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Abstract
Purpose of the Review Hyperactivity of sympathetic nervous system (SNS) plays a role in the development of arterial hyper-
tension and heart failure, two co-morbidities frequently associated with type 2 diabetes (T2DM). This review aims at analyzing
the effects of sodium-glucose cotransporter type 2 inhibitors (SGLT2is) on blood pressure and more especially on SNS activity in
patients with T2DM.
Recent Findings By enhancing glucosuria, natriuresis, and osmotic diuresis, SGLT2is improve glucose control, promote weight
loss, lower arterial blood pressure, and reduce the risk of major cardiovascular events and hospitalization for heart failure. No rise
of heart rate is detected despite reductions in blood pressure and plasma volume, which may suggest a dampening of SNS
activity. Indeed, increasing experimental and clinical data demonstrated a reduction in SNS activity, including in key target
organs such as the heart and the kidneys.
Summary Of potential major interest, a better understanding of the mechanisms linking SGLT2 and SNS deserves further
investigation.
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Introduction

Autonomic nervous system, especially sympathetic nervous
system (SNS) hyperactivity, plays a role in the pathophysiol-
ogy of both arterial hypertension (HTN) [1–3] and heart fail-
ure (HF) [3–5], two comorbidities frequently associated with
type 2 diabetes mellitus (T2DM) (Fig. 1) [6, 7]. Obesity plays
also a major role in these complications [8, 9]. Overall, almost
80% of patients with T2DM are overweight or obese. Most of
them have a so-called metabolic syndrome, i.e., an association
of several cardiovascular (CV) risk factors, including elevated
blood pressure (BP) [10]. The combination of essential HTN

and T2DM resulted in the greatest sympathetic hyperactivity
and level of plasma insulin to compensate for insulin resis-
tance, and this hyperactivity could constitute a mechanism for
the increased risks of this condition [11, 12].

Sodium-glucose cotransporter type 2 inhibitors (SGLT2is)
are new glucose-lowering agents that specifically target the
kidney and promote glucosuria, independent of the action of
insulin. They improve glucose control, without inducing hy-
poglycemia, and with lower circulating plasma insulin con-
centrations. Besides this primary glucose-lowering effect, they
also promote weight loss and induce osmotic diuresis and
natriuresis [13]. These combined actions result in a significant
reduction in arterial BP as shown in several randomized con-
trolled trials (RCTs) whose results were summarized in sys-
tematic reviews and meta-analyses [14, 15, 16•, 17•]. Of ma-
jor clinical importance, SGLT2is also reduce the risk of HF
[18]. Several recent cardiovascular outcome trials (CVOTs)
reported a reduction in major cardiovascular events
(MACEs) and CV mortality and/or in the risk of hospitaliza-
tion for HF in patients with T2DM and at high risk of CV
disease as most patients had established CV disease already.
They were treated with an SGLT2i compared with a placebo
as added to standard therapy [19–21], and most important
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results have been summarized in a recent meta-analysis [22••].
The precise mechanisms underlying these beneficial effects
are complex and remain a matter of discussion. They are most
probably multifactorial, combining metabolic, endocrine, he-
modynamic, and biochemical effects (Fig. 2) [23–26].
Furthermore, SGLT2is also modify the intra-renal hemody-
namic pattern in hyperglycemic diabetic patients, presumably
by restoring tubulo-glomerular feedback, a mechanism that
contributes to renoprotective effects [27].

The mechanism of the diuretic effect of SGLT2is is rather
different from that of other diuretic compounds [18, 28]. In
contrast with classic diuretics that may be associated with
increased SNS activity [29, 30]. SGLT2is reduce arterial BP
without inducing a significant rise in heart rate, which may
suggest an attenuation of the SNS activity (Fig. 2) [31].
Elevated heart rate is considered as an independent CV risk
factor [32], including in patients with T2DM [33]. Of note,
however, glucagon-like peptide-1 (GLP-1) receptor agonists
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(especially liraglutide), another class of glucose-lowering
agents that recently showed a reduction in MACEs and CV
mortality like SGLT2is [34], are associated with a significant
rise in heart rate [35], an effect not observed with SGLT2is.

