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Abstract
Purpose of Review Myocardial fibrosis (MF) arises due to myocardial infarction and numerous cardiac diseases. MFmay lead to
several heart disorders, such as heart failure, arrhythmias, and ischemia. Cardiac magnetic resonance (CMR) imaging techniques,
such as late gadolinium enhancement (LGE) CMR, enable non-invasive assessment of MF in the left ventricle (LV). Manual
assessment of MF on CMR is a tedious and time-consuming task that is subject to high observer variability. Automated
segmentation and quantification of MF is important for risk stratification and treatment planning in patients with heart disorders.
This article aims to review the machine learning (ML)-based methodologies developed for MF quantification in the LV using
CMR images.
Recent Findings With the availability of relatively large labeled datasets supervised learningmethods based on both conventional
ML and state-of-the-art deep learning (DL) methods have been successfully applied for automated segmentation of MF. The
incorporation of ML algorithms into imaging techniques such as 3D LGE CMR permits fast characterization of MF on CMR
imaging andmay enhance the diagnosis and prognosis of patients with heart disorders. Concurrently, the studies using cine CMR
images have revealed that accurate segmentation of MF on non-contrast CMR imaging might be possible.
Summary The application of ML/DL tools in CMR image interpretation is likely to result in accurate and efficient quantification
of MF.

Keywords Myocardial fibrosis . Cardiacmagnetic resonance imaging . Late gadolinium enhancement .Machine learning . Deep
learning

Introduction

Cardiovascular disease (CVD) is the leading cause of death
worldwide [1]. Myocardial fibrosis (MF) is one of the most
common histologic features associated with injury to the

myocardium [2]. Conditions such as myocardial infarction,
coronary and hypertension heart disease, and aortic stenosis
are the most frequent causes of MF [3–5]. The MF can be of
two types: interstitial and replacement fibrosis [6]. Interstitial
fibrosis, which is believed to be reversible through early diag-
nosis and treatment planning [7, 8], is characterized by the
diffuse spread of extracellular collagen without cardiomyo-
cyte necrosis [9]. Replacement fibrosis that occurs after myo-
cardial infarction is considered irreversible [7, 10, 11]. The
focus of this review is on replacement MF. The mass, surface
area, and spatial distribution of the MF have shown to be
predictors of patient prognosis and clinical outcomes [12•].
For instance, the MF mass was shown to be an independent
predictor of severe diastolic dysfunction [13]. Diastolic dys-
function is correlated with larger MF mass and lower left
ventricular ejection fraction [14]. Recently, computational
modeling of the patient with ischemic cardiomyopathy has
emerged as a promising non-invasive tool that allows clini-
cians to conduct a patient-specific diagnosis and treatment of
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associated rhythm disorders [15–21]. However, accurate re-
modeling of myocardial structural requires the incorporation
of intact geometry of the MF region [15, 22, 23]. Therefore,
identification and characterization of MF are of utmost impor-
tance. Characterizing MF may also help clinicians in deter-
mining the appropriateness and procedural approach to percu-
taneous ablation (aimed at eliminating electrical channels) and
cardiac resynchronization therapy [24, 25].

Cardiovascular magnetic resonance (CMR) is a non-
invasive imaging modality for patients with MF and it estab-
lishes a reference methodology for cardiac anatomy and func-
tion assessment [26, 27]. CMR is routinely performed during
multiple breath-holds in predefined 2D image orientations,
and it provides an accurate and reproducible estimate of car-
diac structure including left ventricle (LV), right ventricle
(RV), and myocardial viability [28, 29]. Routine CMR exams
include late gadolinium enhancement (LGE) and cinematic
CMR (cine CMR) images. Gadolinium, which is a contrast
agent, is used in CMR scans to improve the clarity of the
cardiac structure in the images. Cine images are required to
acquire complete information of the heart function throughout
the cardiac cycle [30]. Figure 1 shows an example of the LGE
CMR. Two-dimensional (2D) LGE CMR has been recog-
nized as the non-invasive reference standard for MF identifi-
cation [31, 32]. LGE increases the volume of distribution for
the contrast agent and prolongs washout related to the de-
creased capillary density within the myocardial fibrotic tissue,
which in turn causes the MF to appear as the bright signal
intensity in the CMR [26]. Spatial resolution at which the
images are acquired may affect the predictive value of the
quantified MF by the CMR techniques [33]. 3D CMR is rel-
atively a new technique that allows more accurate spatial rep-
resentation and quantification [34]. 3D LGECMR images can
now be acquired via cardiac gating during free breathing [35,
36]. Furthermore, it improves myocardial nulling, especially
relevant at higher magnetic field strengths such as 3 T [37].
Although compared to the 2D technique, 3D LGE CMR im-
ages provide higher signal intensity and contrast for MF with
reduced overall acquisition times [38–40], delineating MF

