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Abstract

Purpose of Review The replenishment of lost or damaged myocardium has the potential to reverse heart failure, making heart
regeneration a goal for cardiovascular medicine. Unlike adult mammals, injury to the zebrafish or neonatal mouse heart induces a
robust regenerative program with minimal scarring. Recent insights into the cellular and molecular mechanisms of heart regen-
eration suggest that the machinery for regeneration is conserved from zebrafish to mammals. Here, we will review conserved
mechanisms of heart regeneration and their translational implications.

Recent Findings Based on studies in zebrafish and neonatal mice, cardiomyocyte proliferation has emerged as a primary strategy
for effecting regeneration in the adult mammalian heart. Recent work has revealed pathways for stimulating cardiomyocyte cell
cycle reentry; potential developmental barriers for cardiomyocyte proliferation; and the critical role of additional cell types to
support heart regeneration.

Summary Studies in zebrafish and neonatal mice have established a template for heart regeneration. Continued comparative
work has the potential to inform the translation of regenerative biology into therapeutics.
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Introduction

Current therapeutics for heart failure largely seek to ameliorate
symptoms or limit the progression of disease. For instance,
loop diuretics are used for symptomatic decongestion, and
[3-adrenergic receptor blockers attenuate pathologic remodel-
ing due to an activated sympathetic nervous system. Even
those patients who respond to guideline-directed medical ther-
apies are considered to be in remission and are committed to
complex medical regimens indefinitely for fear of relapse [1,
2]. For the select patients with end-stage heart failure that are
eligible for advanced therapies, treatment with mechanical
circulatory support or transplantation carries considerable
morbidity. By contrast, strategies that could replace lost or
dysfunctional myocardium through tissue regeneration offer
the potential to fundamentally reverse heart failure.

A remarkable ability of adult zebrafish is their high capac-
ity for tissue regeneration. Scarless regeneration after resec-
tion of the ventricular apex in zebrafish was first described by
Poss et al. in 2002 [3]. Zebrafish heart regeneration has since
proved to be robust through a variety of injuries, including
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apical resection, cryoinjury, and genetic ablation of
cardiomyocytes (CMs) [3—6]. Although the zebrafish heart is
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two-chambered, studies in zebrafish are highly applicable to
the mammalian heart, having greatly influenced our under-
standing of heart development [7, 8]. Indeed, one decade after
the description of zebrafish heart regeneration, a similar re-
generative response to ventricular resection was described in
neonatal mice [9]. The murine capacity for regeneration is
stage-specific, limited to the early neonatal period and absent
in adulthood. Heart regeneration has now been described in
neonatal pigs and even suggested for the neonatal human
heart, pointing to a conserved regenerative program across
fish and mammals [10-12] (Fig. 1a). Redeploying this regen-
erative program in the adult mammalian heart is considered a
primary approach for achieving therapeutic heart regenera-
tion. Here, we will review mechanisms for heart regeneration
that are conserved from zebrafish to mammals and discuss
potential implications for translation (Fig. 1b).

Cellular Mechanisms of Heart Regeneration

After the first descriptions of zebrafish heart regeneration,
questions about the cellular sources for regenerating myocar-
dium were in the forefront. Over the past two decades, these
cellular mechanisms have been largely clarified in zebrafish
and neonatal mice, establishing important themes for heart
regeneration.

Cardiomyocytes Beget New Cardiomyocytes Proliferating
CMs can be identified in the border zone of the injured
zebrafish heart within a few days of injury [3]. Genetic fate-
mapping experiments in zebrafish, during which cells and
their progeny are indelibly labeled with a genetic marker, have
shown new CMs to be derived from preexisting CMs, without
evidence for a major stem cell contribution [13—15]. This
finding was surprising at the time, because multiple groups
had suggested a progenitor cell, resident within the myocardi-
um or within the bone marrow, to effect cardiomyogenesis in