The aims of the present narrative review are to summarize
the effects of SGLT2is on BP in T2DM patients and, more
specifically, to analyze the effects of SGLT2is on the SNS. To
what extent these effects may contribute to the reduction in
CV events observed with this pharmacological class remains
an open question [36].

Blood Pressure Lowering Effects

Factors Modulating BP-Lowering Effects of SGLT2is

Treatment with SGLT2is is consistently associated with a low-
ering of arterial BP in T2D patients with or without hyperten-
sion [37–39]. This effect has been confirmed with all SGLT2is
and extensively analyzed in several meta-analyses [14, 15,
16•, 17•]: canagliflozin [40, 41], dapagliflozin [42–44],
empagliflozin [45, 46], ertugliflozin [47], and ipragliflozin
[48]. The contribution of the BP-lowering effect of SGLT2is
in the overall cardiovascular [36] and renal [49] protective
effects of this pharmacological class remains, however
debatable.

Dose-Response

Canagliflozin, but not dapagliflozin or empagliflozin, showed
a significant dose-response relationship with systolic BP re-
duction, canagliflozin 300 mg once daily being more potent
than 100 mg once daily [14, 15, 40]. However, the overall
difference in BP-lowering effect between the two doses of
25 mg versus 10 mg canagliflozin is rather modest (systolic
BP − 5.0 versus − 4.3 mmHg in the overall population and −
14.2 versus − 12.8 mmHg in patients with baseline levels ≥
140 mmHg) [41]. In T2DM patients with HTN, empagliflozin
showed only a sligthly greater reduction in systolic (− 4.16
versus − 3.44 mmHg) and diastolic (− 1.72 versus −
1.36 mmHg) mean 24-h ambulatory BP with the daily dose
of 25 mg compared with 10 mg, respectively [45]. In the
EMPA-REG OUTCOME CVOT, the reductions observed
with the two doses of empagliflozin were almost similar
throughout the 3-year follow-up, also resulting in a compara-
ble CV protection [19].

Systolic Versus Diastolic BP

Generally, the SGLT2i-associated reduction in systolic BP
was greater (almost twofold) than the reduction in diastolic
BP. This difference was observed when BP was controlled
in seated position in the investigator office (− 3.96 mmHg

for systolic BP versus − 1.59 mmHg for diastolic BP [14] or
during 24-h ambulatory monitoring (− 3.76 mmHg for systol-
ic BP versus − 1.83mmHg for diastolic BP) [17•], as shown in
meta-analyses of RCTs that compared the effects of SGLT2is
versus placebo or another glucose-lowering agent.

Central BP Measurement

An experimental study compared the effects of three SGLT2is
(canagliflozin, empagliflozin, and luseogliflozin) on BP and
showed similar reductions in brachial and central BP [50]. In
another study in T2DM patients treated with dapagliflozin for
6 weeks, central systolic and diastolic BP values were signif-
icantly lower, by 3.0 and 2.2 mmHg, respectively, compared
with placebo [51].

24-h Ambulatory Monitoring Versus Office BP Measurement

The BP reduction observed in office conditions [14, 16•] has
been confirmed during 24-h ambulatory monitoring with all
SGLT2is: canagliflozin [40], dapagliflozin [42, 43],
empagliflozin [45, 52] and ertugliflozin [47]. According to a
meta-analysis of six RCTs having compared an SGLTT2i with
a placebo using 24-h ambulatory BP monitoring [17•],
SGLT2is were associated with a significant reduction in both
daytime (− 4.34 mmHg, 95% CI − 5.09 to − 3.58) and night-
time (− 2.61 mmHg, 95% CI − 3.08 to − 2.14) BP levels. A
similar trend for a slightly lower reduction during nighttime
comparedwith daytime was also observed for diastolic BP. No
significant differences were recorded between the various
SGLT2is included in this meta-analysis, in agreement with a
class effect [17•]. It has been suggested that circadian BP
rhythm may represent a possible key target of SGLT2is used
for the treatment of T2DM [53].