from 3D LGE CMR images is more challenging due to their
mere size [41]. The 3D LGE CMR images may consist of
hundreds of slices, reformatted in multiple imaging planes
with 3D reconstruction. It has been demonstrated that MF
segmentation directly from cine CMR images without contrast
agents is feasible [42, 43••] for patients with chronic kidney
diseases who are not recommended to use gadolinium-based
contrast agents [44].

Automated quantification of MF is important for clinicians
for the efficient determination of the clinical diagnosis and
prognosis of the patients. This is due to increases in both the
size of cardiac images and the number of scans acquired an-
nually due to the growth in the number of patients. Rosendahl
et al. [45] showed that computer software for MF characteri-
zation decreased the required expert evaluation time by more
than 50% while maintaining clinical accuracy to that of man-
ual assessment. Moreover, fully automated methods are repro-
ducible and not subject to operator variability.

Prior to the recent advancements in machine learning
(ML)-based methods, the intensity-threshold-based methods
and energy minimization-based methods were widely
employed for MF segmentation from LGE CMR Images.
Two widely used intensity threshold-based methods are the
full width at half maximum (FWHM) and signal threshold to
reference mean (STRM). In FWHM, the maximum intensity
within the myocardial boundary is considered as the reference
and all intensity values that are larger than half of the maxi-
mum intensity value, are defined as scar [46]. In STRM, the
intensity of healthy tissue is considered as a reference, andMF
is defined as its mean value plus two (STRM2), three
(STRM3), four (STRM4), five (STRM5), or six (STRM6)
standard deviation [47]. These two methods require myocar-
dial segmentation and choosing seed points manually, which
are subject to high inter- and intra-observer variability. Energy
minimization-based methods define a mathematical criterion
for the “goodness” of MF segmentation as an optimization
problem with regularization constraint on the segmented
boundary and a term based on image-based energies. These
techniques require the users to define an initial contour in the

Fig. 1 From left to right, an
example of one slice, randomly
extracted from a multi-slice
clinical LGE-CMR image, in the
transversal direction showing the
right and left ventricles along with
the contours of myocardial
fibrosis, shown in cyan color
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vicinity of the MF region, which is then evolved by minimiz-
ing the optimization criteria. The energy minimization-based
methods include graph cuts, level sets, and convex max flow-
based methods [48–51]. Most of these methods were semi-
automated and required manual segmentation of the myocar-
dium to constrain the search space for segmenting the MF.
However, since these methods use only simple straight for-
ward features such as image intensity and spatial consistency
and have only a few hyper-parameters, the performance of
these methods plateaued even with the increasing number of
larger annotated datasets [52].

Deep learning (DL), which is a branch of ML, has evolved
over the last decade and has been providing exciting solutions
for the interpretation of medical images. DL architectures such
as deep neural networks, deep belief networks, recurrent neu-
ral networks (RNNs), and convolutional neural networks
(CNNs) employ multiple layers of non-linear processing units
to solve complex data with large feature sizes [53]. Recent
advances in DL and the availability of large annotated datasets
have aided in the identification, classification, and quantifica-
tion of abnormalities in medical images. Automated charac-
terization of MF using LGE CMR images is no exception. In
this paper, we describe semi- and fully automated methods
developed for LV MF segmentation from 2D/3D LGE CMR
images with more emphasis on the ML and DL-based
methods. Furthermore, ML-based methods developed for the
delineation ofMF from non-contrast CMR images will also be
summarized.

ML-Based Methods for Identification of MF
from 2D/3D LGE CMRI

A summary of previously published ML-based methods for
MF quantification and segmentation from 2D/3D LGE CMR
images are shown in Table 1. We first describe the conven-
tional ML-based algorithms. The DL-based methodologies
will then be presented and within each category semi- and
fully automated techniques will be described.

