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Abstract
Purpose of Review Cardiovascular disease is the leading contributor to mortality and morbidity. Many deaths of heart failure
patients can be attributed to sudden cardiac death due primarily to ventricular arrhythmia. Currently, most anti-arrhythmics
modulate ion channel conductivity or β-adrenergic signaling, but these drugs have limited efficacy for some indications, and
can potentially be proarrhythmic.
Recent Findings Recent studies have shown that mutations in proteins other than cardiac ion channels may confer susceptibility
to congenital as well as acquired arrhythmias. Additionally, ion channels themselves are subject to regulation at the levels of
channel expression, trafficking and post-translational modification; thus, research into the regulation of ion channels may
elucidate disease mechanisms and potential therapeutic targets for future drug development.
Summary This review summarizes the current knowledge of the molecular mechanisms of arrhythmia susceptibility and dis-
cusses technological advances such as induced pluripotent stem cell-derived cardiomyocytes, gene editing, functional genomics,
and physiological screening platforms that provide a new paradigm for discovery of new therapeutic targets to treat congenital
and acquired diseases of the heart rhythm.

Keywords iPSCs . Arrhythmia . High-throughput . Ion channels . Disease modeling

Introduction

Cardiovascular disease (CVD) is the leading contributor to
mortality and morbidity. However, development of drugs in
this area of medicine is steadily declining [1]. CVD is among
the indications with the highest attrition during drug develop-
ment and the lowest rates of regulatory approval. Moreover,
the complexities of discovering new therapeutic targets for
heart disease have caused several major pharmaceutical

companies to refocus their efforts away from the field. The
underlying reasons are diverse and range from early scientific
or clinical risk, to commercial risks when approved [2, 3•, 4].
To improve the success rate of new drugs for CVD, new
modalities to identify and validate therapeutic agents are par-
amount for addressing the needs of the large and growing
population of patients with CVD [5].

Induced pluripotent stem cell (iPSC) technology is an excit-
ing new platform for modeling CVDs that provides a virtually
limitless source of iPSC-derived cardiomyocytes (iPSC-CMs)
from individual patients harboring congenital disease-causing
mutations [6]. The technology provides a clear advantage over
primary rodent cardiomyocytes in that the hiPSC-CMs retain
human genetic and cellular context. Recent developments in
high-throughput assays to rapidly quantify the kinetics of
excitation-contraction coupling enable screening of chemical
libraries for functional genomics and drug development appli-
cations. We anticipate that these technical advances will revo-
lutionize disease modeling and drug discovery for CVD, par-
ticularly, diseases of heart rhythm. This review focuses on the
molecular mechanisms of heart rhythm disorders and on the
opportunity of using iPSC models to explore the influence of
non-ion channel mechanisms to the development of cellular
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arrhythmia and the possibility to discover new classes of drug
targets for clinical development.

Heart Rhythm Disorders and Current
Therapeutic Strategies

Clinically, electrocardiography measures the instantaneous
change in electrical field potential to infer the direction, mag-
nitude, and duration of electrical activity during each cardiac
cycle. Myocardial excitation is initiated by the sinoatrial (SA)
pacemaker cells which activate the atria and then propagates
through the cardiac conduction system to enable synchronized
excitation and contraction of each ventricle. At the cellular
level, each depolarization and repolarization cycle, known as
an action potential (AP), initiates excitation-contraction (EC)
coupling linking the electrical membrane potential to myosin-
actin cross-bridge formation (Fig. 1). An AP is generated
when the membrane potential reaches a supra-threshold volt-
age that activates voltage-gated sodium channels to rapidly
depolarize the membrane, known as phase 0 of the AP.
Phase 1 of the AP is a brief repolarization period mediated
by two transient outward potassium currents, Ito,f and Ito,s.
Phase 2 of the AP is maintained by the influx of Ca2+ ions
through voltage-gated L-type calcium channels (LTCCs, ICa).
Towards the end of phase 2, the efflux of K+ ions is conducted
by voltage-gated potassium channels (IKr and IKs) to continue
repolarization during phase 3 of the AP. The resting state,
phase 4, is maintained by multiple mechanisms. The
sodium-potassium ATPase utilizes ATP to actively extrude

Na+ in exchange for influx of K+ that maintains the Na+ and
K+ gradients. Additionally, the inwardly rectifying potassium
current (IK1) is activated at hyperpolarized membrane poten-
tials to maintain the resting potential.