Baseline High Versus Normal BP

Overall, the average BP reduction reported with SGLT2is may
appear rather modest. However, it is noteworthy that most
trials with SGLT2is were performed in T2DM patients with
well-controlled BP at baseline. Post hoc subgroup analyses
have shown that greater BP reduction may be achieved in
patients with higher BP levels at baseline (> 140/90 mmHg)
[14, 37, 38, 44, 54]. Even in patients with normal BP levels,
the risk of orthostatic hypotension when adding an SGLT2i to
standard therapy was considered to be low [44].

Background Antihypertensive Therapy

The BP lowering effect was also observed in patients already
treated with a combination antihypertensive therapy [43], in-
cluding renin-angiotensin blockers [55]. However, the antihy-
pertensive effect seems to be less marked when an SGLT2i is
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added to a diuretic. For instance, the reduction in seated sys-
tolic BP was almost twofold lower when dapagliflozin was
added to a diuretic agent than when it was added to a beta-
blocker or a calcium-channel blocker. Nevertheless, such a
difference almost vanished when 24-h ambulatory systolic
BPmeasurements were compared [43]. In another study using
24-h ambulatory BP monitoring in patients with T2DM and
HTN, empagliflozin for 12 weeks reduced systolic and dia-
stolic BP versus placebo, irrespective of the number of anti-
hypertensive agents and use of diuretics or angiotensin-
converting enzyme inhibitors/angiotensin receptor blockers
[56]. The use of thiazide diuretics remains very popular for
the treatment for T2DM patients with HTN or even HF [57]. It
has been shown that switching from low-dose thiazide di-
uretics to SGLT2i improves various metabolic parameters
without affecting BP in T2DM patients with HTN [58].

Chronic Kidney Disease

Chronic kidney disease (CKD) and HTN are closely related,
and CKD is a recognized risk factor for developing or aggra-
vating not only HTN but also HF [59]. Because of their spe-
cific mechanism of action, SGLT2is lose part of their glucose-
lowering efficacy in patients in CKD when estimated glomer-
ular filtration rate (eGFR) falls < 60 ml/min/1.73 m2 [60].
However, it has been demonstrated that in those patients,
dapagliflozin still significantly reduced BP (and bodyweight),
while it did not improve glycemic control [61]. Furthermore,
subgroups analyses of CVOTs showed that the CV protection
reported with SGLT2is was maintained in T2DM patients
with moderate CKD (eGFR 30–60 ml/min/1.73 m2) [22].
These findings have been recent ly confirmed in
CREDENCE [62]. This study compared canagliflozin
100 mg with placebo and, in contrast to previous CVOTs,
specifically recruited patients with T2DM and albuminuric
CKD. All the patients were treated with renin-angiotensin
system blockade and had an eGFR of 30 to < 90 ml/min/
1.73 m2 and a ratio of albumin (mg)/creatinine (g) (> 300 to
5000). The relative risk of the primary outcome [composite of
end-stage kidney disease (dialysis, transplantation, or a
sustained estimated GFR of < 15 ml/min/1.73 m2), a doubling
of the serum creatinine level, or death from renal or CV
causes] was 30% lower in the canagliflozin group than in
the placebo group (hazard ratio 0.70; 95% confidence interval
[CI] 0.59 to 0.82; P = 0.00001). The relative risks of the renal-
specific composite (excluding CV death) (P < 0.001) and of
the major CVevents (cardiovascular death, myocardial infarc-
tion, or stroke: P = 0.01) were also significantly reduced in the
canagliflozin group compared to the placebo group. On aver-
age, BP levels were lower in the canagliflozin group, yet the
difference was modest (3.3 mmHg for systolic BP and
0.95 mmHg for diastolic BP) [62].

Ethnic Group

In African-Americans with T2DM and HTN (mean BP 146.3/
89.4 mmHg), empagliflozin significantly reduced BP and its
BP-lowering effect increased from 12 to 24 weeks, suggesting
a full antihypertensive effect takes ≥ 6 months to be achieved.
At week 24, the placebo-subtracted BP effect was impressive
(systolic BP − 8.39 mmHg [95% CI − 13.74, − 3.04; P =
0.0025], similar to standard antihypertensive monotherapies
[63]. In a meta-analysis, comparison of the efficacy in SGLT2i
treatment between Asian and non-Asian T2DM patients
showed no significant difference in BP reduction, similarly
to the effects observed regarding HbA1c, body weight, and
all-cause mortality [64].

