
CARDIAC PET, CT, AND MRI (P SCHOENHAGEN AND P-H CHEN, SECTION EDITORS)

Machine Learning and Coronary Artery Calcium Scoring

Heon Lee1
& Simon Martin2

& Jeremy R. Burt2 & Pooyan Sahbaee Bagherzadeh3
& Saikiran Rapaka4 & Hunter N. Gray2 &

Tyler J. Leonard2
& Chris Schwemmer4 & U. Joseph Schoepf2

# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Purpose of Review To summarize current artificial intelligence (AI)-based applications for coronary artery calcium scoring
(CACS) and their potential clinical impact.
Recent Findings Recent evolution of AI-based technologies in medical imaging has accelerated progress in CACS performed in
diverse types of CT examinations, providing promising results for future clinical application in this field.
Summary CACS plays a key role in risk stratification of coronary artery disease (CAD) and patient management. Recent
emergence of AI algorithms, particularly deep learning (DL)-based applications, have provided considerable progress in
CACS. Many investigations have focused on the clinical role of DL models in CACS and showed excellent agreement between
those algorithms and manual scoring, not only in dedicated coronary calcium CT but also in coronary CT angiography (CCTA),
low-dose chest CT, and standard chest CT. Therefore, the potential of AI-based CACSmay becomemore influential in the future.

Keywords Coronary calcium scoring . Atherosclerotic plaques . Coronary artery disease .Machine learning . Deep learning

Introduction

Coronary artery disease (CAD) is the main cause of death
worldwide [1, 2]. Considering the burden of CAD to patients
and the healthcare system, early detection of disease and pre-
diction of patients’ risk of developing adverse cardiovascular
events have become crucial to advancements in the medical

field, leading to breakthroughs in disease treatment and patient
care. Such risk stratification also plays an important role in
defining when to initiate preventive therapies or change treat-
ment strategies [2–4].

Coronary artery calcium scoring (CACS) is a non-invasive
CT technique for the quantification of coronary artery calcium
(CAC), used to determine the presence and extent of calcified
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atherosclerotic plaque and overall plaque burden. The use of
CT imaging for direct visualization and characterization of
plaque burden enables a more individualized approach for risk
assessment than traditional risk factors [2, 4], providing in-
sight into disease stages and response to treatment [5, 6].
Currently, CACS is most commonly performed in asymptom-
atic individuals, particularly those at intermediate cardiovas-
cular risk. The test is used to estimate cardiovascular risk and
predict future cardiac events by providing incremental risk
information beyond mere risk factor-based approaches (e.g.,
Framingham Risk Score) [2].

Quantification of CAC usually needs human input to iden-
tify and mark calcified lesions in each image section [3, 7].
This is a time-consuming approach that requires a moderate
level of expertise. Therefore, the development of an automat-
ed, precise postprocessing method is desired to reduce the
need for human observer interaction [7, 8]. Recent advances
in artificial intelligence (AI) modeling, including deep learn-
ing (DL) with convolutional neural networks (CNN), have
provided promising applications in numerous industries, in-
cluding medical imaging [9–11]. Currently, there has been
growing interest in the potential of AI to improve various steps
of the medical imaging workflow, especially in automatic de-
tection and characterization of radiology findings [9–15].
Accordingly, many investigations have focused on the poten-
tial role of DL in CACS and shown promising results for
clinical application in this field with the potential to increase
demand [7, 8, 16].

This article reviews current applications of AI-based algo-
rithms for CACS with their recent achievements, challenges,
and potential clinical impact. This review also provides a brief
summary of AI including important terms for a basic under-
standing of the technique.

Basics of AI: Terms and Concepts

The application of AI in medical imaging is becoming an
integral part of clinical medicine [10, 12]. AI describes any
computational program performing tasks that are typical of
human intelligence. It incorporates a system that can make
automatous decisions based on input data, without immediate
human control [9–13].