Dysfunction of impulse generation or aberrant conduction
through the heart can cause abnormal heart rhythms. The SA
node has a faster intrinsic rate than the atrioventricular node
and therefore normally dictates heart rate. However, if other
cardiac sites show enhanced automaticity, they may generate
competing stimuli and induce arrhythmia. Such triggers are
observed as early or delayed after depolarizations (EADs and
DADs) at the cellular level (Fig. 1). Myocardial damage or
abnormal electrophysiological properties may allow an elec-
trical impulse to encounter conduction block to one region,
propagate along an alternative path to then re-activate the
original region, a condition known as reentry that can lead to
premature and/or repeated reactivation of the atria or ventri-
cles. Clinically, arrhythmias are managed pharmacologically
with anti-arrhythmic drugs that either target ion channels di-
rectly or inhibit β-adrenergic signaling. However, current
anti-arrhythmics have limited efficacy and can sometimes be
proarrhythmic [7].

Genetic Basis for Arrhythmia Disorders

Unraveling the molecular mechanisms of human genetic dis-
orders has yielded profound insights into normal as well as
pathological human physiology. Many variants in predomi-
nantly ion channel proteins have been identified as being the
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Fig. 1 Electrophysiological
properties of cardiomyocytes are
altered in congenital as well as
acquired arrhythmic diseases and
are responsible for increased
susceptibility to arrhythmia and
sudden cardiac death. Gene
defects, differential expression
from modulation at either the
levels of gene expression or
translation, aberrant signaling,
and protein modifications can
underpin the electrophysiological
disease state
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causative or a modifying factor for arrhythmic disease
(Table 1), including long QT syndrome (LQTS) [8], short
QT syndrome (SQTS) [9], catecholaminergic polymorphic
ventricular tachycardia (CPVT) [10], sick sinus syndrome
(SSS) [11], atrial fibrillation (AFib) [12, 13], and Brugada
syndrome (BrS) [14]. With a prevalence of 1% in the general
population and 6% in people older than 65, AFib is the most
common type of arrhythmia. However, the pathophysiology
of AFib is complex as a patient’s genetic background can be
both causative (familial AFib) and potentially act as a disease
modifier (non-familial AFib) [13]. Similarly, many polymor-
phisms have been identified by genome-wide association
studies (GWAS) that map to genes associated with arrhythmic
diseases andmay contribute to additional risk albeit with small
effect sizes [15–18]. In contrast, LQTS is the most common
type of congenital arrhythmia with a prevalence of 1:2000
[19]. Taken together, there are many genetic variants associ-
ated with distinct proarrhythmic diseases that can be mined to
gain additional insights into molecular mechanisms.

Congenital arrhythmia is typically caused by mutations af-
fecting the biophysical properties of the pore-forming α-sub-
unit of voltage-gated ion channels. However, biophysically
normal α-subunit variants with hindered (a) synthesis or traf-
ficking, (b) recycling and internalization, or (c) degradation
pathways may also be disease causing, as ion channel density
also determines current profiles [20]. Mutations affecting the
pore-forming subunit, such as KCNQ1 (LQTS1, SQTS2),
KCNH2 (LQTS2, SQTS1), and SCN5A (LQTS3, BrS), may
cause heritable heart rhythm disorders. Importantly, it has be-
come clear that variants in ancillary proteins, ranging from β-
subunits to enzymes, may also cause or contribute to congen-
ital arrhythmia. BothKCNE1 (LQTS5) andKCNE2 (LQTS6),
which encode for β-subunits that modulate the conductance
IKr and IKs, have been shown to be causative for LQTS by
slowing repolarization [21–23]. Mutations in cytoskeletal and
scaffolding proteins have also been linked to arrhythmia.
LQTS4 is caused by a mutation in ankyrin-β (ANKB) [24].
ANKB mutations reduce the trafficking and expression of the
Na+/K+ ATPase and Na+/Ca2+ exchanger as well as alter in-
tracellular calcium handling that sensitizes the cells to arrhyth-
mia [25]. Caveolae, which create small invaginations of the
cell membrane, form micro-domains for ion channel expres-
sion and regulation [26, 27]. Mutations in CAV3 were shown
to cause LQTS9 by increasing late sodium current [28] and
modulating the pacemaker current If [29].