Conventional ML-Based Methods

Karim et al. described an evaluation framework for algorithms
that segment and quantify MF in LV from LGE CMR images
[54]. They created two datasets with a total of 15 images of
humans with a known history of ischemic cardiomyopathy
and 15 porcine with chronic myocardial ischemia, of which
five in each cohort were used as a training set for the algo-
rithms. The datasets were used for an open challenge, put forth
to the medical imaging community at the Medical Image
Computing and Computer-Assisted Intervention (MICCAI)
annual meet ing ’s workshop ent i t led as Delayed
Enhancement MRI segmentation challenge. Few of those

techniques were based on ML-based methods. Lara et al. sug-
gested a method based on support vector machine and level
sets to identify MF in LV. The FWHM method was first
applied to get an approximate segmentation of MF. The
connected-component analysis was employed to find the
groups of connected pixels and some features including area,
bounding box, major and minor axes, eccentricity, convex-
hull area, and Euler number were extracted from those groups
of connected pixels. Using these features, the support vector
machine (SVM) was then applied to differentiate between
healthy and MF tissues. A level set method was used to refine
the segmentation. This method yielded the median Dice sim-
ilarity coefficient (DSC) of 73% and 86% on the patient and
porcine LGE CMR test scans, respectively.

Kurzendorfer et al. developed a four-step texture-based
method to segment MF from 3D LGE CMR images [55].
They first decomposed the image into a set of binary images
by applying a two-threshold binary decomposition. Next, a set
of fractal dimension features were extracted from binary im-
ages. Global and local features were included in the feature
vectors as well. Then, a random forest classifier was employed
to classify extracted features. They used a dataset of clinical
3D LGE CMRI images of 30 patients and evaluated their
algorithm using a 6-fold nested cross-validation technique.
The suggested methodology achieved DSC of 66% ± 17%
on the test samples. The authors compared their algorithm
with STRM and FWHM,which required user input. The com-
parison of obtained results using different methods demon-
strated that the random forest-based method outperforms
STRM, but not the FWHM. According to the authors’ argu-
ment, the results likely biased toward the FWHM segmenta-
tion as FWHM was used to provide annotated ground truth
images.

DL-Based Methods

Majority of the DL-based algorithms employed CNN-based
networks to segment MF from LGE-CMR images [56–60,
61••]. In the following subsections, we first describe semi-
automated methods, where manual segmentation of LV is
required to segment MF boundary in LGE-CMR images.
The fully automated techniques will then be summarized.

Semi-Automated Algorithms

Moccia et al. used a fully convolutional neural network (FCN)
to delineate MF in the LV from 3D LGE CMR [56]. In FCN
architecture, several convolutional layers are stacked in an
encoder-decoder fashion. The encoder downsamples the im-
age through convolutional and pooling layers, and the decoder
upsamples the image using transpose convolution to generate
the segmentation map. The feature maps from the
downsampling and upsampling paths are summed up to
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combine context information with spatial information. The
authors delineated MF from pre-segmented myocardium as a
region of interest (ROI). A total of 250 slices were compiled
from CMR images of 30 patients with ischemic heart disease.
The proposed method was evaluated against expert manual
segmentation using a one-patient-out cross-validation tech-
nique. The suggested technique yielded a median DSC of
71.25%.

Zabihollahy et al. proposed a 2D and 3D CNN-based algo-
rithms to identify MF from pre-segmented LV using a dataset
of 3D LGE CMR images of 34 patients with ischemic cardio-
myopathy [57, 58]. Small 2D and 3D patches were extracted
around each voxel in the LVmyocardium and presented to the
trained 2D and 3D CNNs to be classified as healthy or MF
tissue. A segmentation map was then created using output
labels and compared with ground truth images. 2D CNN-
based method yielded DSC of 94.50% ± 3.62% on the test
instances while DSC of 93.63% ± 2.6% was obtained using
3D CNN.

Fully Automated Algorithms

Moccia et al. segmented MF directly from CMR image using
the same method and dataset employed for the semi-
automated pipeline described in [56]. The fully automated
protocol yielded a median DSC of 54% and 71.25%. The
authors compared the results obtained from semi- and fully
automated methods and demonstrated that identification of

MF is significantly more accurate when the search area is
limited to the myocardial region (p value < 0.05).