The concept of ML was introduced early in 1959 and is a
subfield of AI that provides computers with the ability to learn
rules and extract patterns from data [10, 13, 17]. One subset of
ML includes computational models and algorithms inspired
by the complex neuronal connections in the human brain and
is called an “artificial neural network (ANN).” An ANN is
structured in layers composed of interconnected nodes: one
input layer, which receives input data; one or more hidden
layer, which extracts the pattern of data; and one output layer,
which produces the results [9, 10]. In general, train-test

systems are used to develop AI models. These consist of three
sets: training, validation, and testing [9•]. The training set is
needed for the algorithm to learn from example by fitting the
model. For validation, a separate data set is used to evaluate
different model fits and to adjust the model parameters for
optimizing the initial algorithm. Then, the trained model is
tested on a new data set to assess how well the algorithm
performs under prespecified conditions [9, 13].

Compared with ML, however, AI incorporates a broader
scope of intelligent functions generated by computer systems
such as pattern recognition, planning, problem solving, recog-
nizing objects, and understanding language. By definition,
however, ML algorithms have the ability to “improve by
learning” through experience without explicit rules [9–13,
18, 19]. Therefore, rule-based algorithms such as computer-
aided detection/diagnosis fall within the category of AI and
are not considered as belonging to ML. When used as a broad
term, however, computer-aided detection/diagnosis may en-
compass ML approaches [9•].

Deep learning (DL) is a subset of ML and a special type of
ANN that has multiple hidden processing layers, which char-
acterize the depth of the network. Multiple processing layers
enable mathematical calculations before producing outputs,
thus allowing the DLmodel to learn the representation of data
with high-level abstractions [9, 13, 20]. Among the different
DL models, CNN has gained much popularity in computer
vision and medical image analysis, especially for extraction
of visual features from images. These convolutional DL algo-
rithms have exhibited robust performance similar to human
level performance in various areas, including medical imaging
[13, 21, 22]. Recent success in DL applications in medical
imaging are possible because of a combination of accelerated
computing power, advances in hardware technologies such as
graphic processing units, increased available datasets, and
user-friendly software needed to analyze the data [9, 10, 20].
Currently, DL has the potential to improve multiple steps of
workflow in medical imaging, such as patient scheduling, im-
age acquisition, automated detection and interpretation of
findings, and reporting and analysis. Automated detection
and characterization of abnormalities on medical imaging is
a domain where AI has exhibited significant progress and thus
may have an immediate and positive impact [15, 21].

Application of AI in Detection
and Quantification of Calcified Plaques

CACS is typically performed by using non-contrast-en-
hanced, ECG-triggered calcium scoring CT. The use of beta
blockers is not generally required but may be administered
with a small benefit in accuracy in cases of high heart rates.
The scan parameters include a tube voltage of 120 kVp and
variable tube currents according to patient size. Typically,
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using a prospectively ECG-triggered sequential scan, images
are obtained during diastole and reconstructed in 3mm section
thickness for CACS. Coronary calcification is defined as a
lesion of at least 3 consecutive pixels (or 1 mm2) with an
attenuation of ≥ 130 HU. Using dedicated software, calcifica-
tions in coronary arteries are manually selected and quantified
with the Agatston score, which is the weighted sum of each
area of calcified plaque multiplied by a factor (between 1 and
4) related to corresponding CT density [2–4].

Currently, CACS is performed not only in dedicated calci-
um scoring CT, but also in the context of other types of CT
studies, such as coronary CT angiography (CTA) or non-gated
chest CT for lung cancer screening [23–26]. However, quan-
tification of CAS requires slice-by-slice expert level detection
and annotation of calcified lesions. Since this manual ap-
proach requires a certain degree of clinical experience and is
a monotonous and time-consuming process, a more automat-
ed method is highly desirable, especially in large screening
populations or in settings where it is not primarily intended
but may be clinically useful [8, 27, 28].

Automated CACS

To overcome these drawbacks, several automated methods
have been developed, from rule-based methods [29, 30] to
ML and more recent DL approaches. The major obstacle in
CACS is of differentiation of CAC from other structures with
similar attenuation, such as mitral anulus calcifications [27].