In addition to ion channels and ion channel-modifying pro-
teins, intracellular calcium-handling proteins have profound ef-
fects on the electrophysiological properties of cardiomyocytes,
and aberrant regulation of these genes can cause arrhythmia
susceptibility. CPVT is an inherited arrhythmogenic disease
caused by mutations in RYR2 [30, 31], calsequestrin (CASQ2)
[32, 33], calmodulin (CALM) [34], TECRL [35], or triadin
(TRDN) [36, 37]. RYR2 is the sarcoplasmic reticulum (SR)-

anchored ligand-gated ion channel responsible for calcium flux
from the SR to the cytosol to initiate contraction. SR calcium
leak through RYR2 can induce arrhythmia when the leaked
calcium is able to induce an ectopic action potential. Many
other proteins, including TRDN, CALM, and CASQ2, associ-
ate with RYR2 and are involved in functional regulation of
RYR2 or are responsible for calcium buffering in the SR.
Hence, defects in the function of these proteins may adversely
affect SR calcium physiology and render a patient susceptible
to arrhythmia.

Mutations in the enzymeGPD1Lwere shown to cause BrS2
by modulating PKC-dependent phosphorylation of SCN5A
resulting in reduced INa [38–40]. Interestingly, mutations in
the enzyme TECRL were also linked to CPVT [35].
However, the precise function of this protein remains un-
known, but a role in lipid metabolism is suspected. Moreover,
variants in the hormone NPPA [41] and multiple transcription
factors have also been implicated in AFib [42, 43]. Such vari-
ants likely act through modulation of ion channels transcrip-
tion, atrial remodeling, pulmonary vein development, or devel-
opment of cardiac conduction system [44, 45]. Taken together,
defects not only in pore-forming α-subunits of ion channels,
but also in a wide variety of other proteins have been shown to
cause or modulate susceptibility to arrhythmia.

Ion Channel Regulation and Implications
for Disease

Sudden cardiac death due to arrhythmia is the leading cause of
mortality in patients with heart failure [46]. Altered ion chan-
nel expression and regulation as well as tissue damage are
thought to underpin arrhythmic susceptibility in the failing
heart. Cardiomyocytes in the failing heart have prolonged
AP duration, decreased repolarization reserve, and a high rate
of Ca2+-dependent arrhythmias resulting from electrical re-
modeling due to aberrant neurohormonal signaling.
Understanding the regulatory mechanisms of ion channel
function and how these are perturbed by CVDs may yield
possibilities for drug development.

The electrophysiological properties of cardiomyocytes are
heavily regulated by intrinsic signals, extrinsic signals, and
mechanical stress in both healthy and diseased patients [47].
Several neurohormonal pathways are active in the heart and
are responsible for adverse remodeling and progression of the
disease [48, 49]. Ca2+-dependent signaling regulates transcrip-
tional activity in the heart via CaMK2 [50–52]- and calcine-
urin [52, 53]-dependent pathways. In addition, LTCCs pro-
vide the cell with the ability to indirectly sense membrane
voltage changes and alter gene expression as its C-terminal
domain translocates to the nucleus to regulate gene expression
[54]. miRNAs fine-tune expression of multiple genes by
preventing translation of the target mRNA, and several
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miRNAs modulate cardiovascular physiology or are differen-
tially expressed in heart disease [55–60]. Alternative splicing
of SCN5A resulting in truncated non-functional channels is
increased in heart failure [61]. In addition, multiple ion chan-
nels undergo differential expression in the failing human
heart: KCNJ2, KCND3, CACNA1C, SCN5A, KCNH2,
KCNQ1, RYR2, CASQ, SERCA2A, NCX, Na+/K+ ATPase,