In another study, a deep convolutional neural network
(DCNN) was used to quantify MF from LV on 2D LGE
[59]. Since only some of the slices of the image will
contain scar tissue, the authors suggested a generative
adversarial network (GAN)-based technique to simulate
scar tissue on healthy myocardium and artificially aug-
ment the training samples. Unlike other approaches that
generate samples from scratch, the authors simulated scar
tissue on normal scans to generate highly realistic samples
for training. The proposed approach was evaluated using a
dataset with 159 LGE CMR scans and reported a DSC of
80.5% for MF delineation on test images.

Fahmy et al. employed a U-Net architecture to quantify LV
mass and MF volume on LGE. The U-Net architecture is built
upon the FCNwith the main difference that U-Net is symmet-
ric. Furthermore, in U-Net, the skip connections between the
downsampling path and the upsampling path apply a concat-
enation operator instead of summation. Images of 1041 pa-
tients with hypertrophic cardiomyopathy were used for this
study (train/test = 80%/20%) [60]. Their method achieved
DSCs of 82% ± 8% and 81% ± 11% for LV identification
and DSCs of 57% ± 23% and 58% ± 28% for MF segmenta-
tion on LGE at the per-patient and slice levels. Using this
algorithm, the DSC of LV segmentation was lower in the
apical slices compared with other slice locations (70% ±
20% versus 83% ± 10%; p < 0.001).

Table 1 Overview of previously
published ML-based methods for
MF quantification and
segmentation from 2D/3D LGE
CMRI

Reference Algorithm Type of LGE
CMRI

User interaction DSC (%)

Lara et al. [54] - FWHM

- Connected-component analysis

- Feature Extraction

- SVM

- Level set

3D Fully automated 73

Kurzendorfer
et al. [55]

- Image decomposition into a set of
binary images

- Feature extraction

- Applying random forest

3D Fully automated 66 ± 17

Moccia et al.
[56]

FCN 3D Semi-automated 71.25

Zabihollahy
et al. [57]

2D patch-based CNN 3D Semi-automated 94.50 ± 3.62

Zabihollahy
et al. [58]

3D patch-based CNN 3D Semi-automated 93.63 ± 2.6

Moccia et al.
[56]

FCN 3D Fully automated 54

Hendriks et al.
[59]

- Employing GAN to augment data

- U-Net

2D Fully automated 80.5

Fahmy et al. [60] U-Net 2D Fully automated 57 ± 23

Zabihollahy
et al. [61••]

Cascaded multi-planar U-Net 3D Fully automated 88.61 ± 2.54
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Zabihollahy et al. introduced a novel DL-based method to
discover the boundaries of MF from automatically segmented
LV using 3D LGE CMR images of 34 patients with ischemic
cardiomyopathy [61••]. Two cascaded modules were
employed to segment LV myocardium and use it as an ROI
to search forMF tissue. In eachmodule, three different U-Nets
were trained using slices extracted from transversal, coronal,
and sagittal directions to benefit from the isotropic property of
the voxel in the 3D images. The proposed methodology
achieved DSC of 88.61% ± 2.54% for fully automated seg-
mentation of MF on 3D LGE CMR test images.

DL-Based Methods for Identification of MF
from Non-Contrast CMRI

Several studies have been reported on fully automated seg-
mentation of MF from cine CMR images using DL-based
methods. These algorithms are validated by comparing to
the ground truths manually segmented from corresponding
LGE CMR images. Chen et al. described an algorithm to
segment the boundaries of MF in the LV and evaluated their
method using a dataset comprised of cine CMR images of 73
subjects [62]. In their approach, the static image information
and motion information described by the optical flow were
fused and presented as inputs into the stack denoising
autoencoder (SDAE), which is comprised of multiple layers
of sparse autoencoders. An SVM classifier was then applied to
the discriminative feature representation learned by the
SDAE. This method yielded the accuracy and precision of
87.6% and 86.2% on 13 test cases.

