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Abstract
Purpose of Review Conventional risk stratification algorithms that rely on age, clustered phenotypic traits, and biomarkers under-
recognize the sizeable subgroup of individuals at high polygenic risk for atherosclerotic cardiovascular disease (ASCVD). This
review provides perspective on the promising role of genetic testing in cardiovascular prevention through the lens of lipid
metabolism.
Recent Findings Recent advances in cardiovascular genetics identified a number of common and rare variants affecting ASCVD
risk. This genetic susceptibility can be assessed by polygenic risk scores (PRS) which quantify risk conferred by the cumulative
impact of common variants. This results in a normally distributed spectrum of risk for coronary artery disease that is present at
birth and amplifies the effects of modifiable risk factors including lipids.
Summary Polygenic risk is a significant determinant of ASCVD risk that is below the discrimination level of conventional
guideline-based clinical frameworks. Genetic risk scores thus hold potential to refine phenotypic screening in cardiovascular
prevention, identify subsets of the population that might derive particular benefit from early lifestyle and pharmaceutical
interventions, and guide treatment eligibility. This might pave the way to personalized prevention aimed at reducing the
unacceptable global burden of ASCVD.
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Introduction

Despite major technological and pharmacological advances in
cardiovascular medicine, atherosclerosis and its clinical

manifestations remain the leading causes of death worldwide.
Atherosclerosis is a multifactorial, systemic process that pro-
gresses at various rates in many vascular territories. It is a
consequence of genetic predisposition and exogenous risk
factors, whose cumulative effects become evident in the arte-
rial wall over a lifetime and are best reflected by chronological
aging, the strongest “risk factor” [1–3]. Acute clinical mani-
festations of atherosclerotic cardiovascular disease (ASCVD)
are triggered by subsets of atherosclerotic lesions [4]. Such
lesions are often found in individuals with a genetic disposi-
tion and in distinct metabolic phenotypes characterized by
metabolic and inflammatory processes that are promoted by
ectopic adiposity and associated high-risk traits [5–7]. Thus,
numerous exposures, heritable [8] and acquired [2], and their
interplay (epigenetics, i.e., genome-exposome interactions)
[9••] modulate a given individual’s risk of developing athero-
sclerotic cardiovascular disease (ASCVD).

New technologies have significantly advanced our under-
standing of the underpinnings of the genetic architecture of
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ASCVD [10]. Common and rare genetic variants trigger caus-
al pathways involving low-density lipoproteins (LDL),
triglyceride-rich lipoproteins (TRL), lipoprotein(a) [Lp(a)],
blood pressure, inflammation, and endothelial function in-
cluding nitric oxide signaling [11–13]. Dyslipidemias are
among the most extensively studied of the genetic exposures
that underlie increased heritable susceptibility for ASCVD. In
th i s regard , the re ten t ion and accumula t ion of
apolipoproteinB-containing particles (apoB) within the arteri-
al intima are the fundamental step that initiates the develop-
ment of atherosclerotic lesions and in large part drive the in-
flammatory response [14–17]. The rate of progression of ath-
erosclerosis is largely determined by the concentration of
apoB particles within the arterial lumen over a given period
of time, i.e., the cumulative exposure. In conjunction with
insights from observational epidemiology, genetics [18], and
clinical intervention studies [14, 15], current treatment guide-
lines strongly encourage lowering of apoB, including very
low-density lipoproteins (VLDL), intermediate density lipo-
proteins (IDL), low-density lipoproteins (LDL), and Lp(a) as a
major cornerstone in cardiovascular prevention [19].

While the paradigm “the lower, the better” has been
broadly adopted for treating LDL particle-associated risk
[19], the conceptual model of risk by lifetime exposure
awaits clinical implication. Indeed, fatty streaks are initiated
with apoB retention at a young age, suggesting that preven-
tive measures should be advised prior to disease manifesta-
tion. Regarding the obvious request for “the earlier, the bet-
ter,” it becomes the central question who benefits from such
long-term intervention. Genetics, which are in place (and
can be determined) already at birth, may help to guide such
recommendations. Likewise, it is evident that acquired as
well as inherited risk factors act multiplicatively [20, 21].
Specifically, a person at extreme risk for one, e.g., inherited
risk factor experiences larger benefits from treatment of
(another) modifiable risk factor, supporting the paradigm
“the broader, the better” as depicted in Fig. 1 [22, 23].
The latter concepts, however, receive limited attention by
our current risk stratification approaches which thereby fail
to identify at young age a sizeable proportion of individuals
at high subsequent risk for cardiovascular events [5]. This
results in missed opportunities for primordial prevention by
intensification of lifestyle intervention and/or pharmacother-
apy in high-risk individuals.