and calmodulin are reduced, whereas HCN4 (If) is increased
[62], albeit with some heterogeneity and inconsistency across
studies. These findings likely contribute to the AP prolonga-
tion, automaticity, and conduction disturbances observed in
the failing heart.

Abnormal trafficking may be an important contributing
factor to altered ion channel function in diseased hearts.

Table 1 Overview of gene variants associated with arrhythmia

Protein type Proteins and diseases

Ion channels (pore-forming α-subunits) - Na+
○ SCN5A (INa, Nav1.5): LQTS3, BrS1, SSS1, AFib10, ATRST1, VF1, PFHB1A, SIDS
○ SCN10A: AFib
- K+
○ KCNQ1 (IKs, Kv7.1): LQTS1, JLNS1, SQTS2, AFib3
○ KCNH2 (IKr, hERG): LQTS2, SQTS1, BrS8, AFib
○ KCNA5 (IKur, Kv1.5): AFib7
○ KCNJ2 (IK1, Kir2.1): LQT7, SQTS3, AFib9
○ KCNJ5: LQT13, AFib
○ KCNJ8: BrS9, AFib, SIDS
○ KCND3 (Ito, Kv4.3): BrS13, AFib
○ KCNN3: AFib
- Na+/K+
○ HCN4 (If): BrS14, SSS2
- Ca2+
○ CACNA1C (ICaL, Cav1.2): LQT8, BrS3, TS
○ CACNA2D1: BrS10
○ CACNA2D4: AFib
○ RYR2: CPVT1, AFib
○ TRMP4: BrS16
- Cation (multi)
○ TRPM4: PFHB1B

Ion channels (accessory subunits) - Na+
○ SCN1B: BrS5, AFib13
○ SCN2B: BrS17, AFib14
○ SCN3B: BrS7, AFib16
○ SCN4B: LQTS10, AFib17
- K+
○ KCNE1: LQTS5, JLNS2, AFib
○ KCNE2: LQTS6, AFib4
○ KCNE3: BrS6, AFib
○ KCNE4: AFib
○ KCNE5: BrS12, AFib
○ ABCC9: AFib12
- Ca2+
○ CACNB2: BrS4, AFib

Gap junctions GJA1 (AFib), GJA5 (AFib11, ATRST1)

Scaffolding proteins ANKB (LQTS4), CAV3 (LQTS9, SIDS), SNTA1 (LQTS12), AKAP9 (LQTS11), LMNA
(AFib), GREM2 (AFib), NUP155 (AFib15), JPH2 (AFib), SYNE2 (AFib)

Regulatory proteins CALM1 (LQTS14/CPVT4), CALM2 (LQTS15), CALM3 (CPVT), TRDN (CPVT5),
CASQ2 (CPVT2), RANGRF (BrS11), SLMAP (BrS15), PRKAG2 (WPWS)

Signaling molecules NPPA (AFib6, ATRST2)

Transcription factors GATA4/5/6 (AFib), NKX2.5/2.6 (AFib), ZFHX3 (AFib), PITX2 (AFib), TBX5 (AFib)

Enzymes GPD1L (BrS2), TECRL (CPVT3)

Sources: UniProt, OMIM, and [8–14]