ML-based methods for quantification of CAC on ECG-
gated, non-contrast-enhanced cardiac CT were used prior to
the introduction of DL. These approaches are based on iden-
tification of CAC among a large set of candidate lesions.
Those images are designated with morphologic features such
as size, shape, texture, and location to discriminate CAC from
other neighboring candidates such as mitral annulus, aortic
and pulmonary calcifications [6•]. Among these features, lo-
cation features are of particular importance, which are con-
structed from anatomy-based approaches (heart coordinate
system or spatial relation) [31–33]. Later, atlas-based locali-
zation of the coronary tree was introduced by creating a prob-
abilistic CAC map [34]. The map determined the individual
positions of the 3 major epicardial coronary arteries by using
independent CTA-based atlases to compute the location esti-
mate for each individual artery [35].

Automated CACSmay also be performed on standard con-
trast enhanced cardiac CTA scans. An initial segmentation
step is performed of the contrast-filled coronary artery tree.
Because calcifications are usually higher in attenuation than
contrast enhanced vascular lumen, calcifications are easily
detected by searching for structures with high attenuation
along the segmented coronary tree. Since contrast-filled lumi-
nal attenuation varies depending on injection protocols, from

250 to 600 HU, a threshold for calcium detection is recom-
mended to be set at 2 standard deviations or 120–150% of
mean vascular attenuation, in lieu of a fixed value [36–38].

Current Status of DL-Based CACS

Most recent approaches for automated CACS adopt DL algo-
rithms using CNNs, well known for their capabilities of auto-
matic extraction of visual features. In contrast to ML, DL-
based methods typically classify individual voxels in place
of candidate lesions [6•]. In their early study, Lessmann
et al. [39] used a single CNN that classified CAC lesions in
lung cancer screening chest CT. Wolterink et al. [7], however,
used a pair of CNNs to classify all voxels to identify CAC in
coronary CTA. First, a CNN identified voxels of potential
CAC and discarded the majority of non-candidate voxels
and then a second CNN further discriminated between CAC
and neighboring similar negatives. In both studies [7, 39], to
simplify the classification by reducing the volume of interest,
a bounding box was created to localize the heart using a com-
bination of three additional CNNs, where each detects the
heart in an orthogonal plane.

More recently, without such localization methods,
Lessmann et al. [40] used sequential CNNs to classify CAC
as well as valve and aortic calcifications on chest CT images.
With the reinforced capabilities of feature extractions and a
large receptive field, the first CNN, was used to identify and
label potential calcification voxels according to their anatom-
ical locations. Subsequently, a second CNN refined the output
of the first by identifying true calcifications among the candi-
dates with similar shapes and locations. Even though their
approach was challenging for training and evaluation, mostly
due to low-dose protocol without ECG synchronization, this
new strategy achieved good performance (F1 value of 0.68–
0.90) in calcium detection and strong agreement (75–91%)
with manual reference standard in cardiovascular risk catego-
rization. Another study [8], a DL-based automated calcium
scoring method for non-contrast ECG-triggered cardiac CT,
showed high accuracy when compared to manually obtained
reference scores in 511 patients. This calcium scoring appli-
cation relied on a combination of multiple CNNs for under-
standing the context of the CT image (Fig. 1). The calcium
scoring model was trained using an annotated dataset of 2000
coronary calcium CT scans to determine the probability of a
voxel being a coronary calcification. This model showed that
93.2% of patients were classified into the same risk category
as by the human observers.

Although several DL-based CACS methods have been
published and achieved excellent performance, they have
been specialized to a specific type of CT examination and
used two steps similar to traditional CACS method, based
on identification of calcium first and quantification thereafter
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on a specific type of CT examination. De Vos et al. [27],
however, proposed a method for direct quantification of cal-
cium score in input image sections without calcium segmen-
tation using data from non-enhanced, ECG-synchronized car-
diac CT and non-enhanced chest CT for lung cancer screen-
ing. By adopting the workflow for direct regression of CACS,
this method successfully achieved accurate prediction of
CACS in different types of CT examinations nearly on a
real-time basis, showing an intra-class correlation coefficient
(ICC) between automatic and manual CACS of 0.98 for both
cardiac and chest CT.

