopathy (ARVC), and also more broadly non-
ischemic cardiomyopathy (NICM) with a higher than expected 
arrhythmic burden [1, 2•]. ARVC is a narrow diagnosis  
describing an often right dominant cardiomyopathy caused  
by abnormalities of the desmosomal proteins meeting a set of  
task force criteria [1]. Expert consensus has defined the genetic 
basis of ARVC, highlighting its predominant association with  
pathogenic variants in genes encoding the cardiac desmosome 
[3]. The definition of ACM includes ARVC, but is broader,  

also including biventricular and left dominant forms of disease, 
and may have extra-desmosomal genetic causes. Specially,  
an expert consensus in the field has defined ACM as diseases 
that encompass structural abnormalities (both by imaging and 
pathology) and ventricular arrhythmia [4]. There is some debate 
whether this should include only genetic forms of ACM, or any 
form of arrhythmic cardiomyopathy, regardless of underlying  
cause (such as cardiac sarcoidosis) [2•]. What is clear, and 
documented in recent practice guidelines, is that genetic testing  
is a critical piece of management in these conditions. There 
are important genotype–phenotype correlations that inform 
risk stratification for malignant arrhythmias and increasingly 
genotype-specific therapeutic approaches indicated depending  
on the underlying molecular cause [5•]. Genotype informs  
family screening as well.

The genetic basis of ACMs began with the understanding  
of the genetic basis of ARVC in the early 2000s. While 
the first diagnostic criteria for ARVC were published in  
1994 and included recognition of a familial pattern, genetic 
understanding lagged behind until the linkage of plakoglobin  
(JUP) to autosomal recessive severe ARVC in 1998 [6–8].  
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This focused etiology of ARVC to the desmosome, the protein 
structure adhering cellular junctions. From there, association 
of the more common autosomal dominant form of ARVC 
with the rest of the desmosomal proteins followed quickly 
with discovery of desmoplakin (DSP), plakophilin-2 (PKP2), 
desmoglein-2 (DSG2), and desmocollin-2 (DSC2) [9–13].  
At the same time, understanding of the genetic architecture  
of dilated cardiomyopathy (DCM) was emerging. During this 
era conduction defects were linked to the lamin A/C (LMNA) 
gene, but it would be some years before this was formally 
associated with similarly arrhythmic outcomes [14, 15]. Desmin 
(DES) was also linked to an ACM phenotype [16]. There 
were additional non-desmosomal forms of ARVC identified, 
including a founder population in Newfoundland segregating 
a transmembrane protein 43 (TMEM43) variant and the Dutch 
founder variant in the phospholamban (PLN) gene [17, 18]. 
Following, more rare forms of ACM were identified, and 
recently, filamin-C (FLNC) has emerged as a more common 
cause of a very arrhythmic biventricular cardiomyopathy that 
often looks like ARVC [16, 19–22]. Natural history and family 
reports of these all these phenotypes have overlapped and also 
varied widely. This is not surprising, as all these genetic ACMs 
are associated with incomplete penetrance and highly variable 
expressivity [4, 23]. Therefore, large numbers of each subtype 
were needed to elucidate specific patterns. Now with two 
decades of data on the natural history of genetic ACM cohorts, 
clear genotype–phenotype correlations are beginning to emerge 
(Table 1).

PKP2

Pathogenic variants in PKP2 are the most common cause of 
ACM in North America [24]. PKP2-associated cardiomyopathy 
typically presents as the most classically described form of 
ACM as a right-sided, exercise-induced, very arrhythmic 
cardiomyopathy. PKP2-ARVC is most likely to fit the diagnostic 
2010 Task Force Criteria with precordial T wave inversions 
on electrocardiogram (ECG), left bundle branch arrhythmias, 
and right ventricular dyskinesis caused by replacement with 

fibro-fatty scarring in the right ventricle, as shown in Fig. 1 
panel A [1, 24]. Homozygous and compound heterozygote 
truncating variants in PKP2 are associated with a severe 
neonatal onset cardiomyopathy with congenital heart defects 
[25, 26]. Pathogenic PKP2 variants are largely loss of function 
variants, and there is no clear association of variant type or 
location with phenotype [27]. PKP2 also has the most evidence 
to show a clear correlation between vigorous and especially 
endurance exercise and disease penetrance and progression [28]. 
New translational research shows specifically the damage to the 
desmosomal reserve in Pkp2-deficient mice under the setting of 
regular vigorous exercise [29].