In this review, we aim to provide perspective on the role of
genetic risk scores in the determination of treatment strategies
to control dyslipidemias. We discuss the potential of genetic
testing as an adjunct to standard risk factor algorithms based
on phenotypic screening for detection of high-risk patients
who are candidates for interventions aimed at preventing ma-
jor adverse cardiovascular events. Furthermore, we outline the
challenges and unmet needs that remain to be addressed be-
fore these algorithms can be introduced in the clinical setting.

Dyslipidemias and Atherosclerotic
Cardiovascular Disease Risk

Lifetime Exposure Model - the Concept of Cumulative
Exposure

The lifetime exposure model supposes that atherosclerosis—
and by extension ASCVD risk—is a function of absolute
magnitude plus cumulative duration of exposure to apoB in
conjunction with all other risk factors [14, 15, 24]. This model
is based on evidence from clinical intervention trials, genome-
wide association studies (GWAS), and natural experiments
that collectively suggest that the clinical benefit is proportion-
al to the absolute magnitude and the duration of apoB and/or
LDL-C reduction, in context with other measures of ASCVD
risk [24, 25].

Limitations of Current Risk Calculators

There are major limitations to the conventional paradigm of
using calculated risk for assessing cardiovascular risk, and by
extension, selection of individuals for preventive therapies.

The major determinant of risk to suffer from an event with-
in 5–10 years in current risk calculators is age. Consistent with
this notion, the majority of those eligible for primary preven-
tion of ASCVD on the basis of risk calculators are aged >
60 years [26]. However, almost 50% of cardiovascular events
in men and almost one-third in women occur before the age of
60 years [26], indicating disadvantages for those who are
young. Second, interference with the chronic process leading
to ASCVD implies the necessity for early—i.e., preventive—
treatment, which is missed if young people fail to qualify
because their short-term risk passes defined thresholds only
later in life. Third, conventional strategies for assessing CAD
risk and for guiding statin eligibility in cardiovascular preven-
tion do not entirely capture genetic susceptibility to CAD [27].
Aragam and colleagues recently demonstrated that polygenic
risk for ASCVD acts largely independently of the ACC/AHA
Pooled Cohort Equations used to calculate 10-year risk. Thus,
current guideline-based clinical risk assessment algorithms do
not optimally reflect risk [27], particularly in those who are
young and at high genetic risk.

Potential Role of Genetics in Lipid Metabolism

In the past years, large-scale genetic studies led to the discov-
ery of more than two hundred genomic variants which are
causally associated with CAD risk [28–34]. While approxi-
mately half of the variants are located within chromosomal
regions that harbor genes which do not have a known role in
the pathophysiology of the ASCVD, a considerable amount
could be attributed to inflammatory pathways, NO-cGMP sig-
naling, or traditional risk factors, e.g., blood pressure or lipid
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metabolism. For an overview, see [11–13]. Despite the devel-
opment of novel therapeutic strategies, findings from such
studies are expected to tailor treatment strategies and improve
risk stratification [35, 36]. Indeed, risk stratification of indi-
viduals based on inherited DNA variation compared with phe-
notypic screening has demonstrated clinical superiority for
more accurate risk estimation for the reasons outlined below
[37, 38].

First, serial lipid measurements demonstrated in car-
riers of mutations typical for familial hypercholesterol-
emia (FH) a higher risk than in people with similar
LDL-C levels lacking such mutations. An explanation
may be a higher exposure to LDL-C in early age in mu-
tation carriers as compared with non-carriers [39]. There
is emerging evidence that this concept might also hold
true for elevated levels of triglycerides as damaging

mutations in the lipoprotein lipase (LPL) gene have been
shown to be significantly associated with CAD risk [40].