LQTS long QTsyndrome, SQTS short QTsyndrome,CPVTcatecholaminergic polymorphic ventricular tachycardia, SSS sick sinus syndrome,AFib atrial
fibrillation, BrS Brugada syndrome, WPWS Wolff-Parkinson-White syndrome, ATRST atrial standstill, VF familial paroxysmal ventricular fibrillation,
PFHB progressive familial heart block, JNLS Jervell and Lange-Nielsen syndrome, TS Timothy syndrome, SIDS sudden infant death syndrome
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However, the mechanisms of anterograde and retrograde traf-
ficking of membrane proteins leading to the highly organized
membrane structure of the cardiomyocyte remain poorly un-
derstood [63]. Drugs such as probucol and fluoxetine can
cause drug-induced QT prolongation by blocking hERG
channel trafficking [64]. In addition, hERGmembrane expres-
sion is regulated by extracellular potassium concentration, as
reduction of extracellular potassium leads to hERG internali-
zation and degradation, and hence reduced IKr [65]. This
mechanism may in part explain why hypokalemia is a risk
factor for arrhythmia and sudden cardiac death in heart disease
[66]. miR-1 is upregulated in patients with coronary artery
disease and infarcted rat hearts [67], and overexpression of
this miRNA induces arrhythmia in mice by downregulating
trafficking genes [68]. Gap junctions, comprising connexin
channels, play an important role in electrical conduction of
the electrical excitation throughout the heart. In the healthy
heart, gap junctions are localized at the intercalated discs for
longitudinal spread of excitation. However, the expression of
GJA1 is reduced at both the mRNA and protein level and
improperly localized in heart failure [69, 70]. These deficits
may contribute to conduction disturbances and proarrhythmia
seen in heart failure.

Post-translational modifications (PTMs) enable
transcription-independent modulation of cellular function, typ-
ically by inducing conformational changes. Phosphorylation is
arguably the most studied reversible enzymatic PTM.
Phosphate groups can be added to serine, threonine, and tyro-
sine residues by kinases, and removed by phosphatases. The
human genome encodes for more than 500 kinases and many
have been shown to play a critical role in heart disease [71].
Phosphorylation events orchestrated by PKA and CaMK2 par-
ticipate in the excitation-contraction coupling as well as medi-
ate the chronotropic, inotropic, and lusitropic effects of β-
adrenergic stimulation on the heart [72]. PKAhasmany targets
in the heart, including phospholamban, LTCCs, RYR, and
troponin I [73, 74]. Similarly, CaMK2 has also been implicat-
ed in the phosphorylation of several ion channels in
cardiomyocytes, such as sodium channels, LTCCs, RYR,
and SERCA [75]. However, CaMK2 hyperactivity has been
implicated in the pathogenesis of heart failure and arrhythmia
[76]. Phosphorylation of sodium channels by CaMK2 in-
creases late sodium current [77], while phosphorylation of
RYR2 increases channel open probability leading to SR calci-
um leak and reduced SR calcium content [78]. As a result,
inhibition of CaMK2was recognized as a potential therapeutic
strategy, for which industry has initiated a search for pharma-
ceutical grade compounds although none have yet reached
clinical testing yet [76, 79].

Many other PTMs or amino acid modifications have been
shown to modulate ion channel function and may have a role in
disease. Glycosylation regulates multiple steps of protein bio-
genesis including protein folding, trafficking, and function [80].