DSP

Pathogenic variants in DSP were initially identified in 
association with Carvajal syndrome in the recessive form with 
severe pediatric onset cardiomyopathy and arrhythmias with 
wooly hair and palmoplantar keratoses [13]. Subsequently, 
DSP variants were commonly found in families meeting 
ARVC 2010 Task Force Criteria. It was not long, however, 
before it became clear that DSP-associated disease could look 
very different from classic right sided ARVC with a tendency 
to present with left-sided disease and elevated rates of heart 
failure [24, 30]. The term arrhythmogenic left ventricular 
cardiomyopathy (ALVC) was often used associated with DSP. 
Compared to ARVC, DSP-associated ALVC more frequently 
shows consistent late gadolinium enhancement patterns on 
cardiac magnetic resonance (CMR) imaging and is less likely 
to have precordial T wave inversions which are often the first 
sign of disease in PKP2-ARVC, Fig. 1 panel B [31]. Indeed, 
often in DSP cardiomyopathy, the ECG is near normal [32]. 
As shown in Fig. 1, the most characteristic scar pattern in 
DSP cardiomyopathy has been described as a subepicardial 
ring-like scar pattern. While imaging is critical in diagnosis as 
referenced in Fig. 1, these individuals with often left-dominant 
presentation will be less likely to meet ARVC 2010 Task 
Force Criteria [32]. Recently, it has also has been documented 
that DSP cardiomyopathy will often present with chest pain, 

Table 1   Arrhythmogenic cardiomyopathy genes and key features

DCM dilated cardiomyopathy

Gene Characteristic ECG Characteristic imaging Reference

PKP2/DSG2/DSC2 Precordial T wave inversions Right sided wall motion abnormality, late gadolinium 
enhancement (LGE) in RV and LV lateral wall

[1, 24]

DSP Normal or Lateral T wave inversions Subepicardial ring-like LV scar [31, 32]
TMEM43 Poor R wave progression Biventricular cardiomyopathy [37, 38]
PLN Low voltage Biventricular cardiomyopathy [40]
LMNA AV block DCM or biventricular cardiomyopathy [14, 44]
SCN5A AV block DCM or biventricular cardiomyopathy [48]
FLNC Normal, low voltage Subepicardial enhancement [53–55]
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significant troponin elevation, and myocarditis-like picture [33, 
34]. Scar pattern similarities between viral myocarditis and DSP 
cardiomyopathy can complicate diagnosis.

DSG2 and DSC2

Variants in DSG2 and DSC2 are the rarer causes of ARVC. 
Current evidence suggests that the phenotype is similar to PKP2  
ARVC; however, there is not sufficient current case volume 
data to draw statistically robust comparisons. Initial evidence 
suggests that DSG2-associatd ARVC may have an earlier age of 
onset than PKP2 ARVC, and be more likely to have left-sided 
involvement; however, this may be complicated by selection bias 
in tertiary referral centers [24, 30]. There are some reports that  
autosomal recessive DSC2 variants may be more common in 
Asian populations, and there is a homozygous founder variant  
in the Hutterite population [35, 36].

TMEM43

TMEM43 is a membrane protein involved in nuclear envelope 
structure outside of the desmosome. It was identified as a 
candidate gene for ARVC and founder with a common haplotype 
initially in 15 Newfoundland ARVC families [17]. There is only 
one variant proven to cause ARVC in TMEM43: p.S358L [3]. 
Functional studies have shown that the p.S358L variant affects 
the expression and distribution of proteins in the intercalated 

disc, including JUP, resulting in an ARVC phenotype [37]. This 
phenotype, however, is unique in that it is particularly penetrant, 
and significantly arrhythmic, particularly in young males. ECG 
findings may be unique with notable poor R wave progression 
more common than precordial T wave inversion. Additionally, 
in TMEM43 ARVC, there is significant LV involvement as 
well. The most unique feature of TMEM43 ARVC is that it is 
appreciated to be nearly fully penetrant, whereas desmosomal 
ARVC penetrance rates range, but are averaged 30–50% in 
ARVC families [30, 38].

PLN

PLN is a transmembrane sarcoplasmic reticulum phosphoprotein  
that is involved with regulating calcium handling and contractility  
in the cardiomyocyte. It was initially described as causing familial 
cardiomyopathy. The Dutch founder variant p.R14del, however, 
was identified in causing a particularly arrhythmic cardiomyopathy 
and phenotype similar to desmosomal ARVC [18, 39]. It was found 
to be a common cause of both ARVC and familial DCM in the 
Netherlands, in up to 15% of cases. The phenotype involves a low-
voltage ECG, and a high frequency of ventricular arrhythmias, 
but also a much higher risk of biventricular cardiomyopathy and 
end-stage heart failure than in desmosomal ARVC (Fig. 2, panel 
A) [30, 40]. As many PLN carriers may not meet 2010 ARVC Task 
Force Criteria because of the overlap with DCM, it is important to 
appreciate their high arrhythmic risk [2•, 39, 41].