Second, certain FH genotypes seem to confer a greater risk
of CAD than others. Abul-Husn and colleagues found that
increased odds of premature CAD in FH mutation carriers
were most pronounced in carriers of LDL-receptor (LDLR)
loss-of-function variants [41].

Third, the reliance on LDL-C levels for identification of
high-risk patients and/or cascade screening may be inaccurate
because there is substantial overlap between genotype-
positive and genotype-negative individuals, and clinical
criteria may no longer be present in patients treated with lipid
lowering medication [41, 42].

Fourth, in certain jurisdictions, genetic testing is required
for determining eligibility for insurance coverage of costly
pharmaceutical agents such as PCSK9 inhibitors [43].

Fig. 1 Key concepts with respect to diagnosis and prevention of ASCVD
risk. True prevention requires intervention before any disease
manifestation. This may be achieved by implementing genetics as a
diagnostic tool which allows “earlier” treatment. The multiplicative
effects of CV risk factors and genetic disposition ask for a “broader”
approach involving neutralization of as many factors as possible.

Finally, signs of disease manifestation, e.g., by imaging, ask for
intensive treatment leading to “lower” levels of apoB particles in
conjunction with treatment of all other modifiable risk factors (The
DNA-helix is reproduced from Servier Medical Art by Servier, which is
licensed under a Creative Commons Attribution 3.0 Unported License;
https://smart.servier.com/)
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Genetics of Cardiovascular Diseases Through the Lens
of Genetics of Lipid Metabolism

The Monogenic Model

The genetic basis of ASCVD risk has been largely constrained
to carriers of rare monogenic mutations. Regarding lipids,
truncating mutations in one of five genes confer a markedly
increased risk for premature ASCVD: low-density lipoprotein
receptor (LDLR) [44–46], lipoprotein lipase (LPL) [40],
Apolipoprotein A5 (APOA5) [46], Apolipoprotein(a) (LPA)
[47], and proprotein convertase subtilisin/kexin type 9
(PCSK9) [48]. These mutations are typically associated with
a distinct lipid phenotype exposing markedly elevated LDL-C
(LDLR, PCSK9), triglycerides (LPL, APOA5), and Lp(a)
(LPA), respectively.

FH is the most common monogenic disease affecting hu-
mankind, with a prevalence of approximately 1 in 300 in the
general population and an up to 10-, 20-, and 23-fold higher
prevalence in certain subgroups with ischemic heart disease
(IHD), premature IHD, and severe hypercholesterolemia [49].
This autosomal dominant genetic disorder is largely caused by
pathogenic mutations in genes that encode proteins involved
in the process of LDL particle clearance (LDLR, APOB,
PCSK9) [50]. As a result of the molecular defects, carriers
are exposed to lifelong high levels of apoB resulting in sub-
stantially elevated risk for premature ASCVD [39].

The Polygenic Model

Interestingly, in individuals with an LDL-C ≥ 190 mg/dl, FH
mutations were found in less than 2% [39]. Similarly, only 4%
of individuals with myocardial infarction (MI) at an early age
(defined as ≤ 50 years in males and ≤ 60 years in females)
carried a monogenic mutation [46]. Thus, from a population
perspective, monogenic causes account for a relatively small
proportion of genetic risk. This raises concerns that a mean-
ingful number of individuals might not be identified by
screening strategies focused on mutations in the protein cod-
ing sequence [51].

Genetic susceptibility to common complex diseases, in-
cluding CAD, seems to be largely determined by many com-
mon DNA variants (i.e., single-nucleotide polymorphisms,
SNPs) of small effect size [11, 32, 52].

While in monogenic diseases, usually a strong correlation
between risk genotype and risk phenotype exists, blood bio-
markers are typically unremarkable in polygenic disorders. As
a consequence, while carriers of monogenic disorders are of-
ten detected clinically (based on their typical phenotype such
as elevated LDL-C in, e.g., FH), individuals with high poly-
genic at risk remain unaware of their risk [11].