In this regard, a recent multicenter study was performed to
validate the performance of a DL algorithm in previously un-
exposed types of CT examinations [41••]. The results showed
that the method trained for a lung-screening low-dose chest CT
(baseline) adapted also well to several CT study types in a
variety of population groups, yielding ICCs of 0.79–0.97 be-
tween automatically and manually obtaining scores. When a
few representative cases of the respective CT type were supple-
mented to the baseline for performing protocol-specific train-
ing, ICCs between DL-based andmanual CACS in that specific
type of CT examinations improved to 0.84–0.99. Furthermore,
a combined DL model trained with all available CT protocols
(combined training) also improved the DL performance for
CACS, with ICCs ranging from 0.85 to 0.99. Although there
would be shifting in absolute score by using scan protocols
other than that of CACS (e.g., tube voltage of 100 kVp), nev-
ertheless, this study showed promising results that suggest ex-
tensibility of DL—i.e., applying one DL model trained for a
specific CT type to diverse types of CT examinations.

Advantages and Limitations of AI in CACS

While various automated methods have been examined for
years, the recent emergence of ML followed by a DL approach
has provided considerable progress in the field. Use of DL in
CACS has the potential to reduce human interaction for
performing time-consuming and monotonous tasks in the

clinical setting [6–10]. The re-direction of a clinician’s role to
more value-added tasks has the potential to reduce costs and
increase quality of healthcare [6, 8]. In addition, DL in CACS
could be used as an additional screening option to CT studies
including the heart without significant additional effort in terms
of human interaction and radiation [6, 8, 27]. Furthermore,
recent DL-based approaches achieved similar performance
compared to manual reference but generated calcium score
even hundred times faster, reaching in almost real-time basis
with less than a few seconds [8, 13, 27]. For wide-spread use of
AI in CACS, such fast computation is highly desirable and
particularly important to screen large populations.

However, the major obstacles for development and adop-
tion of AI in clinical practice are the need for a large collection
of high-quality ground truth databases as well as standardiza-
tion of diagnostic techniques [9, 42]. Historically, obtaining
qualified training datasets has been very challenging due to
few case numbers at an early stage of algorithm development
[6, 9] or confounders such as motion or partial volume arti-
facts, which are generated through a diversity of CT acquisi-
tion and reconstruction techniques—i.e., low dose protocol,
non-ECG synchronization, or thick slice reconstruction [43,
44]. Fortunately, for the development of DL-based CACS,
large annotated datasets are readily available and image qual-
ity continues to improve thanks to constant advances in CT
technology and reconstruction techniques [41, 45, 46].
Furthermore, CACS is a fairly obvious task that does not
require a high level of expertise and the quantification method
is highly standardized by adopting the Agatston score. In this
respect, CACS became an excellent candidate for automated
approaches and currently, several types of early solutions are
commercially available for clinical use [16].

Finally, to date, most AI algorithms for CACS have been
developed for specific CT protocols and validated mostly in
single center studies. Therefore, despite of early promising
results for AI-application, their performance requires further
validation in clinical practice using diverse sets of CT proto-
cols in larger populations in accordance with ongoing techni-
cal improvement in AI.

Fig. 1 The combination of a
convolutional neural network for
the image features and a fully
connected network for the spatial
coordinate features. A pre-
computed coronary territory map is
also used as an additional input to
specify the likelihood of different
voxels belonging to coronary
arteries (a). An example case with
automated detection of
calcifications in coronary arteries
overlayed and color coded in red
(b)
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Conclusion

Since detection and quantification of coronary calcium plays a
key role in risk stratification of CAD and management of
patients, automatic CACSmay provide diagnostic aids to phy-
sicians in clinical practice. Although still under development
and refinement, the current rapid progress in AI technology in
this field may allow for future routine application of automat-
ed CACS in clinical practice.
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