Fig. 1 A roadmap to heart a
regeneration. a Capacity for heart
regeneration by species. Zebrafish
and neonatal mice have a high
capacity for regeneration while
adult mammals have little-to-no
ability for regeneration after
injury. b Conserved mechanisms
for cardiomyocyte proliferation in
zebrafish and neonatal mice. b

the mammalian heart [16—18]. In 2011, Porrello et al. demon-
strated that neonatal mice, in the first few days of life, can
regenerate their hearts after resection of the left ventricular
apex [9]. Like zebrafish, CM proliferation was noted as a part
of the injury response. Fate-mapping experiments in neonatal
mice also suggested that preexisting CMs were the source of
newly formed myocardium rather than a progenitor cell pop-
ulation. Shortly after the description of heart regeneration in
the neonatal mouse, fate-mapping technologies for the adult
mouse heart evolved with the conclusion that low numbers of
new CMs in the adult heart are primarily derived from
preexisting CMs [19]. As a result, methods to stimulate pro-
liferation of CMs have emerged as a dominant strategy to
effect therapeutic heart regeneration, making a better under-
standing of the mechanisms that regulate CM cell cycle reen-
try of significant importance [20].

CM Cell Cycle Reentry Is Modulated by Physiological, Genetic,
and Structural Factors Heart regeneration in zebrafish is re-
markably robust. Loss of up to 60% of the CMs in the adult
zebrafish heart can be overcome by innate regenerative re-
sponses [4]. By contrast, the adult mammalian heart has
little-to-no ability for CM proliferation and endogenous regen-
eration. Comparative studies of the zebrafish and the mamma-
lian heart have provided important insights into factors that
might affect the proliferative capacity of adult mammalian
CMs.

Tissue hypoxia is an important modifier of CM cell cycle
reentry. After injury to the zebrafish heart, CMs adjacent to
the wound become relatively hypoxic [21]. Experimental hyp-
oxia can boost CM proliferation during zebrafish heart regen-
eration by almost 50%. Because the zebrafish and fetal mouse
heart have ~ 70% less arterial oxygen content than the adult
mammalian heart, Puente and colleagues reasoned that oxy-
gen tension could mediate cell cycle arrest of cardiomyocytes
[22]. Consistent with their hypothesis, experimental hypoxia

Capacity for heart regeneration
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more than doubles CM proliferation, and hyperoxia sup-
presses CM proliferation by nearly 7-fold in neonatal mice.
Mechanistically, oxygen tension regulates the cell cycle in
CMs by increasing reactive oxygen species and inducing a
DNA damage response. Impressively, hypoxia induced 1
week after experimental myocardial infarction in adult mice
results in increased CM cycling and functional recovery [23¢].
While prolonged hypoxia may not be feasible for patients with
heart failure, manipulation of the pathways that regulate
hypoxia-induced CM proliferation could be an attractive tar-
get for therapeutics.

A second potential barrier to mammalian heart regeneration
is polyploidization. Unlike proliferating zebrafish CMs which
complete cytokinesis, proliferating CMs in the adult mamma-
lian heart preferentially undergo endomitosis (DNA synthesis
without cytokinesis). In fact, CMs in the zebrafish heart are
mononuclear and diploid while many adult mammalian CMs
are multinucleated or polyploid [24, 25]. The tendency for
polyploidization makes regenerative responses after injury
less efficient in the adult mammalian heart, because ~ 97%
of the rare cycling CMs in the adult mammalian heart fail to
undergo cytokinesis [19]. Several functional experiments
point to polyploidization as a significant impediment to heart
regeneration. Using a combination of genetic fate-mapping
and genetic methods to induce polyploidization, Gonzalez-
Rosa et al. found diploid CMs to preferentially regenerate
the zebrafish heart after ventricular resection [26°].
Importantly, zebrafish hearts with > 45% polypoid CMs
formed large scars after ventricular resection, establishing a
threshold for polyploidization beyond which regeneration is
impaired. Similarly, genetic deletion of the nuclear filament
protein Lmnb2 from CMs of neonatal mice induces
polyploidization and subsequently impairs regeneration
[27¢]. Conversely, viral overexpression of Lmnb2 increases
CM proliferation and enhances regeneration after cryoinjury.
Thus, approaches that can overcome the polyploidy barrier are
likely to result in more efficient therapeutics.