A high polygenic risk score (PRS) in contrast reflects the
combined effect of various disease pathways rather than one

single disease mechanism [52] and may thus more accurately
reflect the complexity of common complex diseases. This
genetic susceptibility risk can be assessed by PRS which
quantify the risk conferred by the cumulative impact of com-
mon variants resulting in a single, normally distributed quan-
titative risk factor for CAD that is available at birth [11, 52].
Since the first genome-wide linkage [53] and association stud-
ies (GWAS) for CAD in 2002 and 2007 [29], technological
advances have allowed for investigation of progressively larg-
er sample sizes. This has paved the way to the discovery of
more loci with genome-wide significant associative p < 5 ×
10−8 for CAD [11, 12]. As mentioned above, about one in five
of these loci is located near genes with confirmed roles in lipid
metabolism such as LDL, TRL, or Lp(a), highlighting the key
role for these pathways in the development of CAD [11].

First attempts to study genome-wide PRS were limited in
their clinical utility by insufficient discriminative accuracy
and were thus not considered to be of diagnostic or predictive
value as an adjunct to clinical scores [54]. Recent technolog-
ical advances and improved algorithms have made it possible
to develop PRS that capture the full breadth of genetic data
[55••]. Taking into account the full set of common polymor-
phisms for risk stratification better depicts the heritability of
any given trait and thus had substantially better predictive
value than previously used scores in genome-wide association
study analyses restricted to, e.g., the 50 most significantly
associated variants [56]. Furthermore, whole-genome se-
quencing, which captures the complete spectrum of genetic
variation, both rare and common, via simultaneous ascertain-
ment of monogenic mutations and polygenic score for each
given individual, made it possible to compare the clinical rel-
evance of monogenic mutations versus polygenic risk on pre-
mature CAD [10].

In participants of primarily European ancestry from UK
Biobank genome-wide PRS for myocardial infarction, com-
prising a genome-wide set of 6.6 million common DNA var-
iants identified 8% of the population at greater than threefold
increased risk for CAD [55••]. It is worth noting that the PRS
thus identified 20-fold more individuals at equal or greater risk
compared with the carrier frequency of rare monogenic muta-
tions such as FH [55••].

These data were validated by Khera and colleagues who
simultaneously assessed the contribution of monogenic and
polygenic models in a population encompassing four ethnic
subgroups hospitalized in the USA with premature CAD.
They reported that 1.7% of patients with early-onset myocar-
dial infarction at an age of 55 years or younger displayed high
monogenic risk but 17.3% presented a high PRS. The level of
risk increase was comparable with monogenic and polygenic
risk (3.8-fold and 3.7-fold, respectively). However, a tenfold
higher number of individuals with premature CAD were iden-
tified by a high PRS compared with the monogenic model
[10].
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Complementing these findings, Aragam et al. reported that
using a PRS as a CAD risk enhancer to inform statin eligibility
in the subgroup in whom guideline-based recommendations
were unclear would result in 1 in 25 primary prevention pa-
tients being newly suitable for a statin prescription [27].

The Genetic Basis for Resistance

In contrast to genetic variation leading to increased risk, pro-
tective mutations reduce susceptibility to a given disease. The
discovery of protective mutations in the LDL [57, 58] and the
TRL pathway [59, 60] has complemented preclinical prioriti-
zation strategies in developing lipid lowering therapies. This
has guided the development of new pharmaceutical agents by
providing confidence that these targets were causal for CAD.
With regard to the LDL pathway, variants that permanently
lower LDL-C confer protection against ASCVD, predicting
that pharmaceutical agents which mimic those mutations
would work in clinic [57, 58]. These genetic insights have
been resembled by the development of ezetimibe, an inhibitor
of the Niemann-Pick C1-like protein 1 (NPC1L1), and
PCSK9 inhibitors which have proven to be effective in low-
ering LDL and patient-relevant endpoints in ASCVD [61–63].
Regarding TRL, their rate of lipolysis, which is largely deter-
mined by lipoprotein lipase (LPL), might be a key pathway
associated with ASCVD. Rare mutations that disrupt func-
tioning of ApoC3, ANGPTL3, and ANGPTL4—all three of
which are endogenous regulators of LPL, the key enzyme that
controls lipolysis and the ability to clear dietary
triglycerides—are associated with lower levels of plasma tri-
glycerides and carriers of these mutations expose a lower risk
of ASCVD [40, 59, 64]. Pharmaceuticals that mimic these
protective mutations are currently under way [65, 66].