Fig. 1   Example electrocardio-
gram (ECG) of a precordial T 
wave inversions in a PKP2 vari-
ant carrier and right ventricular 
basal outpouching on MRI in 
(a) compared with lateral T 
wave inversions and circumfer-
ential late gadolinium enhance-
ment (LGE) in a DSP variant 
carrier in (b)
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LMNA

LMNA is a complicated nuclear protein that has been associated 
with over 10 different clinical syndromes, including Emery-
Dreifuss muscular dystrophy and limb-girdle muscular dystrophy 
[42]. It was also described to cause a unique isolated cardiac 
phenotype with a dilated cardiomyopathy with significant 
conduction defects [14]. There have been several reports of 
LMNA carriers showing an ARVC phenotype meeting diagnostic 
criteria; however importantly, LMNA cardiomyopathy has shown 
to have signature clinical features and necessitating important risk 
stratification outside of the DCM phenotype [15, 43, 44]. LMNA 
carriers have progressive cardiac conduction defects including 
heart block (Fig. 2, panel B), and a higher risk of malignant 
arrhythmias than typical DCM patients. Risk stratification 
studies suggest that males with a pathogenic nonsense variant 
compared to a pathogenic missense variant are at increased risk 
of malignant arrhythmias [45–47]. Families with pathogenic 
LMNA variants also have a higher incidence of atrial arrhythmias 
than typically described in other ACM phenotypes [48].

SCN5A

The sodium channel (NaV1.5) is associated with wide variety 
of inherited arrhythmic syndromes [49]. Typically, SCN5A 
variants had been associated with a primarily arrhythmic 
phenotype in LongQT Type 3 and in Brugada syndrome. Case 

reports identified a specific variant that presented as a dilated 
cardiomyopathy conduction disorder with arrhythmias [19]. 
Extensive genotype–phenotype analysis in SCN5A has continued, 
and now, up to 18 different variants have been associated with 
an ACM phenotype, especially those variants located in the 
transmembrane voltage sensing domains of SCN5A. This 
phenotype is characterized by frequent ventricular ectopy, sinus 
node dysfunction, conduction defects including atrioventricular 
block, and especially atrial and ventricular arrhythmias with a 
subsequent identification of DCM. The arrhythmia appears to 
consistently precede the cardiomyopathy [49].

Recent Genes: DES, RBM20, CDH2, CTNNA3, 
and FLNC

Identification of rarer causes of familial ACM have implicated 
pathogenic changes in the desmin (DES), RNA-binding 
motif protein 20 (RBM20), cadherin-2 (CHD2), αT-catenin 
(CTNNA3), and filamin-C (FLNC) genes [16, 21, 22, 50–52]. 
Data describing these ACM phenotypes are evolving, but 
commonly these seem to be associated with a biventricular 
cardiomyopathy with a high arrhythmic risk [53]. Newer data 
suggests that FLNC variants may be associated with a range 
of specific findings including a normal ECG to more classic T 
wave inversions as seen in ARVC, and that subepicardial LV 
enhancement on MRI is common [54, 55].

Multiple Variants

Digenic, compound heterozygous and autosomal recessive 
inheritance, each of which are characterized by multiple 
pathogenic variants, have been reported to occur in an estimated 
2–4% of families with ACM [30, 56]. This has important 
implications both for phenotyping in the family, but also for 
family screening. Individuals with multiple pathogenic variants 
consistently present at younger ages, and with more severe 
phenotypes. Digenic disease may also explain an inconsistency 
in phenotype such desmosomal variant carrier who also 
has an additional pathogenic cardiomyopathy variant. This 
information is critical for family screening, as family testing 
should including all pathogenic variants, and relatives carrying 
different combinations of variants may look quite phenotypically 
dissimilar depending on their unique genotype [56].

Emerging Considerations: Genome First 
Diagnosis

With the plummeting cost of more expansive genetic testing 
and the inclusion of almost all of the ACM genes as secondary 
findings recommended to be reported by the American College 

Fig. 2   Low voltage on electrocardiogram (ECG) in a PLN variant 
carrier (a) and conduction disease in a LMNA variant carrier (b)
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of Medical Genetics (ACMG), there is a rising number of 
individuals found to carry ACM risk variants in a genome first 
approach, and often absent of any clinical or family history [57, 
58]. Studies have shown that these individuals have considerably 
reduced penetrance rates compared to members of ACM 
families in which pathogenic variants have been identified [59, 
60]. While pre-clinical cases in ACM families should follow 
published screening guidelines, in these phenotype-absent 
families, caution is warranted in interpreting these variants 
for management and risk stratification in these individuals 
[61]. It has been suggested that screening and management 
recommendations apply differently, in a less intensive manner 
in this situation [62]. This finding also highlights the likely 
relevance of environmental and potentially genetic modifiers 
on outcomes of patients with a pathogenic variant [28].