Sarcomere density may be among the array of factors that
limit the mitotic potential of adult mammalian CMs. A cardinal
feature of proliferating CMs in zebrafish and neonatal mice is
loss of sarcomeric structures [14, 15]. Mechanisms for sarcomere
dissolution in the zebrafish heart include increased autophagy
and epigenetic repression of sarcomeric genes. Interference with
either of these pathways compromises the regenerative ability of
zebrafish [28, 29¢¢, 30¢]. While analogous studies have yet to be
done in the adult mammalian heart, recent work has suggested
that mechanical unloading of the human heart with a left ventric-
ular assist device (LVAD) is associated with reversal of hyper-
trophy and increased markers of CM DNA synthesis and cyto-
kinesis [31].

Developmental Programs Are Reactivated During Heart
Regeneration A distinct feature of zebrafish heart regeneration

is the re-expression of factors typically found in the fetal heart.
Genetic fate-mapping of CMs that upregulate the develop-
mental transcription factor gata4 demonstrate that these
dedifferentiated CMs are primarily responsible for the newly
formed muscle after apical resection [14]. More recently, ge-
netic fate-mapping of cells marked by the neural crest marker
sox10, suggest that less developmentally mature CMs in gen-
eral more efficiently contribute to regeneration [32, 33].
Dedifferentiation of adult CMs is likely to be required for
zebrafish heart regeneration. Inhibition of BMP signaling or
myocardial NF-k[3, which has been associated with reactiva-
tion of developmental factors, limits CM proliferation and
regeneration [34, 35]. Similarly, inhibition of gata4 signaling
by expression of a dominant negative version of gata4 atten-
uates CM proliferation and regeneration in zebrafish [36].

The concept of dedifferentiation has informed approaches to
rescue CM proliferation defects in adult mammals. Several
groups have used knowledge of developmental pathways regu-
lating CM hyperplasia to develop potential methods for adult
heart regeneration. For instance, 7bx20 and YAP are transcrip-
tion factors with key roles in CM growth during development
that have been redeployed in the adult mammalian heart to pro-
mote CM proliferation [37-42]. Repression of the Hippo path-
way, and activation of YAP in particular, is a promising method
for effecting heart regeneration as multiple embryonic growth
pathways, including Erbb2 signaling and IGF signaling, appear
to have YAP activation in common [43, 44].

Non-Cardiomyocyte Populations Are Critical to Heart
Regeneration Despite a focus on CMs, zebrafish heart regen-
eration is an intricately orchestrated program involving multi-
ple tissue types. Interference with cardiac endothelial cells,
epicardial cells, inflammatory cells, or nerves can suppress
CM proliferation and limit regeneration [45-48]. How non-
cardiomyocyte populations influence and shape regeneration
of the mammalian heart is the subject of ongoing research.

Cardiac endothelial cells are among the first cells to infil-
trate the wound, forming nascent vessels within hours of in-
jury [46]. Interestingly, inhibition of several signaling path-
ways that mediate revascularization, such as vegfaa, retinoic
acid, and Fgf signaling also result in CM proliferation defects
[46, 49, 50]. Recent work using cell-type specific tools have
directly linked cardiac endothelial responses to CM prolifera-
tion. For example, inhibition of endocardial Notch signaling
directly leads to reduced CM proliferation after injury by mod-
ulating the Wnt rheostat around regenerating myocardium
[S1e]. In addition to supporting CM proliferation, revascular-
ization of the injury site may shape regeneration by providing
a scaffold for cardiomyogenesis [52¢¢]. Thus, revasculariza-
tion strategies may be an important adjunct to therapeutics that
stimulate CM proliferation.