Xu et al. developed an end-to-end deep-learning algorithm
framework to detect MF using the short-axis cine CMR image
of 114 patients [63]. The authors first used a fast region-based
CNN (Fast R-CNN) algorithm to localize and crop the ROI
including the left ventricle. Local and global motion features
were then generated by long short-term memory recurrent
neural network (LSTM-RNN) and deep optical flow, respec-
tively. Particularly, two types of motion features namely local
and global are learned together: patch-based motion features
using the local intensity change between patches cropped
from image sequences, and image-based motion features
using the global intensity change along the whole image se-
quence. An autoencoder was included at the end to detect the
MF region from the learned local and global motion features.
The proposed framework yielded a classification accuracy of
94.35% at the pixel level. In another study, the authors used a
deep learning framework, which is similar to the previous
work [63], except that instead of Fast R-CNN, Faster R-
CNN was used for LV localization in non-contract CMR im-
ages. Fast R-CNN uses the selective search for generating
ROI, while Faster R-CNN uses region proposal network and
generates a set of object proposals, each with a score. This

algorithm evaluated using 165 cine CMR images and
achieved 89.87% DSC using a 10-fold cross-validation tech-
nique [42]. Zhang et al. used the same method and evaluated
the method with a dataset of 212 patients with chronicMF and
87 control patients from which approximately 20% was used
for the test phase. The DSC was reported as 86.1% ± 5.7% for
the delineating of MF on the short-axis cine CMR image [64].

Xu et al. proposed a deep spatiotemporal adversarial net-
work to segment and quantify MF directly from the cine MR
image [65].Manual segmentation ofMF on the corresponding
LGE CMR images was considered as ground truth to evaluate
the performance of the proposed methodology. In this algo-
rithm, first a coarse to fine hierarchical features are learned
using a multi-level and multi-scale spatiotemporal variation
encoder. Then, a cross-task generator generates the segmen-
tation and quantification tasks results and connects the bene-
ficial interaction feature maps of these two related tasks. Then,
three discriminators (including segmentation, quantification,
and relationship) are iteratively imposed on the encoder and
generator to detect and correct the inconsistencies in the label
relatedness between and within tasks via adversarial learning.
This method yielded an accuracy of 96.98% at the pixel level.

Discussion

Due to the availability of large annotated datasets, supervised
learning approaches based on DL methods are ideally suited
for the segmentation of ML in CMR images. In this paper, we
described the ML-based methods developed for the quantifi-
cation of MF. The proposed methods are evolved from semi-
to fully automated, and the majority of them are CNN-based.
We reviewed methods introduced for MF assessment using
both types of CMR images including LGE and cine. The LGE
CMR imaging has been known as a gold standard for MF
assessment as it hyper enhances the intensity regions of MF
compared to normal tissue. However, gadolinium-based con-
trast agents may not be recommended for patients with chron-
ic kidney diseases [44]. Therefore, there is an increased inter-
est in the automated characterization ofMF using non-contrast
CMR images.

The use of different datasets and metrics in the reported
studies on MF segmentation hampers the direct comparison
of the proposed algorithms. Furthermore, in some studies
where segmentation was performed using cine MR images,
pixel-wise accuracy was used as a sole metric to investigate
the performance of the developed method for MF segmenta-
tion. This metric does not represent the segmentation method
performance as MF has a relatively small size in CMR images
compared to the background that leads to a substantial class
imbalance between pixels labeled asMF or background. It has
been shown that in the case of class imbalance, a proper metric
other than accuracy (e.g., sensitivity, specificity, receiver
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operating characteristic curve, precision-recall curves, etc.)
must be chosen to evaluate the model performance [66].
Selecting a metric is problem dependent. Another limitation
concerning algorithm evaluation is the subjectivity of manual
segmentations as the reference standard. In all aforementioned
studies, expert manual segmentation was used as a surrogate
to evaluate the performance of developed algorithms for MF
segmentation performed typically by a single expert or few
experts. However, there is observer variability in the manual
delineation of theMF in the images, which often has not taken
into account. Another limitation of the surveyed studies is that
a limited number of images were used for the evaluation of the
algorithms. This is a common issue in medical image process-
ing problems as acquiring annotated images is quite expen-
sive. Therefore, further studies are required to investigate the
robustness of the presented automated techniques for various
LGE CMR images. The future works include domain adapta-
tion and transfer learning that might be beneficial to adapt the
pre-trained deep learning models to data from new centers.
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