BP-Lowering Mechanisms Related to SGLT2is

Several mechanisms could explain the reduction in BP ob-
served with SGLT2is (Fig. 2) [65–67].

Weight Loss

In various studies, including RCTs and real-world observa-
tional studies, patients treated with SGLT2is have reported
weight loss of around 1 to 3 kg [68]. Although fluid loss
may somewhat contribute, dedicated studies having measured
body composition showed that most of the weight reduction is
explained by loss of fat mass [68]. It is well-known that inter-
ventions that cause weight loss have a positive impact on
cardiovascular risk factors [69], including improved BP con-
trol [70]. However, the rather limited amount of weight loss
associated with SGLT2i therapy seems insufficient to mark-
edly influence BP in patients with T2DM. A detailed analysis
of a 24-week placebo-controlled RCT concluded that weight
loss of 2 kg associated with dapagliflozin contributes to 28%
of the overall systolic BP reduction, and 24% of the overall
diastolic BP reduction [71].

Natriuresis and Osmotic Diuresis

After the publication of EMPA-REG OUTCOME [19], the
role of a natriuretic effect [72] or a diuretic effect [73] of
empagliflozin was put forward to explain the favorable CV
outcomes with the SGLT2i compared with placebo. It is likely
that plasma volume contraction due to natriuresis and osmotic
diuresis in response to SGLT2 inhibition is at least in part
responsible for the reduction in the risk of HF observed within
the first few weeks in all CVOTs. However, the natriuretic/
diuretic effects of SGLT2is are quite different from those de-
scribed with classic diuretics [28]. The effects on natriuresis
and diuresis appeared rather modest when properly measured
over 5 days after an acute administration of empagliflozin
25 mg [74]. Further, if present, they were generally observed
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transiently without changing long-term overall fluid balance
[75, 76]. Of note, however, the spill-over of glucose and so-
dium beyond the proximal nephron following SGLT2 inhibi-
tion triggers dynamic and reversible realignment of energy
metabolism, renal filtration, and plasma volume without rely-
ing on losses into the urine. All these processes are observed
in the absence of significant glucosuria or ongoing natriuresis
[77].

Reduction in Arterial Stiffness

Several studies have reported a significant reduction in arterial
stiffness in T2DM patients treated with dapagliflozin [78],
canagliflozin [79], or empagliflozin [54]. This effect has been
shown to be associatedwith improved endothelial dysfunction
[78]. Both reduction in arterial stiffness and improvement of
endothelial function could contribute to lower BP in T2DM
patients, especially those with HTN, and possibly to the im-
provement of CVoutcomes.

In patients with type 1 diabetes, deterioration of autonomic
nervous function is associated with an increase in arterial stiff-
ness, which, in turn, is associated with, and may cause, in-
creased systolic BP and pulse pressure [80]. In young patients
with type 1 diabetes, empagliflozin was associated with a
decline in arterial stiffness; however, heart rate variability
and circulating adrenergic mediators (plasma norepinephrine
and epinephrine levels) remained unchanged under both
clamped euglycemic and hyperglycemic conditions [81].

Effects of SGLT2is on Sympathetic Nervous
System

Renin-angiotensin system (RAS) plays a major role in
regulating BP and body fluids, and RAS blockers are
key players in the treatment of both HTN and HF.
Available data indicate that treatment with SGLT2is, by
causing polyuria and natriuresis, transiently activates the
systemic RAS in T2DM, but not the intrarenal RAS [82].
SNS also plays an important role in controlling BP and
the pathophysiology of HTN [1, 9]. It is also activated in
HF, an effect potentially deleterious [4, 5]. Animal [31]
and human [83•] data suggest that SGLT2is are able to
reduce SNS hyperactivity.

Intriguingly, experimental in vitro and in vivo studies
provide evidence for a cross-talk between the SNS and
SGLT2 regulation (Fig. 3) [84••]. Sympathetic nerves in-
nervate the proximal tubules of the kidney where they
have been shown to regulate the expression of trans-
porters such as the sodium hydrogen exchanger 3, but
also SGLT2 [85].