The epicardium comprises the outer mesothelial covering
of the heart. Injury to the zebrafish heart activates the

@ Springer



29 Page4of9

Curr Cardiol Rep (2021) 23: 29

epicardium, as evidenced by rapid molecular and morphologic
changes [49, 53]. Activated epicardial cells migrate to cover
and infiltrate the injured area, ultimately giving rise to mural
cells, fibroblasts, and additional epicardial cells [54, 55]. Like
development, the epicardium and epicardial-derived cells
serve important paracrine functions during zebrafish heart re-
generation [56]. Ablation of the epicardium in the context of
injury blunts revascularization and CM proliferation, demon-
strating its importance to a regenerative program in zebrafish
[45]. Mechanistically, epicardial-derived cells are a source for
growth factors, such as nrgl and neuropilins, and extracellular
matrix [57-60]. In the postnatal mammalian heart, epicardial
responses to injury appear to be less dynamic than in
zebrafish, raising the possibility that augmenting epicardial
responses to injury might enhance the regenerative potential
of the mammalian heart [50, 61]. Along these lines, condi-
tioned media from epicardial cultures has been used to screen
for mitogens of mammalian CMs, leading to the identification
of FSTLI as a factor able to induce CM proliferation in adult
mice and pigs [62].

After injury to the zebrafish heart, the inflammatory re-
sponse is initially dominated by neutrophils but gives way to
macrophages and leukocytes 1 week after cryoinjury [63¢].
This transition to a macrophage response is critical to regen-
eration. For example, medaka, a non-regenerative fish, have
delayed recruitment of macrophages to the injury site com-
pared to zebrafish. Accelerating macrophage recruitment by
chemical stimulation of TLR signaling can partially rescue
regeneration defects in medaka [63¢¢]. Analogously, chemical
inhibition of the macrophage response in neonatal mice results
in regeneration defects with reduced neovascularization [48].
The quality of the macrophage response is likely to modulate
regeneration, as distinct sets of pro-regenerative and pro-
fibrotic populations have been identified in both zebrafish
and neonatal mice [64—66]. Along with the macrophage re-
sponse, the T cell response also regulates regenerative capac-
ity, with ablation of Treg-like cells compromising heart regen-
eration [67]. Of great interest, the Treg-like response appears
to be dynamic and capable of enhancing regenerative pro-
grams through upregulation of tissue-specific mitogens.
Together, these data raise the possibility of manipulating the
inflammatory response to injury in order to influence the ca-
pacity for tissue repair.

Conserved Signaling Pathways for Reactivating
Endogenous Cardiac Regeneration

As the cellular contributions to heart regeneration are under-
stood, key pathways that underlie regeneration are emerging.
Because manipulation of these pathways can lead to methods
for therapeutic heart regeneration, knowledge of how these
pathways affect cardiac growth and homeostasis across devel-
opmental stages in the mammalian heart is essential. Here, we
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will discuss several pathways that are conserved from
zebrafish to mammals and their potential for translation.

Neuregulin 1/Erbb2 Nrgl was originally identified from con-
ditioned media as a growth factor capable of inducing phos-
phorylation of the proto-oncogene Erbb2 [68]. Nrgl and
Erbb2 knockout mice were found to have hypoplastic hearts
with impaired trabeculation, suggesting that Nrg1/Erbb2 sig-
naling regulates CM proliferation during development [69,
70]. Subsequent studies have demonstrated that recombinant
NRGT can stimulate proliferation of adult rat CMs in vitro and
enhance functional recovery of mice after experimental infarc-
tion [71]. However, mice treated with NRG1 after infarction
had only ~ 0.2% of CMs with evidence of cell cycle reentry,
suggesting that the beneficial effects of NRG1 on cardiac
function were not entirely due to regeneration. To better de-
fine the effect of nrg/ on CM hyperplasia, Gemberling et al.
generated transgenic zebrafish to conditionally overexpress
nrgl from CMs [57]. They found that nrgl overexpression
resulted in an ectopic regeneration program with massive CM
proliferation. To better understand why NRG1 effects on CM
proliferation are not as potent in adult mice compared to
zebrafish, several groups have examined the kinetics of
Erbb?2 expression, finding Erbb2 to be developmentally
downregulated in adult mice [43, 72]. Accordingly, NRGI is
able to more potently stimulate regeneration in neonatal mice
and has been proposed as a potential therapeutic for pediatric
patients [73]. Indeed, recombinant NRGI is able to stimulate
proliferation of pediatric human CMs [73]. However, the ab-
sence of Erbb2 in the adult heart limits the use of NRGI as a
primary strategy for adult heart regeneration and may limit
other strategies that depend on Erbb2 for their mitogenic ef-
fects, such as the use of vitamin D [74]. Instead, re-expression
of an activated Erbb2 could be a more tenable therapeutic
option [43, 75, 76].