Is Genetic Risk for ASCVD Modifiable by Early
Intervention?

Directing clinical effort at early identification of individuals at
risk is relevant if safe and efficacious interventions are to be
offered that reduce risk. Encouragingly, data has consistently
demonstrated that heritable risk for CAD can be substantially
modified by either adherence to a healthy lifestyle and/or phar-
macotherapy. Importantly, absolute risk reduction by these mea-
sures is more pronounced in individuals at high genetic risk.

Lifestyle Interventions

An analysis of data from 55,685 participants from the
Atherosclerosis Risk in Communities study, the Women’s
Genome Health Study, the Malmö Diet and Cancer Study,
and cross-sectional BioImage Study demonstrated that a
healthy lifestyle (defined as no current smoking, no obesity,

regular physical activity, and a healthy diet) offsets about 50%
of the inherited risk. More specifically, in individuals expos-
ing a high polygenic risk for CAD and an unfavorable life-
style, the 10-year event rate was 11%. Conversely, in individ-
uals with a high polygenic risk and a favorable lifestyle, the
10-year event rate was only 5% [67••]. Taken together, these
data provide evidence that genes are not destiny and that rais-
ing consciousness for heritable risk in subgroups at high ge-
netic risk might open a huge therapeutic window for preven-
tive measures aimed at attenuating ASCVD risk.

Pharmacotherapy

Randomized clinical trials demonstrated that statin therapy is
an efficacious and safe strategy to lower ASCVD event rates
[68]. In secondary prevention, individuals at high genetic risk,
who were defined as the subgroup at the top quintile of a 27-
single-nucleotide polymorphism (SNP) PRS for CHD, de-
rived substantially greater relative risk reduction from statin
therapy compared with the remaining 80% [20]. This finding
was confirmed in three primary prevention trials: ASCOT-
LLA [69], JUPITER [70], and WOSCOPS [71], where higher
relative benefit from lipid lowering statin therapy was ob-
served in those at high genetic risk compared with all others
despite similar achieved LDL-C lowering. Moreover, a
PRS—including more than 6 million SNPs—was strongly
associated with CAD risk in a recent study: the quintile of
individuals with the highest PRS was at 1.9-fold odds of
CAD compared with the remainder of the population. Of note,
this risk increase is comparable with that of risk increasing
factors other than diabetes mellitus or hypercholesterolemia as
described in cardiovascular disease prevention guidelines man-
dating initiation of statin therapy. However, the authors found
that the 20% of individuals with high PRS did not display higher
statin prescription rates indicating that the use of PRS in clinical
practice might identify individuals at high risk which are not
captured by current “traditional” risk increasing factors but might
largely benefit from statin treatment [27].

Evidence from the two large clinical outcome trials with
Alirocumab and Evolocumab (ODYSSEYOUTCOMES [22]
and the FOURIER [23], respectively) paints a similar picture.
In both trials, a high PRS for CAD, independent of clinical
risk such as baseline LDL-C and other known risk factors, (i)
identified higher-risk individuals and (ii) predicted a larger
absolute and relative risk reduction with PCSK9-i treatment
in this subgroup [22, 23].

Genetic Testing and Precision Medicine – Ready for Prime
Time?

The rationale for genetic testing for informing decision-
making has several layers of implications for preventive
cardiology.
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First, PRS identify approximately 10–20 times as
many patients at elevated risk for CAD than rare mono-
genic mutations [10, 55]. Importantly, these individuals
with risk comparable with that of a monogenic mutation
cannot reliably be identified by any circulating biomark-
er. Second, PRS for CAD provide a quantitative number
of risk available at birth, long before discriminative ca-
pacity emerges for risk factors currently used to predict
CAD [55••]. Third, polygenic risk amplifies risk con-
ferred by traditional risk factors such as hypertension
or dyslipidemia. Collectively, PRS capture incremental
information to current risk stratification algorithms.
The introduction of PRS might thus pave the way to
precision medicine approaches with broad relevance for
improved identification and personalized treatment of
high-risk subgroups [52]. If brought to attention of af-
fected individuals early in life, awareness of their
inherited susceptibility as well as information about pos-
sibilities to modify risk may guide lifestyle choices and
enhance medication adherence in this subgroup [55••].