Many voltage-gated channels are heavily glycosylated, and ter-
minal sialic acid glycosylation plays an important role in volt-
age sensing and gating of ion channels [81]. Glycosylation-
associated genes are differentially expressed in the heart with
respect to chamber specification and developmental state [82].
Moreover, targeted deletion of such glycosylation-associated
genes has profound effects on cardiac excitability. Aberrant
glycosylation or sialylation of substrates, including
calsequestrin [83], was also observed in CVD [84]. A missense
mutation in calsequestrin (K206N) introduced an additional
glycosylation site resulting in a larger molecular weight protein
that reduced calcium-binding properties and caused arrhythmia
by dysregulating calcium handling [85]. Protein methylation of
sodium channels has also been observed on arginine residues
implicated in Brugada syndrome and LQTS3 [86]. However,
the mechanism by which methylation affects sodium channel
function remains poorly understood. S-acylation is a reversible
covalent fatty acid modification of cysteine residues and is
enzymatically mediated by acyltransferases and is reversed by
acyl-protein thioesterases. S-palmitoylation is the most com-
mon form of S-acylation [87, 88]. Palmitoylation motifs were
shown to regulate late sodium current, and a mutation of a
single cysteine (C981F) has been associated with susceptibility
to arrhythmia [89]. Ubiquitinylation and SUMOylation are
known to affect ion channel function by targeting the protein
for degradation or manipulating activity [90]. SUMOylation
was shown to modulate activation and inactivation kinetics of
KCNQ1 (IKs) and KCNA5 (IKur), an atrial repolarizing potas-
sium channel [91, 92]. In addition, a missense mutation atten-
uating deSUMOylation of TRPM4 associated with heart block
resulted in impaired endocytosis and elevated cell membrane
density [93]. Finally, oxidative stress is often associated with
disease, including HF and AFib, and also enables protein mod-
ification and alteration of function [94, 95]. CaMK2 can be
directly modified by reactive oxygen species leading to
sustained activation and increased late sodium current, Na+/
Ca2+ overload, and arrhythmogenesis [96, 97]. Oxidative stress
has been linked to calcium channel [94] and potassium channel
dysfunction [98]. In particular, KCNA5 is modified with
sulfenic acid residues in response to oxidative stress in AFib
leading to reduced surface expression and current density with-
out altering the biophysical properties of the channel [99].

In summary, the biogenesis and function of cardiac ion
channels is a tightly regulated process that is critical for the
normal function of the heart. Ion channels are regulated at
many levels from transcription and mRNA splicing to pro-
tein trafficking and post-translational modification. The re-
sults of genomic studies have identified many variants in
regulatory genes of ion channels, and the emergence of
new technologies to study the influence of these mutations
in healthy and diseased states presents an exciting oppor-
tunity for the discovery of novel regulatory networks for
future drug discovery.
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iPSC-CMs for Arrhythmic Heart Disease
Modeling

The ability to study the intricate mechanisms governing cardio-
myocyte excitability in human cardiomyocytes has been ex-
traordinarily difficult due to the scarce availability of human
myocardial samples, and the inability to isolate and propagate
primary human cardiomyocytes. Classical models to measure
cardiovascular electrophysiology have been limited mostly to
heterologous expression of α-subunits in cell lines, such as
HEK293 and CHO that do not retain the cardiomyocytes con-
text and rodent models that do not recapitulate the human cel-
lular context. The development of human iPSCs as a stem cell
source [100] and efficient protocols for deriving cardiomyocytes
[101, 102] has enabled the routine production of virtually un-
limited quantities of human iPSC-CMs. iPSC-CMsmake it pos-
sible to assess the integrated effect of genetic variants or external
stimuli on excitation-contraction coupling. Additionally, recent
advances in gene-editing tools facilitate the generation of de
novo mutations in a healthy patient background or correction
of a putative disease-causing mutations in patient lines [103,
104]. As a result, iPSC-CMs have been utilized as a model to
study monogenic CVDs and to address potential roles of puta-
tive at-risk alleles identified by GWAS [105]. Multiple familial
arrhythmogenic disorders have been studied using iPSC-CMs,
including LQTS [106, 107], CPVT [108], arrhythmogenic right
ventricular dysplasia [109], and more recently BrS [110].
Initially, the focus was mainly channel α-subunit-dependent
channelopathies, whereas more recently, the contribution of al-
ternate mechanisms to arrhythmia has also been probed with
iPSC-CMs, such as Cav3 in LQTS9 [111]. While this area re-
mains understudied, we believe that iPSC-CMs can aid in
deconvoluting complex mechanisms of arrhythmia, as these
cells allow the investigation of the interaction between multiple
molecular cascades in the context of a human cardiomyocyte.