Insulin-Like Growth Factors Insulin-like growth factors (IGFs)
are structurally related to insulin and influence organ growth.
During zebrafish heart regeneration, IGFs are dynamically
induced [77]. igf2b transcripts are upregulated by 2—3-fold
in the wound within 3 days of injury. Functional inhibition
of Igf signaling with a pharmacologic inhibitor or by expres-
sion of a dominant negative igf7r decreases CM proliferation
by nearly 50%, highlighting the important contributions of Igf
signaling to zebrafish heart regeneration [77].

Recent work has demonstrated an analogous role for IGF
signaling during neonatal heart regeneration. Genetic deletion
of Igf2 from the neonatal mouse heart decreases CM prolifer-
ation by nearly 60% and results in larger scars after injury
[78]. Unlike the developing heart in which /gf2 is an
epicardial-derived CM mitogen, cardiac endothelial cells are
the probable source for /gf2 during murine heart regeneration.
Interestingly, in mice, IGF2 effects are thought to be mediated
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through its interaction with the INSR rather than IGFIR,
which differs from zebrafish [77, 78]. Recent work has sug-
gested that stabilizing Igf2 transcripts by overexpressing
Igf2bp3 can augment regenerative responses in neonatal mice
outside of the regenerative window [79]. Therefore, enhanc-
ing IGF2 signaling is a potential mechanism to stimulate heart
regeneration. Indeed, exogenous IGF2 enhances cardiac func-
tion and reduces scarring following experimental infarction in
adult mice [80]. However, additional work is needed to deter-
mine whether these effects are attributable to heart
regeneration.

VEGF Therapeutic inhibition of VEGF signaling has been lever-
aged for the treatment of various malignancies. However, efforts
to use VEGF and other angiogenic factors for the treatment of
ischemic disease have not been as successful, probably related to
ineffective delivery mechanisms and narrow therapeutic indices
[81]. Indeed, subtle changes to Vegfa levels in mice lead to
developmental defects, including cardiomegaly and aberrant cor-
onary vascularization [82]. In the regenerating zebrafish heart,
vegfaa is rapidly upregulated by cardiac endothelial cells at the
site of injury and leads to rapid revascularization of the wound
[46, 83¢]. Transgenic overexpression of a dominant negative
vegfaa inhibits revascularization, CM proliferation, and regener-
ation, highlighting the importance of sentinel revascularization to
the regenerative program [46]. We recently demonstrated that
overexpression of vegfaa from CMs results in both
hypervascularization and ectopic cardiomyogenesis with hall-
marks of a regenerative program [83¢]. To determine how vegfaa
might influence regeneration, we resected the ventricular apex of
vegfaa-overexpressing hearts. These hearts misexpressed vegfaa
throughout the heart compared to the local expression of vegfaa
at the site of injury under endogenous conditions. Despite in-
creased global CM proliferation and tissue growth adjacent to
the wound, we observed diminished tissue regeneration at the
resection site with global vegfaa overexpression. Our work indi-
cates a regulatory role of vegfaa to instruct revascularization and
tissue morphogenesis within the injured zebrafish heart.

Prior work has shown that Vegfa can improve cardiac func-
tion after experimental infarction in mice and pigs [81, 84].
However, formal linkage to an innate regenerative program is
lacking. Nevertheless, Vegfa gain of function has a renewed
interest for the treatment of ischemic heart disease, and new,
more efficient delivery methods are being developed [85, 86].
Based on our work in zebrafish, the timing and domain of Vegfa
treatment are likely to be critical determinants of efficacy.