SGLT2i, Adrenergic Activity, and HTN

Experimental animal data investigated the effects of SGLT2is
on BP and SNS activity in salt-treated obese and metabolic
syndrome rats, who develop HTN with an abnormal circadian
rhythm of BP, a non-dipper type of HTN, and do not exhibit a
circadian rhythm of SNS activity. Treatment with SGLT2is
significantly decreased BP and normalized circadian rhythms
of both BP and SNS activity, but did not change heart rate
[31].

Similarly, in patients with T2DM, the reduction in BP in-
duced by SGLT2 inhibitors is not accompanied by a signifi-
cant increase in heart rate [54]. Treatment with any of the three
SGLT2is with the largest experience (canagliflozin,
dapagliflozin, and empagliflozin) results in sustained systolic
and diastolic BP reduction, in part via minimal natriuresis and
possible reductions in sympathetic tone [66]. After 4 days of
treatment with empagliflozin in patients with T2DM, no sig-
nificant changes in muscle sympathetic nerve activity were
apparent despite a numerical increase in urine volume, numer-
ical reductions in BP, and significant weight loss. There were
no clinically relevant changes in heart rate [83•], confirming
previous observations [54]. Thus, empagliflozin is not associ-
ated with clinically relevant reflex-mediated sympathetic acti-
vation in contrast to increases observed with diuretics in other
studies. These human data confirm data from animal models
[31] and suggest that SGLT2is can affect autonomic CV reg-
ulation [83•].

SGLT2i, Adrenergic Activity, and HF

An elevation of sympathetic activity not only contributes to
the development of HTN but also aggravates HF [4, 5]. The
reduction by SGLT2is in sympathetic overactivity seen in pa-
tients with HF may contribute to the reduction in hospitaliza-
tion for HF consistently reported with SGLT2is [86••]. In an
elderly patient with severe refractory HF, ipragliflozin treat-
ment improved cardiac sympathetic nerve activity evaluated
with (123)I-metaiodobenzylguanidine cardiac-scintigraphy,
an effect that might be one of the mechanisms of the cardio-
protection reported with SGLT2is [87]. These observations
are of interest as a working hypothesis postulates that DPP-4
inhibitors (saxagliptin) may increase the risk of HF events by
activating the SNS to stimulate cardiomyocyte cell death as
recently discussed considering findings from both experimen-
tal studies and clinical trials [71].

SGLT2i, Adrenergic Activity, and Sudden Death

Cardiac sympathetic hyperactivity is related to poor
prognosis and fatal arrhythmias, especially in patients
with coronary insufficiency. SGLT2is potentially reduce
SNS activity that is augmented in part due to the
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stimulatory effect of hyperglycemia. In EMPA-REG
OUTCOME, empagliflozin was associated with a reduc-
tion in sudden death [19]. The precise reason for this
effect remains unknown, yet a potential contribution of
reduced malignant arrhythmias is likely. Cardiac auto-
nomic neuropathy is a frequent complication of diabetes
mellitus, and diabetic patients are at higher risk for de-
veloping arrhythmias and sudden cardiac death [88].
Higher sympathetic tone and lower parasympathetic tone
promote fatal arrhythmias by multiple mechanisms in-
cluding reduction of ventricular refractory period and
ventricular fibrillation threshold, thereby promoting trig-
gered activity and automaticity [89]. Whether a reduction
in SNS tone by SGLT2is may contribute to reduce sud-
den death in patients with established CV disease re-
mains an open question. The ongoing EMBODY
placebo-controlled trial carried out in Japan is designed
to determine whether the suppression of cardiac sympa-
thetic activity induced by SGLT2 inhibition is accompa-
nied by protection against adverse CV outcomes. Sudden
cardiac death surrogate markers will be assessed after
24 weeks of empagliflozin therapy such as heart variabil-
ity, heart rate turbulence, T-wave alternans, late poten-
tials, and (123)I-MIBG scintigraphy imaging [90].