Despite their key advantages, iPSC-CMs have limitations
such as variability, impurity, physiological immaturity, and
lack of chamber specificity, which we hope further research
will resolve [112]. iPSC-CMs are considered immature coun-
terparts for the human adult cardiomyocytes, with respect to
their structure, metabolism, and electrophysiology [113]. For
example, the slightly depolarized resting membrane potential
and the lack of reliance on sodium current for AP generation
may restrict the use of such immature cells to probe the con-
tribution of late sodium current to arrhythmia [114•]. However,
considerable progress has been made using culture media al-
teration and tissue engineering strategies to further purify and
mature the physiology of the iPSC-CMs [115–118]. In addi-
tion, iPSC-CMs can be directed to ventricular or atrial fate by
defined factors [119] and can hence be used to study cell-
autonomous AFib mechanisms. Importantly, several compa-
nies have been founded to generate commercial grade human
iPSC-CMs to satisfy the needs of industry.

High-Throughput iPSC-CM Models for Drug
Discovery and Toxicity Screening

iPSC-CMs have considerable benefits for drug discovery as
well, which remain to be explored, as these cells enable
screening with physiological readouts compared to traditional
target-based screens of ion channel α-subunits. This feature
represents a significant advance for drug discovery by moving
away from target-centric approaches and towards modulation
of a physiological phenotype that is a result of many complex
biological processes working in concert, such as APs or Ca2+

transients (Fig. 2). Physiological screens with iPSC-CMs have
the following benefits: (1) the function of the channels can be
probed in context with other ion channels and regulatory pro-
teins that more closely resemble in vivo environment; (2) dis-
ease states can be recreated using iPSC-CMs derived from
specific CVD patients; and (3) the contribution of non-ion
channel proteins and cell signaling can be studied using pow-
erful screening tools such as functional and chemical geno-
mics approaches.

Currently, mainly low-throughput assays have been used to
probe iPSC-CMs as well as animal-derived cardiomyocytes.
Recent developments in high-throughput optical platforms to
recordAP kinetics enable the ability to screen chemical libraries
and quantify physiological parameters [120]. These methods
may truly revolutionize cardiovascular drug discovery.
Optically, recording of APs overcomes the inherent throughput
limitations of single-cell patch clamping electrophysiology as-
says, as cells can be imaged in multi-well plates rather than as
single cells. Additionally, the reduced cost of using voltage-
sensitive dyes provides an advantage over more expensive ap-
proaches such as microelectrode arrays that may be prohibitive-
ly costly for functional genomics applications. Organic small
molecule calcium and voltage dyes are available with appropri-
ate fluorescent properties to enable high-throughput screening
[114•, 121, 122]. The high-throughput quantification of cardio-
myocyte contractility is more challenging. Many assays use
cellular displacement as a surrogate for contractility, since the
direct measurement of force is more difficult to accomplish at a
micrometer scale [123, 124]. For example, traction force mi-
croscopy (TFM) on single cells and on micro-patterned gels
[115], micropost deflection assays [125], or engineered heart
tissues [126] can be used to measure force, but difficulties in
fabrication of suitable devices as well as development of instru-
ments to measure force in a high-throughput fashion have lim-
ited the widespread adoption of these tools.

There is also considerable interest to use iPSC-CMs to
study the cardiovascular safety of drug candidates [127–129].
A traditional approach to determine the proarrhythmic liability
of a given drug candidate has been to measure inhibition of
hERG (IKr) channels. Although measuring IKr inhibition has
kept potentially toxic drugs off the market, the technique does
not predict Torsade de Points (TdP) as some drugs inhibit IKr
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without causing TdP [130, 131] and other drugs cause TdP
without inhibiting IKr [132–134]. Given the phenotypical
screening potential of iPSC-CMs, these cells can be utilized
for toxicity screening without bias towards the underlying
mechanisms. The utility of iPSC-CMs for prediction of
cardiotoxicity is currently being investigated by the FDA un-
der the Comprehensive in vitro Proarrhythmia Assay (CiPA)
initiative. The project aims to develop a more predictive model
for TdP by bringing together academia, pharmaceutical indus-
try, and regulatory agencies to facilitate the adoption of a new
paradigm for assessment of drug toxicity. Current CiPA studies
support the utility of iPSC-CMs for proarrhythmic testing;
however, further development and validation are likely war-
ranted before adoption [135•, 136•, 137•]. Additionally,