Challenges and Unmet Needs

The Introduction of PRS Is Not Without Challenges

First, lead SNPs conferring ASCVD risk are often specific to
an ethnic group. Even within Western-European individuals,
which have been studied most extensively in GWAS, the pre-
dictive value of polygenic risk score changes substantially
across countries [72]. Thus, the additive diagnostic yield, clin-
ical benefit, and cost-effectiveness of PRS need to be validat-
ed across different ethnicities [10] and in prospective clinical
trials to determine if targeted prevention strategies will trans-
late into a reduction of clinical endpoints in those at high
polygenic risk [27].

Second, PRS reflect a continuum from very low to very
high genetic burden. However, only few individuals are locat-
ed at the extremes of the Gaussian curve, and there is little
discrimination of risk for large parts of the population. Thus, it
is challenging to determine actionable thresholds for therapeu-
tic measures.

Third, identification of individuals at high risk yields clin-
ical benefit only if strategies that modify risk are widely avail-
able. This includes the implementation of appropriate lifestyle
measures and medical therapy if indicated.

Forth, a key issue is the allocation of financial resources to
preventive cardiology. This should prompt the implementa-
tion of structured training programs that teach all dedicated
skills necessary to assess and manage cardiovascular risk in-
cluding (i) an understanding of all contributing factors includ-
ing genetic, lifestyle, and environmental factors as well as
their assessment and interpretation; (ii) the ability to

communicate risk in a comprehensive way to the patient;
and (iii) knowledge about risk modification via lifestyle mod-
ification or pharmacotherapy.

Fifth, ethical dilemmas between the physician’s “duty to
inform” and the patient’s right “to not know” might arise.
Furthermore, laws need to be passed to protect against em-
ployers and health insurance companies which might discrim-
inate individuals due to their genetic information [43].

Sixth, even though data from natural experiments provide a
strong and biologically plausible argument for the beneficial
effect of lifelong low apoB [11], there are no data on the effect
of lifelong lipid lowering therapy by means of pharmacother-
apy. Whether lipid lowering therapy has similar effects like
protective mutations is plausible but remains subject to
speculation, particularly in view of the fact that off-
target effects of pharmacotherapy need to be taken into
account. This is even more an issue for interference of
phenotypes like blood pressure or platelet function
which come with a much smaller “therapeutic range”
than lowering of LDL-C or Lp(a) levels. Such insecu-
rities need to be discussed in an open and comprehen-
sive manner with patients in a shared decision-making
process by physicians with expertise in this field.

Concluding Remarks and Future Directions

The lifetime exposure model of atherosclerosis implies that
even with modest reductions in cumulative exposure to a giv-
en risk factor, large absolute benefits accrue.

Polygenic risk is a prevalent, important, and significant
determinant of ASCVD risk that mirrors the complex genetic
architecture of common complex diseases like ASCVD. PRS
provide a quantitative score for disease risk which is below the
discrimination level of current risk assessment tools. It can be
detected at the time of birth, long before risk factors, or clinical
manifestations accrue. With regard to apoB and ASCVD risk,
this serves as a conceptual model for the paradigm “the lower,
the earlier, and the broader – the better” as depicted in Fig. 1
[25]. In this regard, the integration of genetic information into
routine clinical management as an adjunct to current clinical
risk assessment algorithms might refine clinical decision-
making throughout a lifetime. Taken together, integration of
genetic risk scores into conventional guideline-based clinical
frameworks thus confers additive, complementary, and inde-
pendent predictive information to clinical risk scores currently
used in clinical practice, and early in life interpretation of the
genome holds potential to identify subsets of the population
that might derive particular benefit from early lifestyle and
pharmaceutical interventions and guide treatment eligibility.
This might pave the way to personalized prevention aimed at
reducing the unacceptable global burden of ASCVD.
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