SGLT2i, Adrenergic Activity, and Microangiopathy

Microangiopathy (nephropathy, retinopathy) and
macroangiopathy (coronary artery disease, stroke, periph-
eral artery disease) should not be viewed as entirely sep-
arate entities, but rather as a continuum of the wide-
spread vascular damage determined by diabetes mellitus
[51, 91]. Increasing evidence suggests that overactive
SNS could play a role not only in CV disease but also
in diabetes-associated CKD and retinopathy, yet the un-
derlying mechanisms appear multifactorial [92]. For in-
stance, there is the complex interaction between RAS

activation, vascular reactive oxygen species (ROS) gen-
eration, and increased sympathetic outflow in HTN, es-
pecially when associated to T2DM [93].

Postganglionic sympathetic fibers innervate renal vas-
culature, tubules, and juxtaglomerular apparatus. Renal
sympathetic activation in juxtaglomerular apparatus in-
duces renin release and activates the RAS system, which
further leads to sodium reabsorption and fluid retention,
thereby contributing to HTN and HF [59]. Furthermore,
local sympathetic hyperactivity in the kidney may induce
proteinuria, glomerulosclerosis, and finally renal fibrosis,
through the activation of proinflammatory/profibrotic
markers [94]. It has been suggested that the SNS hyper-
activity [92] is one of the potential mechanisms involved
in the development not only of diabetic cardiomyopathy
but also of chronic renal dysfunction associated with di-
abetes [59].

Hypoxia and oxidative stress contribute to the devel-
opment of diabetic retinopathy [95]. Sympathetic activa-
tion in diabetic patients may lead to peripheral vasocon-
strictor responses and be associated with rheological dis-
orders, thereby leading to deleterious hypoxia [96]. As
SGLT2is may downregulate the SNS activity in the heart
and kidneys [84••], it is plausible that SGLT2 inhibition
may also alleviate detrimental retinal changes that may
be underpinned by local hyperactivation of the SNS [97].
In a study that evaluated changes in retinal capillary flow
and arteriole remodeling using scanning laser Doppler
flowmetry, dapagliflozin for 6 weeks improved parame-
ters associated with the early stages of vascular remod-
eling [51].

Underlying Mechanisms and Contribution of Weight
Loss

The relationships between SGLT2 and SNS appear rather
complex and still poorly understood. Reciprocal

SNS
Kidney

Hypertension

Heart failure

SNS

SNS

SGLT2i

SGLT2

Systolic

Diastolic

Fig. 3 Interrelationships between
kidney sodium-glucose
cotransporters type 2 (SGLT2)
and sympathetic nervous system
(SNS) and illustration of the
positive role of SGLT2 inhibitors
in hypertension and heart failure
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relationships have been reported, SGLT2 inhibition re-
ducing SNS activity, while SNS may also regulate
SGLT2 expression (Fig. 3) [84••]. SGLT2is consistently
reduce body weight and fat mass [68]. Several studies
also showed that weight loss is associated with a reduc-
tion of SNS activity [98, 99]. Caloric restriction is capa-
ble of significantly improving essential HTN, fast heart
rate, low heart rate variability, SNS dominance over
parasympathetic, arterial stiffness, endothelial dysfunc-
tion, and poor flow-mediated arterial dilatation [100].
Insulin stimulates SNS activity, especially in the context
of insulin resistance associated with obesity [101]. To
what extent the rather modest reduction in body weight
associated with SGLT2is contributes to the reduction in
SNS activity as well as the potential role of other under-
lying mechanisms remain to be investigated.

Conclusion

The mechanisms contributing to the cardiovascular and
renal protective effects of SGLT2is appear multifactorial
and remain a matter of discussion. These agents exert an
antihyperglycemic affect, reduce body weight, lower ar-
terial BP, and reduce fluid overload, without increasing
heart rate. The latter observation suggests a possible
dampening of SNS activity associated with SGLT2is.
Recent experimental and clinical dedicated studies con-
firm a lowering of SNS activity. This effect may contrib-
ute to a better control of BP, especially in T2DM patients
with HTN, and to the reduction in the risk of HF, two
complications associated with SNS hyperactivity. The
underlying mechanisms by which SGLT2is reduce SNS
activity remain to be better understood, yet a contribu-
tion of reduction of hyperglycemia with lower insulin
circulating levels and weight loss may play a role.
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