proarrhythmia is not the only potential liability of drug candi-
dates as some drugs have been shown to induce cardiomyop-
athy and heart failure [138]. iPSC-CMs can be similarly ap-
plied for such toxicities using other phenotypic readouts.
Sharma et al. [128] recently analyzed the cardiotoxic propen-
sity of 21 anti-cancer kinase inhibitors by developing a risk
index based on the relationship between plasma Cmax and the
dose that affected both contractility and viability in vitro in
iPSC-CMs. The results correlated well with clinically reported
adverse events in patients.

iPSC-CMs represent a flexible platform for screening of
diverse chemical collections that probe the contribution of
both coding and non-coding mechanisms to arrhythmia. By
combining genetic, pharmacological, or environmentally

High-Throughput Screening 
using physiological readouts

Patient samples iPSC cardiomyocytes

drug discovery, and mechanistic understanding

Arrhythmia disease models

Genetics
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Environmental

Small molecules
DNA/RNA

CRISPR-Cas9

Membrane potential

Intracellular calcium

Contractile force

t

Fig. 2 Induced pluripotent stem
cells can be derived with high
efficiency from patient tissue
samples and efficiently
differentiated to virtually all cell
types of the body, including
cardiomyocytes (iPSC-CMs).
iPSC-CMs can be utilized to
study mechanisms of arrhythmia
dependent on extrinsic
(pharmacological drugs and
chemical environment) as well as
intrinsic factors (genetics). While
traditional techniques for
quantifying electrophysiological
parameters and excitation-
contraction coupling are low
throughput, recent developments
in both screening technology and
high-throughput assays enable
phenotypical screens of moderate
sized chemical libraries (small
molecules, nucleic acids, or
CRISPR/Cas9) in parallel. We
believe these technologies will
drive our current understanding of
molecular arrhythmia
mechanisms further and will
revolutionize target identification
and drug discovery for anti-
arrhythmics in addition to
determining of cardiotoxicity
liabilities of drug candidates
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induced iPSC-CMs models of disease with physiological
screens using libraries of small molecules [139], (anti-)
miRNAs, siRNAs, and/or Cas9 guide RNAs [140, 141], the
role of individual proteins or signaling pathways on the car-
diomyocyte excitability can be rapidly tested (Fig. 2). For
example, by knocking down individual kinases, the impact
of signaling cascades on arrhythmia propensity can be probed
directly under normal or diseased conditions. With CRISPR
gene-editing technology, individual PTM sites, such as for
phosphorylation or ubiquitinylation, can be mutated at the
genomic level to study the role of specific PTM events on
arrhythmia propensity. As these edited proteins remain under
endogenous promotor regulation, this methodology is superior
to traditional viral overexpression. Taken together, iPSC-CMs
offer the ability to conduct phenotypical screening assays on
human cardiomyocytes, which provides relevant new avenues
for drug discovery, both for conducting screens for rescuing
disease phenotypes and for quantifying cardiotoxic liabilities.

Conclusion

Arrhythmia is a significant disease burden and the develop-
ment of novel drugs for this indication has stagnated in recent
years. It is becoming increasingly clear that multiple proteins
in addition to ion channels may confer susceptibility to ar-
rhythmia. Additional research into the regulation of ion chan-
nel expression, trafficking, and regulation is needed and may
provide novel directions for drug development. New technol-
ogies such as iPSC-CMs, gene editing, functional genomics,
and high-throughput screening platforms provide new ap-
proaches to our search for novel arrhythmia therapies and,
hopefully, will lead to the discovery of new drugs to alleviate
arrhythmogenesis in patients with CVDs.
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