CXCL12/CXCR4 In addition to Vegfa, alternate approaches for
manipulating revascularization responses have emerged through
studies of heart development and regeneration. CXCL12 is a
chemokine that interacts with the G protein—coupled receptor
CXCR4 to regulate the formation of coronary arteries in
zebrafish and mice [87, 88]. During regeneration, cxcr4a” arterial

coronary endothelial cells follow cxc/12 expressing mural cells to
revascularize the injured area [83¢]. Functionally, cxcr4a mutant
fish fail to regenerate their hearts after injury with defects in
revascularization [83¢]. In the neonatal mouse heart, CXCL12/
CXCR4 signaling mediates collateral artery formation from cor-
onary arteries, a process that is required for intact regeneration
[89¢]. Importantly, this collateral artery formation does not occur
in the adult mammalian heart and exogenous CXCL12 can res-
cue collateralization after experimental infarction in adult mice
[89, 90]. Thus, CXCL12 supplementation may be a therapeutic
revascularization strategy, potentially with regenerative
implications.

Extracellular Matrix Extracellular matrix (ECM) has long been
known to facilitate microenvironments by sequestering growth
factors in niches. During zebrafish heart regeneration, the ECM
is dynamic. For example, treatment of mice with decellularized
extracts from regenerating zebrafish hearts, but not uninjured
hearts, has been reported to increase cellular proliferation after
infarction [91]. Analogously, treatment of CMs with
decellularized extracts from early neonatal mice is able to stim-
ulate CM proliferation [92¢]. Remarkably, much of the effect
from neonatal mouse extracts can be recapitulated with the ex-
tracellular proteoglycan Agrin. Agrin is critical to regeneration
in vivo as genetic deletion of Agrn results in reduced heart func-
tion, increased fibrosis, and decreased CM proliferation after
resection of the neonatal mouse heart [92¢]. After myocardial
infarction, recombinant Agrin is able to stimulate CM cell cycle
reentry and reduce scarring in both juvenile and adult mice,
suggesting that Agrin can enhance regeneration independently
of developmental stage [92¢]. Mechanistically, Agrin exerts its
effects on CM proliferation through YAP signaling [92¢]. Of
translational interest, Agrin can induce the proliferation of human
iPSC-CMs and improve cardiac function of the infarcted porcine
heart [92¢, 93¢]. Overall, these results indicate the therapeutic
potential of Agrin in human cardiac disease and the need for
further research on the role of other ECM components in cardiac
regeneration.

Tissue Regeneration Enhancer Elements Among the most po-
tent preclinical stage methods for inducing heart regeneration are
suppression of Hippo signaling with activation of YAP, ectopic
expression of an activated version of the Nrgl signaling interme-
diary Erbb2, and expression of transcription factor combinations
for coaxing adult CMs to reenter the cell cycle [41, 43, 94-96].
Such approaches are not easily “druggable’” but could be de-
ployed via gene therapy. However, gene therapy for the heart
requires careful spatiotemporal control to minimize potential off-
target effects caused by stimulating growth pathways in distal
tissues. Recent work in zebrafish has inspired methods for tight
spatiotemporal control of factor expression through the identifi-
cation of Tissue Regeneration Enhancer Elements or TREEs [97,
98]. TREEs are discrete DNA regulatory sequences originally
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identified in the zebrafish heart by epigenetic profiling and his-
tone replacement profiling of regenerating tissue. TREEs can be
used to spatiotemporally target expression to injured tissues. In
proof of concept studies, a TREE for the injury-induced gene,
lepb, was able to drive expression of nrgl after injury in
zebrafish, leading to increases in CM proliferation. Importantly,
TREEs in zebrafish have activity in the neonatal mouse heart, but
analogous work in the adult mouse heart has yet to be reported.
Injury response elements for other cardiac tissues have also been
reported and thus a catalog of elements may be one approach for
spatiotemporal expression of multiple factors across multiple cell
types to recapitulate a heart regeneration program [99].

Conclusions

Once considered to be a post-mitotic organ, the adult mam-
malian heart is now known to harbor a limited potential for
self-renewal. Such low-grade responses are insufficient to re-
sult in meaningful recovery after injury. However, mecha-
nisms for zebrafish and neonatal murine heart regeneration
have provided key insights for enhancing the regenerative
capacity of the adult mammalian heart including (1) a renewed
focus on stimulating CM proliferation; (2) the identification of
barriers that limit the efficiency of CM proliferation; and (3)
potential targets for achieving therapeutic heart regeneration.
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