Towards Genotype‑specific Management

The data is now clear that identification of these specific ACM 
genotypes in the cardiomyopathy population is clinically 
useful, as arrhythmic risk is significantly higher in ACM 
than in typical NICM [5•]. Central themes in presentation 
are displayed in Fig. 3. There may be subtle clinical clues on 
ECG or in scar patterns to the underlying genotype, but genetic 
testing provides certainty. Furthermore, genotype-specific 
risk prediction algorithms are emerging as a way to estimate 
individualized malignant arrhythmia risk. Recent data suggest 
that there may be genotype-specific risk predictors such as scar 
burden and myocardial injury in DSP carriers, or ECG voltage 
in PLN carriers [41, 63]. Genotype-specific arrhythmia risk 
prediction models have been developed for PLN p.R14del 
ACM and LMNA cardiomyopathy and a risk calculator has 
been developed largely from a desmosomal ARVC cohort 
for prediction of incident ventricular arrhythmias (arvcrisk.
com) [41, 47, 64]. Predicting progression and incidence of 
heart failure has remained challenging in ACM. It may be that 
genotype is an important predictor of trajectory [32]. Overall, 
many ACM families are hoping for a “cure,” and while that 
may not be possible, gene-specific therapies are increasing 

in number quickly. LMNA-related DCM was one of the first 
ACM clinical trials with an investigational small-molecule drug 
targeted towards specific genotype, but many others are now in 
development [65].

In families without an identifiable genetic risk factor, 
gene finding efforts continue. Without a clear defined genetic 
phenotype, however, it is becoming increasingly likely 
that they do not have monogenetic disease, and it may be 
a confluence of multiple common genetic risk alleles and 
environmental factors. Development of polygenic risk scores 
in multiple types of cardiomyopathy may aid in management 
in these cases [66].

Discussion and Conclusions

The promise of precision medicine is finally emerging in 
ACM with enough data to establish genotype–phenotype 
correlations. Expert consensus statements agree, and genetic 
counseling and genetic testing is strongly recommended as 
part of the diagnosis and management of ACM patients [2•, 
5•, 61]. These recommendations are based upon these data that 
show clear differences in disease course and outcomes based 
on underlying genetic cause. At base, one of the most important 
considerations and utility of genetic testing is separating more 
common disease such as NICM, myocarditis, and cardiac 
sarcoidosis from genetic ACM. This has profound impact on 
patient management, especially risk stratification for malignant 
ventricular arrhythmias. There are clear recommendations that 
genetic testing is a guideline-directed part of management when 
diagnosing a genetic cardiomyopathy such as ARVC. These 
data stress the importance in identifying those with a genetic 
risk factor that may not have been otherwise suspected. Indeed, 
in many of these families due to incomplete penetrance and 
variable expressivity, 50% or more of individuals with a genetic 
ACM may not have any clear family history of disease [30]. As a 
result, increasingly experts are recommending genetic testing in 
any suspected arrhythmic cardiomyopathy presenting under the 
age of 50, and in many myocarditis cases, especially those with 
recurrent episodes and young age of presentation [34].

Fig. 3   Central illustration of 
gene presentation and overlap
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Identification of a genetic cause of an individual’s 
ACM also has critical downstream importance in family 
screening. Sudden cardiac death can be and is often the first 
symptom of disease in ACM. Therefore, identification of 
those at risk and regular screening is a life-saving result of 
genetic testing in these families. Furthermore, understanding 
genotype–phenotype correlations is also important in family 
screening, such as exercise modification in desmosomal 
ARVC, and screening for not only ventricular but also atrial 
arrhythmias in SCN5A and LMNA variant carriers [2•].

Going forward, data will continue to accumulate to refine our 
understanding of both ACM genotype:phenotype associations 
and also the interplay of genotype and environmental modifiers 
on ACM onset and trajectory. Individuals with genetic ACM 
are recommended by practice guideline to be followed in 
multidisciplinary expert centers who maintain an updated 
understanding of the latest genotype–phenotype data to incorporate 
into patient and family management [67]. On the horizon, however, 
is more complicated genotype interpretation in the non-Mendelian 
forms of cardiovascular disease, and the rise of polygenic risk 
scores for cardiac disease. The field will need to adapt once again 
to integration of this data into patient and family management.
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